On the Number of Generators of an Ideal

THOMAS JECH

A countably complete ideal I over a set S is κ -saturated if the Boolean algebra P(S)/I does not have a subset of size κ of pairwise disjoint elements.* I is λ -generated if it has a subset X of size λ such that I is the smallest σ -ideal containing X. We denote by sat(I), gen(I) the least cardinal number κ (the least cardinal number λ) such that I is κ -saturated (λ -generated).

In [2], Baumgartner and Taylor prove that if every σ -ideal over ω_1 is \aleph_2 -generated then every σ -ideal over ω_1 is \aleph_3 -saturated, and ask the following question: Can one prove that every \aleph_2 -generated σ -ideal over ω_1 is \aleph_3 -saturated?

We answer this question in the negative:

Theorem 1 It is consistent that the closed unbounded filter over ω_1 is \aleph_2 -generated but not \aleph_3 -saturated.¹

In fact, a σ -ideal can have \aleph_2 generators and not be κ -saturated for arbitrarily large κ :

Theorem 2 Let M be a model of V = L and let κ and λ be (in M) cardinals such that $\kappa \leq \lambda$ and $cf \ \kappa \geq \omega_2$, $cf \ \lambda \geq \omega_2$. Then there is a generic extension M[G] in which

$$gen(F) = \aleph_2, sat(F) = \kappa^+, 2^{\aleph_1} = \lambda$$

(where F is the closed unbounded filter over ω_1).²

Proof of Theorem 1: Let M be a model of ZFC in which $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} \ge \aleph_3$. We extend M generically by adjoining \aleph_2 closed unbounded subsets

^{*}Research was supported by a grant from the National Science Foundation.

of ω_1 which will generate the closed unbounded filter in the extension. We adjoin the \aleph_2 closed unbounded subsets successively, using iterated forcing. The extension will still satisfy $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} \ge \aleph_3$ and by a theorem of Jech and Prikry this implies that no σ -ideal over ω_1 is \aleph_3 -saturated (cf. [4]).

Let us consider the following notion of forcing (Q, <): A forcing condition $q \in Q$ is a pair

$$q = (s, C)$$

where

- (1) s is a closed countable subset of ω_1
- (2) C is a closed unbounded subset of ω_1
- (3) max(s) < min(C).

The partial ordering on Q is defined as follows: q = (s, C) is stronger than q' = (s', C') iff

(4) $C \subseteq C'$ (5) s extends s' (6) $s - s' \subseteq C'$.

The notion of forcing (Q, <) is countably closed: if $\{(s_n, C_n): n \in \omega\}$ is a descending sequence of condition, then the condition (s, C) where $s = \bigcup_n s_n \cup \{sup_nmax(s_n)\}$ and $C = \bigcap_n C_n$ is stronger than all of them. If s = s' then the conditions (s, C) and (s', C') are compatible. Hence every incompatible set of conditions has size at most 2^{\aleph_0} and since $2^{\aleph_0} = \aleph_1$, (Q, <) satisfies the \aleph_2 -chain condition.

Also, we have $|Q| = 2^{\aleph_1}$.

Let G be a generic set of conditions. Since Q is σ -closed and has the \aleph_2 -chain condition, all cardinals and cofinalities are the same in M[G] as in M. Moreover, M[G] has no new countable sets of ordinals, and $(2^{\aleph_0})^{M[G]} = (2^{\aleph_0})^M = \aleph_1$ and $(2^{\aleph_1})^{M[G]} = (2^{\aleph_1})^M$. Let

(7) $C_G = \bigcup \{s: \text{ for some } C, (s, C) \in G\}.$

The set C_G is a closed unbounded subset of ω_1 , and since G is Q-generic, we can easily see that

(8) if $C \in M$ is a closed unbounded subset of ω_1 , then there is $\alpha < \omega_1$ such that $C_G - \alpha \subseteq C$.

In other words, every closed unbounded subset of ω_1 in the ground model contains an end segment of the set C_G .

The notion of forcing (P, <) is obtained by iterating the above construction \aleph_2 times. We assume that the reader is familiar with the basic facts on iterated forcing; these can be found, among others, in [3] p. 457, or in [1].

We consider an iterated forcing of length ω_2 , where at successor stages we use the notion (Q, <) described above, and at limit stages take either direct or inverse limits; namely, we take inverse limits at limit ordinals of cofinality ω and direct limits at limit ordinals of cofinality $> \omega$.

More precisely, we define, by induction, for each $\alpha \leq \omega_2$ an α -stage iteration $(P_{\alpha}, \leq_{\alpha})$, the corresponding Boolean-valued model $M^{P_{\alpha}}$ and the notion of forcing \Vdash_{α} , and a notion of forcing $Q_{\alpha} \in M^{P_{\alpha}}$:

- (9) $P_0 = \{1\}, M^{P_0} = M, Q_0 = Q$
- (10) P_{α} is the set of all α -sequences $p = \langle p_{\xi}: \xi < \alpha \rangle$ such that
 - (i) for every $\gamma < \alpha$, $p \upharpoonright \gamma \in P_{\gamma}$ and $p \upharpoonright \gamma \Vdash_{\gamma} p_{\gamma} \in Q_{\gamma}$
 - (ii) $\{\xi < \alpha : p(\xi) \neq 1\}$ is at most countable
- (11) if $p, q \in P_{\alpha}$ then $p \leq_{\alpha} q$ iff for every $\gamma < \alpha, p \upharpoonright \gamma \Vdash_{\gamma} p_{\gamma} \leq_{\gamma} q_{\gamma}$ (12) $Q_{\alpha} \in M^{P_{\alpha}}$ is the notion of forcing defined in $M^{P_{\alpha}}$ by (1)-(6).

Finally, we let $(P, <) = (P_{\omega_2}, <_{\omega_2})$ be the ω_2 -stage iteration.

Since for each α , $\parallel_{\overline{\alpha}} Q_{\alpha}$ is countably closed and has the \aleph_2 -chain condition, and because we iterate with countable support, it follows from basic facts on iterated forcing that (P, <) is countably closed and has the \aleph_2 -chain condition. And also, $|P| = 2^{\aleph_1}$.

Let G be an M-generic filter on (P, \leq) . Since P is σ -closed and has the \aleph_2 -chain condition, all cardinals and cofinalities are preserved. Also, M[G]has no new countable sets of ordinals, satisfies $2^{\aleph_0} = \aleph_1$, and 2^{\aleph_1} is the same in M[G] as in M.

We shall show that in M[G], the closed unbounded filter is \aleph_2 -generated.

For each $\alpha < \omega_2$ let $G \upharpoonright \alpha = \{p \upharpoonright \alpha : p \in G\}$, and let $G_{\alpha} = \{p_{\alpha} : p \in G\}$. Clearly, G_{α} is (isomorphic to) an $M[G \upharpoonright \alpha]$ -generic filter on (Q, <) (where Q is defined by (1)-(6) in $M[G \upharpoonright \alpha]$). Thus for each $\alpha < \omega_2$, we can define a closed unbounded set $C_{\alpha} = C_{G_{\alpha}}$ as in (7) and we have

(13) every closed unbounded subset of ω_1 in $M[G \upharpoonright \alpha]$ contains an end segment of the set C_{α} .

The proof will be completed when we show that every closed unbounded subset of ω_1 in M[G] belongs to some $M[G \upharpoonright \alpha]$, $\alpha < \omega_2$. This however is a well-known consequence of the fact that (P, \leq) has the \aleph_2 -chain condition and that P is the direct limit of P_{α} , $\alpha < \omega_2$.

We start with a model M of $V = L^3$ Let $\kappa \leq \lambda$ be Proof of Theorem 2: cardinals of cofinality $\geq \omega_2$. First we extend M generically to a model M_1 in which $2^{\aleph_1} = \kappa$ by adjoining (using countable conditions) κ subsets of ω_1 . Next we extend M_1 to a model M_2 by the notion of forcing P described in the proof of Theorem 1. And finally, we extend M_2 to M_3 by adjoining (via finite condition) λ subsets of ω .

The passage from M to M_2 is via a countably closed notion of forcing. As M is a model of V = L, M satisfies the \diamond principle. It is easy to see that an extension via a countably closed notion of forcing preserves the \diamond principle (every \diamond -sequence in the ground model is a \diamond -sequence in the extension). It follows from \diamond that there are 2⁸¹ almost disjoint stationary sets; hence M_2 satisfies that the closed unbounded filter is not κ -saturated. As M_2 is an extension of M_1 via $(P, \leq), M_2$ also satisfies that the closed unbounded filter is \aleph_2 -generated.

The passage from M_2 to M_3 uses a ccc notion of forcing. It is well-known that when forcing with a ccc set of conditions, every closed unbounded set in the extension contains a closed unbounded set in the ground model and every

THOMAS JECH

stationary set in the ground model remains stationary in the extension. Thus in M_3 , the closed unbounded filter is still \aleph_2 -generated, and still not κ -saturated. Also, it is generated by the closed unbounded filter in M_2 . The closed unbounded filter in M_2 is κ^+ -saturated (because $(2^{\aleph_1})^{M_2} = \kappa$) and by a theorem of Baumgartner and Taylor [2] it generates a κ^+ -saturated filter in any ccc extension. Thus the closed unbounded filter in M_3 is κ^+ -saturated.

NOTES

- 1. Added in proof: A similar result was obtained independently by A. Kanamori (see [5]). His construction required a large cardinal in the ground model.
- 2. In a letter to the author, J. Baumgartner states: "... you can raise the generation number of the club filter by iterating as far as you like. Thus you could get, for example $gen(F) = \aleph_3$, $sat(F) = \aleph_4$, $2^{\aleph} = \aleph_5$."
- 3. As the referee points out, it is not necessary to start with a model of V = L, since \diamond is automatically obtained when forcing with a countably closed partial ordering that adds a subset of ω_1 .

REFERENCES

- [1] Baumgartner, J., "Iterated forcing," to appear.
- [2] Baumgartner, J. and A. Taylor, "Saturation properties of ideals in generic extensions I," to appear.
- [3] Jech, T., Set Theory, Academic Press, New York, 1978.
- [4] Jech, T. and K. Prikry, "Ideals over uncountable sets." Application of almost disjoint functions and generic ultrapowers, Memoirs of the American Mathematical Society, Volume 18, number 214, Providence, Rhode Island, 1979.
- [5] Kanamori, A., "Perfect set forcing for uncountable cardinals," to appear.

Department of Mathematics The Pennsylvania State University University Park, Pennsylvania 16802

108