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The Completeness of Intuitionistic
Propositional Calculus for its

Intended Interpretation
JOHN P. BURGESS

If certain plausible though not absolutely compelling assumptions about
choice sequences are admitted as postulates of intuitionistic analysis, then the
usual formal system of intuitionistic propositional calculus can be proved
complete for its intended interpretation: Any formula of the system which is
intuitively correct no matter what propositions of intuitionistic mathematics
are substituted for its variables can be formally deduced as a thesis of the
system. This result has been known for some twenty years now, Kreisel’s [5]
being the first fully worked-out version. But thus far a streamlined and self-
contained account of Kreisel’s completeness theorem has been lacking in the
literature. The aim of the present notes is to supply that lack.

We work with a well-known equivalent, presented in Section 1, of
Heyting’s ‘classic’ axiomatization [2]. The first step in a proof of completeness
of such an axiomatization for its intended interpretation is always to prove
completeness for some useful though artificial unintended interpretation, e.g.,
the topological models of McKinsey and Tarski, or the tree models of Beth.

We prefer to work with the relational models of Kripke, presenting in
Section 2 a proof of Kripke’s completeness theorem which, like the original
proof [8] (so far as the latter pertains to propositional calculus), is finitistic.
For a finitistic proof, ours is relatively quick and painless.

The Outlaw Schema, the choice-sequence assumption on which our work
depends, is expounded in Section 3. Its statement requires only symbols for the
basic operations of logic and arithmetic, and quantification over natural num-
bers and infinite sequences thereof. Our work requires (besides the Outlaw
Schema) only noncontroversial axioms of intuitionistic logic and arithmetic.

Received May 25, 1979, revised November 16, 1979



18 JOHN P. BURGESS

Formally, the Outlaw Schema can be written in the austere language of Kleene
[4], and our work can be formalized in that language using only Kleene’s basic
Postulates A-D.

Though the Outlaw Schema can be formalized ‘extensionally’, it can only
be justified ‘intensionally’, through appeal to the notion of lawless sequences
developed in the work of Kreisel, Troelstra, and others (see, e.g., [10]). It must
be confessed that intuitionists are not uniformly enthusiastic about this notion.
Brouwer himself expressed doubts in a mysterious footnote, and today the
Nijmegen school has its reservations (see the historical appendix to [10]). We
leave it to the reader to judge the plausibility of the Outlaw Schema, confining
ourself here to two remarks: First, while certain classical tautologies, e.g.,
Vp(op v 717p), can be refuted intuitionistically using only Continuity Prin-
ciples, no general refutation of all intuitionistic nontheses is known which does
not involve lawlessness. Second, the Outlaw Schema is at least consistent with
such better-known postulates as Dependent Choice, Bar Induction, Creative
Subject, and V3!-Continuity. For as J. R. Moschovakis [9] has shown, all these
hold in Scott’s topological model of intuitionistic analysis; and we indicate in
Section 4 that the Outlaw Schema holds there, too.

At last in Section 5 we are ready to prove the completeness of intui-
tionistic propositional calculus for its intended interpretation as the logic of
intuitionistic mathematics. Can this result be extended? Work of Veldman and
de Swart of Nijmegen has been interpreted by Dummett as providing a com-
pleteness proof for the negation-free part of intuitionistic predicate calculus;
work of Godel and Kreisel is usually interpreted as ruling out any completeness
proof for full predicate calculus. Dummett ([1], Ch. 5) has a full account of
these matters.

1 Rudiments As mentioned in the introduction, we will work with a
variant of the usual Heyting axiomatization. As primitives for our system / of
intuitionistic propositional calculus we take conjunction &, disjunction v,
implication —, and absurdity f. As sole rule of inference for I we take modus
ponens (MP): from ¢ and ¢ —> ¥ to infer ¢. As axioms for I we take all substitu-
tion instances of the following:

Axioms

(@ p~>(@~p)

®) (p=>@=>r))>(p2>q)> (@)
© f-p

(d (p&q)—p

() (p&q)—q

® p=>@>(@&q)

@ rp>(ve

(h) g=>(pve

@ (p=>nN->Wg=>nN=>Upvg)~>nr).

Negation can be introduced by definition: -1¢ abbreviates ¢ = f. (For an
equivalent system with negation as primitive, replace Axiom ¢ by (p > g) >
(g >"p)and p > (p > q).)
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Intuitionism upholds a conceptualist or psychologistic philosophy of
mathematics, according to which every mathematical proposition calls for a
thought-construction. The classical mathematician trying to understand does
not go too far wrong in thinking of the simplest, such as 7+ 5 = 12, as calling
for the verification of a mental calculation. The interpretation of compounds
runs along the following lines:

Hermeneutics

(a) po& p, calls for a py-construction followed by a p,-construction

(b) pov p; calls for a choice of i € 10,1} followed by a p;-construction

(¢) po— p, calls for the construction of a method together with a proof that it
will convert any pgconstruction into a p-construction

N calls for the impossible, a verification that 0 = 1

(e) VxP(x) calls for the construction of a method together with a proof that
applied to any £ in the range of x it will produce a P(§)-
construction

(f) 3IxP(x) calls for the construction of some & in the range of x followed by a
P(§)-construction.

“The only positive contention” the intuitionist ([2], p. 11) opposes “‘is
that classical mathematics has a clear sense’. The classicist returns the compli-
ment, calling the explanations above circular, impredicative, a case of the
obscure explained through the more obscure. Yet the candid classicist must
admit that these explanations make intelligible the notorious rejection of the
excluded middle. Read intuitionistically, Vp(p v 71p) amounts to the preposter-
ous claim to have a general method for settling all mathematical questions. And
one can see this from the above explanations however imperfect one’s grasp of
‘construction’, ‘method’, or ‘proof” may be.

One can equally well see why VpVq(p = (¢ = p)) is accepted. For on the
above reading of =, we can assert this if we possess a method M which demon-
strably converts any p-construction C into a (¢ = p)-construction, that is, into
a method M' for converting any g-construction C' into a p-construction C".
Plainly, one such M is that which, given C, produces this M': Throw away C’,
and take C'" = C. It is an easy and pleasant task to ‘talk through’ Axioms b-i
in this way, and prove:

Theorem 1 (Soundness) Every thesis of I is intuitively correct no matter
what propositions of intuitionistic mathematics are substituted for its variables.

2 Models Intuitionistically, a proposition is decided if either it or its
negation holds, and a set is decidable if it is decided for every relevant mathe-
matical construct whether it belongs to the set. For present purposes, relational
‘semantics’ will be introduced thus:

Definition 1 A model is a triple (W, R, S) where:

(a) W is a finite decidable set of elements called worlds.

(b) R is a decidable partial order on W called accessibility.

(c) S is a constructive function assigning each world a finite decidable set of
propositional variables of [ in a curulative way: if uRv, then S(u) C S(v).
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Definition 2 The relation F of a formula of I being realized at a world w
in a model (W, R, §) is defined inductively:

(a) w Fp, avariable iff p e S(w)

(b) notw Ff

) wkFo& Y iffw Fgandw F ¢

dwkEeovy iffw Egorw Ey

e) wEo—~>y iff whenever wRv and v F ¢, thenv E .

A little thought shows that [ is decidable and cumulative: if «Rv and
u F¢,thenv F ¢. A formula is realized throughout a model if it is realized at
each of its worlds, and is universally realized if it is realized throughout every
model. It is a tedious but routine exercise in unpacking definitions to check
that each of Axioms a-i is universally realized, and that MP preserves this prop-
erty, thus showing:

Theorem 2 (Pseudo-Soundness) Every thesis of I is universally realized.

We wish to prove the converse intuitionistically, indeed finitistically.

A deduction of a formula ¢ from a set of formulas ® is a finite list of
formulas ending with ¢, each of which is either an element of ®, or an axiom of
1, or follows from earlier formulas on the list by MP. If such exists we say ¢ is
deducible from ® and write ® - ¢. Thus ¢ is a thesis iff it is deducible from the
empty set A.

Lemma 1

(@) pePand (¢~ Y)ed imply ® Fy

) g=¢p~>Yand yed imply ® 0

) fed implies ® ¢

d (p&P)ed implies ® F ¢ and ® F ¢

) 0=¢9& YandpePand Yy e ® imply ® 0
) O0=¢vyandpedoryed® imply @ F6.

Proof: (a) requires only MP; (b) uses also Axiom a; (c) uses c; (d) uses d and e;
(e) uses f; (f) uses g and h.

Lemma 2 (Deduction Theorem) If0=¢ > Y and ® U ¢} -y, then ® 6.

Proof: This can be proved constructively for any system containing MP,
Axioms a,b, and hence their consequence p = p. The proofs in most classical
logic texts, e.g., [3], are adequate for our purposes.

Lemma 3 If 0 = ¢ov ¢yand ® U {gg} = Y and & U (¢} F y, then
d U6} Fy.

Proof: Under these hypotheses the Deduction Theorem provides deductions of
o ~> ¥ and of ¢, > Y from (P and a fortiori from) ¢ U {0}. Adding to these a
few more steps using Axiom i and MP, we easily get a deduction of .

We now suppose that a suitable Godel numbering of all finite lists of
formulas of I has been introduced. Let x be an arbitrary but fixed formula. We
reserve ¢ and ¢ and 0 to range over its subformulas, and ® and ¥ and © to
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range over decidable sets of such subformulas. There are only finitely many of
these.

Now in Lemma 1 the antecedent of any of (a)-(f) is always decided. It
follows that there exists a fixed number n, such that whenever one of these
antecedents is fulfilled for some given subformulas of x and some given set of
subformulas, then there is a deduction of the sort called for by the correspond-
ing consequent which has Godel number <n,,.

A given ® will be called n-closed if whenever ® = ¢ by a deduction of
Godel number <max(ng, n), then ¢ € ®. Note that an n-closed set is closed
under simple operations corresponding to the clauses of Lemma 1; for instance,
(1a) gives closure under MP; also such a set is m-closed for any m < n.

Starting from a given ® one can, by a constructive process whose steps
involve adding to & certain formulas deducible from it, arrive after a finite
number of steps at a decidable set with the property of being the smallest
n-closed set containing ®. This we call the n-closure K(n, ®) of ®.

The proofs of Lemmas 2 and 3 being constructive, they give us construc-
tive functions vy and « such that:

whenever 0 = ¢ > ¢ and ¥ € K(n, ® U {¢}), then 0 € K(y(n),P)
whenever 8 = ¢o v ¢ and ¥ € K(n.® U {¢o}) N K(n,® U {¢,}), then
Y € K(a(n), @ U {6}).

We write of for the i iterate of o, so a%(n) = n, al(n) = a(n), a®(n) = a(c(n)),
etc.

For any given ®, let C(®) be the set of all subformulas 6 of x of form
¢ = ¢ with neither ¢ nor § in ®. Let A(P) be the set of all § = ¢4 v ¢, with
neither ¢; in ®. Note that if ® C ¥, then C(¥) C C(P) and A(¥)CA(D). We
bring this tedious series of definitions to a close by calling ® bisective if when-
ever it contains a disjunction, then it contains at least one of the disjuncts, i.e.,
ifA@)N®=A.

Lemma 4 If ¥ ¢ K(ac2 4@ () &), then there exists an n-closed, bisective
U with ® CVand y ¢ V.

Proof: Leta = card A(®). We will construct inductively ¥,, for m < a so that:

(a) ¥, is a®™(n)-closed, and hence n-closed

(b) card A(¥,,) = max(0, card A(¥,,—,) — 1), if ¥,,_, is not bisective, and hence
<a-m in this case

(c) PCVY,CV,C...CVY,

(d) ¢y

Indeed, let ¥, = K(a?(n), ). Then suppose m < a and we have ¥,,. If it is
already bisective, set W, = ¥,,. Otherwise, pick an element ¢, v ¢, of
A(¥,,) N ¥,. By the defining property of «, one (at least) of the sets
K(a* ™ Y(n), ¥, U {¢;}) for i e {0,11 does not contain y. Let ¥, be this set.
It is easy to verify (a)-(d) inductively. To complete the proof, take ¥ = ¥,.

Now let w(n) = y(a2 44 (n)), and v(®) = u°2rd®)(0). Call ® replete if it
is v(®)-closed, bisective, and does not contain f.
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Lemma 5 If 0 = ¢ > Y and P is replete and 0 ¢ ®, then there exists a
replete ¥ with ® U{¢p} C Vand ¢ V.

Proof: Case 1. ¢ € ®. By Lemma 1b, 6 ¢ ® implies y ¢ ®. So take ¥ = &,
Case 2. ¢ ¢ ®, hence 0 € C(®). Let ¢ =card C(®), a=card A(A). (Note card
A(P) <a) Now 6 ¢ ® = K(n,®) for n = v(®) = u(0) = y(a?®(u¢"1(0))). By
the defining property of y, ¥ ¢ K(a?(u"1(0)), ® U {¢})—call this set ©. By Lem-
ma 4, there is a u°"(0)-closed, bisective ¥ containing ® with ¥ ¢ ¥ (and hence
by Lemma lc with f¢ ¥). Since § € C(®), card C(¥) < ¢, and »(¥) < uY(0),
so ¥ is replete.

Definition 3 The master model M(x) for x is the model (W, R, S) where:

(a) W is the set of all replete ®
(b) R is the inclusion relation & C ¥
(c) S assigns to each ® precisely the set of all propositional variables in .

Lemma 6 For all subformulas 0 of x and all replete ® we have:
® F0in M(x) iff 0 € ® as a set of formulas.

Proof: By induction on the complexity of ¢, unpacking all the definitions and
using the simple closure properties of Lemma 1. We do the case § = ¢ > ¥,
leaving the rest for the reader. Assume as Induction Hypothesis that the Lemma
holds for ¢ and for . Either 0 € ® or 6 ¢ ®.

In the former case, things are easy. For any ¥ with ®RY¥ and ¥ ¢, we
have (¢ > y) =0 € & C ¥, and by Induction Hypothesis, ¢ e ¥. Replete sets
are closed under MP by Lemma la, so ¢ € ¥ and by Induction Hypothesis
¥ = . Thus the Definition 2e of ¥ F 6 is fulfilled.

In the opposite case, we need to invoke Lemma 5 to get a replete ¥
containing ® U {¢} with ¢ ¢ ¥. Plainly ®RY¥ and by Induction Hypothesis
¥ E ¢ and not ¥ F . So the definition of ¥ k0 is not fulfilled.

Lemma 7 Either x is a thesis of I or else it does not hold throughout M(x).

Proof: It is decided whether x e K(a244M)(p(A)),A). If so, it is deducible
from A and a thesis. If not, Lemma 4 provides a replete ¥ with x ¢ ¥. By
Lemma 6, x is not realized at ¥ in M(x).

We thus have:

Theorem 3 (Pseudo-Completeness, cf. [8]) If a formula is universally
realized, then it is a thesis of I.

Theorem 4 The set of theses of I is decidable.

It remains to establish a connection between being universally realized and
being intuitively correct.

3 Lawlessness For intuitionism, mathematics is ‘all in the mind’, and an
actual completed infinity won’t fit there. Potentially infinite or infinitely
proceeding sequences of natural numbers form the basis of intutionistic
analysis. By any given time, the construction of no more than a finite number
of terms of such a sequence will actually have been completed, but there is in
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principle no bound or limit to the sequence’s eventual growth. We reserve
a, B, v, & for such sequences.

The simplest sequences are those, like the famous one whose k™ term is
the k™ digit in the decimal expansion of , for which a law of construction can
be given, determining in advance what each term of the sequence is to be. Such
are called constructive or lawful sequences.

Intuitionists, in contrast to finitists, also admit ‘choice’ sequences gener-
ated by the creative will of the mathematical subject. (Some also admit empiri-
cal sequences, arrived at through passive experience.) The simplest of these
would seem to be the so-called absolutely free or lawless sequences, in which
terms are obtained by independent acts of free choice subject to no advance
restrictions on what number may be chosen.

We may call projective those sequences obtainable by a constructive law
from a finite number (possibly zero) of lawless sequences. This takes in as
degenerate cases the lawful and lawless sequences. We also get for any lawless o
such sequences as the following:

(20(0), 20¢(1), 20(2), 2c((3), . . .)
(«(0), 0, (1), 0, «(2), O, . . .).

A rich analysis can be built up for such sequences.

Prominent among the projective sequences are what we will call outlaw
sequences: An outlaw sequence § is introduced by stipulating what a certain
finite number of its terms are to be, and by stipulating that the rest of its terms
are to be copied from some previously introduced lawless sequence «. We aim
to derive with ‘informal rigor’ (cf., [6]) some key properties of outlaw
sequences. Our work will be, we hope, in the spirit of the ‘classic’ treatments of
lawlessness (e.g., [ 7]). First a couple of definitions.

If I say today “let o be the sequence ak) =1 +3+5+...+2k+1)”
and say tomorrow “let 8 be the sequence B(k) = (k + 1)®”, there is a sense in
which « and § are different, and a sense in which they are the same. They are
given by different stipulations, and we say they are not (intensionally) identical.
They have, however, the same course of values, and we say they are (exten-
sionally) equal. Note that by virtue of the meaning (2e) of intuitionistic V,
equality Vk(a(k) = B(k)) never holds ‘by accident’; it requires a proof.

A property of sequences (or a relation between numbers and sequences)
will be called strictly mathematical if it can be expressed by a formula without
parameters of the austere language of [4] mentioned in the introduction. This
includes most properties commonly met with in mathematics, but not ‘being
lawful’ or ‘being lawless’ or ‘being equal to o’ (unless o happens to be definable).
If P is strictly mathematical, then whenever P(«) holds and « and § are equal,
then P(B) holds.

Now we are ready to state the fundamental insight that will be taken for
granted throughout this section:

Intuition For purposes of proving that a given outlaw sequence § has
some strictly mathematical property P, the only information about § available
at any given time will be:
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(a) That a certain finite number of terms of § are what they are.
(b) That the remaining terms of B will result from independent un-
restricted choices.

To restate this insight: Let 8 be an outlaw sequence; so § was introduced
by stipulating its k,st, k,nd, . . ., k,th terms, and by stipulating that its remain-
ing terms should be copied from those of some lawless sequence «. At any given
time after its introduction, only finitely many terms of § have actually been
determined, as per (a) above; namely, the kst through &,th, plus the kth term
for all those (finitely many) other & for which a(k) has already been chosen by
the time in question. The remaining terms of § are ultimately to result from
independent unrestricted choices, as per (b); for they are copied from the
terms of «, which directly result from such choices. Information about
beyond (a) and (b) includes such facts as that it is «, and not some other
lawless sequence, from which all but finitely many terms of § are being copied.
Such information, according to our fundamental insight, is irrelevant to estab-
lishing strictly mathematical properties of 8. If this is granted, two important
principles follow:

Proposition 1 Moutlaw BYinVnidk > n k) #i.

Proposition 2 For any strictly mathematical P we have: Y outlaw
BLP(B) = ImVy(Vk <m y(k) = B(k) & InVk > n v(k) = B(k) = P(y))].

Justification: Information of types (a) and (b) can clearly never suffice to
prove anything substantive about what infinitely many terms of § may or may
not be. In particular, no proof based on such information can force us to
choose B(k) # i for infinitely many k. This gives us Proposition 1.

Now suppose we have a proof of P(8) for some strictly mathematical P and
some outlaw sequence B. If m is taken sufficiently large, all information of
type (a) used in the proof is subsumed under the fact that the restriction
Blm of B to its first m terms is the particular finite string s that it is. The
information (b) is equally true of any outlaw sequence. Thus the proof of
P(B) constitutes a proof of P(8) for any outlaw sequence & with &§lm = s.
Indeed, P(y) is true for any vy with ylm = s which is even equal to an outlaw
sequence. Now the condition 3nVk > n y(k) = f(k) guarantees that v is in fact
equal to an outlaw sequence, and indeed one for which all but finitely many
terms are copied from the same lawless sequence o from which all but finitely
many terms of § are copied. Namely, it guarantees that v is equal to the outlaw
sequence 6 obtained by suitably stipulating 6(0), 6(1), . . ., 6(n), and by letting
the remaining terms of & be copied from «. This noted, a little thought gives
us Proposition 2.

We are at last in a position to deduce something not mentioning outlawry:

Proposition 3 (Outlaw Schema) For any strictly mathematical Q we have:

3IBVitVrIk >n (k) #i & [QG, B) ~>
AmVy(Vk <m (k) = B(k) & InVk > n y(k) = B(k) > Q(, )]} .

Proof: Let 8 be an outlaw sequence and apply Propositions 1 and 2.
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We will make heavy use of the Outlaw Schema in Section 5, but will make
no further direct reference to the notions of lawlessness and outlawry.

4 Consistency We digress a moment to mention a fact, already alluded to
in the introduction, which demonstrates (at least classically) the consistency of
the Outlaw Schema with many more popular intuitionistic postulates. But
first, some technical apparatus that will be useful in this section and the next.

For every n and every string 7 = (0, 0y, - . ., Op—;) Of permutations of
{0, 1, . . ., n — 1}, let m, be the permutation of the set of all infinite number-
sequences given by defining m.(8) thus:

0 (B(k)) if k <nand Bk)<n

(m,(B)) (k) =
B(k) otherwise

Let IT be the set of all w, (for all relevant » and 7); and let I1,, for each m be the
subset consisting of those 7, coming from strings 7 = (6¢, 0y, - - -, O5-1) in Which
o; is the identity for all i < min(m, n).

Lemma 8

(a) VBVnVs (s a string of length n = A7 € Il (Vk < n (w(B))(k) = s(k) &
Vk = n (m(B))(k) = B(k))

(b) VBYY(3InVk > n (k) = (k) <= 3m e Il Vk (k) = (m(B))(k))

(c) VBVmYYI(Vk <m (k) = B(k) & InVk > n y(k) = B(k)) < In e I1,,Vk
v(k) = (@(B))(K)1.

Proof: (a) Given B and s, let n' > n be so large that s(k) <n' and B(k) <n' for
all k <n. Let 7 = (0q, 0y, - . -, 04'—1) Where for k <n, oy is the permutation of
{0, 1,..., n" — 1} switching s(k) and B(k), while for n < k < n', oy is the
identity. Then 7 = m, satisfies the requirements of (a).

(b) To go from left to right, assuming Vk > n v(k) = B(k), simply apply
(a) to B and s = yln to obtain the required 7. To go from right to left is immedi-
ate. (¢) is similar to (b).

We can now state:

Proposition 4 The Outlaw Schema is verified in the topological model of
intuitionistic 2™ order arithmetic (of [9]).

Sketch of a Classical Proof: Recall that the Baire space U is the set of all
infinite number-sequences equipped with the topology generated by the sets
U, = {a: « extends s}, where s ranges over all finite strings. In the topological
model, the truth-value Pl of a proposition P is an open subset of U, and P is
considered verified by the model if IPll = U. In the inductive definition of lIPIl,
sequence variables o, 3, v are instantiated by continuous functions from U to U.
In verifying the Outlaw Schema, it proves convenient to invoke (21c) and
replace the schema as originally formulated by the following equivalent:

(*) 3BVitVnIk>n pk) #i & [QG,B) > Im V7 e IT,,0G, 7(B))1}.

Instantiate the variable § by the identity function  on U. For each i, the fact
that {a: 3nVk > n a(k) = i} is a dense subset of U implies, by techniques used
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again and again in [9], that the first conjunct of (*) is verified. Those same
techniques reduce the verification of the second conjunct to proving this: If
some basic open set Us is contained in 1Q(i,n)ll, then there exists an m such
that for all 7 € Il,,, U, is contained in 1Q(,m) . To prove this, we invoke [9],
Lemma 7, which says:

Us CIQG, m) | <= a7 [Us] C QG .

It will clearly suffice to choose as m the length of the string s, for then
7 U] = U for all w e I1,,,.

To keep the length of this digression in bounds, it has been necessary to
suppress many details. However, the reader acquainted with [9] should have no
serious difficulty in reconstructing a fully rigorous proof. It will, however, (like
many of the techniques of [9], including Lemma 7 of [9] in particular) only be
classically valid.

5 Completeness Returning now to our main task, let x be, as in Section 2,
an arbitrary but fixed formula of I, and reserve the letters ¢, ¥, 0 for its
subformulas. Let (W,R S) be an isomorph of the master-model M(x) with
W=10,1,...,r}for somer

To each infinite number-sequence o we associate an infinite sequence o*
of possible worlds, each accessible from the one before:

min(r, «(0)) ifn=0
a*(n) = {a(n) if n>0and a(n) <r and a*(n — 1) Ral(n)
a*(n—-1) otherwise.

Note that if aln = Bln, then o*ln = g*|n.
Lemma 9

(@) In(a*(n) F o~ ) & In(a*(n) E¢) > In(a*(n) Ey)
(b) 13n(a*(n) Ef)

(©) In(a*(n) F ¢ & )~ In(a*(n) F¢) & An(a*(n) EY)
(d) In(a*(n) F¢) & In(a*(n) F ) > In(a*(n) Fo & )
(e) In(a*(n) F¢v )~ An(a*(n) F¢) v In(a*(n) F )
) 3In(a*(n) FE¢) v In(a*(n) EyY) = In(a*(n) Edv ¢).

Proof: (a) Suppose a*(ny) E ¢ = ¢ and a*(n,) F ¢, and let n = max(ng, ny).
Since F is cumulative, both ¢ = ¥ and ¢ are realized at a*(#n). From Definition
2e it follows a*(n) E , proving (a).

(b)-(f) are equally straightforward, unpacking the definitions.

It is a tedious but routine exercise in Godel numbering to produce a
strictly mathematical relation Q between numbers and sequences such that as i
runs through all natural numbers, Q(, &) runs through all properties of the
form:

In((m(@))*(n) F ¢) = In((m(@)*(n) F ¥)

for m € I and for ¢ and Y subformulas of x. Apply the Outlaw Schema (or its
equivalent (*) of the last section) to this particular Q to obtain a sequence §,
and set B = {w(B): 7 e IT}.
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Lemma 10

(a) Vo(3ianVk > n (k) =i —~>1Vy e BIk y(k) # a(k))
(b) V¢, yVy e BilIn(y*(n) E ¢) = 3In(y*(n) F )]l >
ImVS € B[Vk <m 8(k) = v(k) & In(6*(n) E¢)~> In(d*(n) FyY)1}.

Proof: (a) Suppose for contradiction that Vk > nyoa(k) = i but that Vr e I1
3k (m(B))(k) # a(k). Given any n = n,, apply Lemma 8a to 8 and s = aln to ob-
tain a certain 7. By our supposition Ik(m(8))(k) #* a(k)). Necessarily k > n =
ng, so B(k) = (m(B))(k) and o(k) =i. Thus we have shown Vnik > n (k) #1i,
contrary to the first property claimed for 8 in the Outlaw Schema.

(b) is an equally routine, and equally tedious, matter of unpacking defini-
tions, and is left as an exercise.

Lemma 11 Vo, yVy e Bi[In(y*(n) E ¢) = In(y*(n) EY)] = In(v*(n) E
&> Y.

Proof: Indeed, suppose that v € B satisfies the antecedent. Apply Lemma 10b,
and let m be the number given by that lemma. We claim y*(m — 1) E¢ > .

Note that it is decided whether this is so or not, so it will suffice to derive
a contradiction from the assumption that it is not. In that case, 3w(y*(m —
DDRw &w E ¢ & w E ¥). Let o be the sequence agreeing with 7 in its first m
terms and taking the constant value w thereafter.

For any & € B, either 3k < m 8(k) # a(k), or else 8lm = yIm and §(m) = w.
Consider the latter case. Going back to the definitions we see that §*(m — 1) =
v*(m — 1) and that §*(m) = w E ¢. Then by choice of m we must conclude
Ind*(n) & . But for such an n, §*%(n) # w = a*(n), so we must have §(k) #
a(k) for some k < n. Thus in either case, V6 € B3k 8(k) # a(k), contradict-
ing Lemma 10a.

We next consider the result of substituting propositions of form
In(y*(n) Fp;) for the variables p; of subformulas of x.

Lemma 12 For any v € B and any ¢ involving variables p,, . . ., pg we have:

¢@3n(y*(n) Epy), .. ., In(y*(n) Fpy)) <= In(y*(n) Fo(py, - . ., bs)).
Proof: A straightforward induction using Lemmas 9 and 11.

Lemma 13 If x is intuitively correct no matter what propositions of form
In(a(n) = 0) are substituted for its variables, then it holds throughout the
master model M(x).

Proof: The proposition 3n(y*(n) E p;) is equivalent to In(a(n) = 0), where «
is so defined that a(n) = 0 if p; € S(y*(n)) and =1 otherwise. Thus the anteced-
ent of the lemma implies that the result of substituting In(y*(n) F p;) for the
variable p; in x is intuitively correct for any . Lemma 12 then tells us
Vv e Ban(v*(n) Ex).

Now, it is decided whether x holds throughout M(x). Suppose for con-
tradiction that it is not, and hence is also not realized at some w in the
isomorphic model (W, R,S). Let o be the constant sequence a(k) = w. Then we
have Vv € B3k v(k) # a(k), contrary to Lemma 10a.

Putting everything together:
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Completeness Theorem (cf. [5]) If a formula is intuitively correct no
matter what propositions of analysis of form In(a(n) = 0) are substituted for
its variables, then it is a thesis of I.

(1
(2]
(3]
[4]

(5]

(6l

(71

(8]

1]

(10]
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