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A THEORY OF CLASSES AND INDIVIDUALS BASED
ON A 3-VALUED SIGNIFICANCE LOGIC

ROSS T. BRADY

1 Introduction

1.1 The need for the theory A problem that arises when one tries to
introduce individuals into a theory of sets or classes is that of distinguish-
ing the null class from an individual, since both have no members.* The
class theory will contain an axiom of extensionality which will identify two
classes or individuals if they have exactly the same members. The null
class and an arbitrary individual will have no members and hence, by the
axiom, be identical.

The difficulty is discussed by Quine [9], pp. 29-32. One way out is to
use separate variables for individuals and for classes or to introduce the
primitive predicate ‘is an individual’ into the system. Quine dismisses
these as ‘‘unwelcome sacrifices of elegance’’ and says that happily these
can be avoided. Quine instead suggests regarding x ¢y, where y is an
individual, as x = y. This avoids the problem with the axiom of exten-
sionality because if y and z are individuals (Ax)(xe y = xe 2) is equivalent
to (Ax)(x =y =x=2z), i.e., y = z. Quine also shows that this implies that
an individual is equal to its unit class and says that this does not affect the
development of class theory as required for mathematics. But if one takes
a material object and forms its unit class, then, according to Quine, this
material object would be equal to its unit class, an abstract entity, and this
is unsatisfactory.

By taking xe y as nonsignificant when y is an individual and using a
3-valued significance logic," one can avoid all the problems that have
arisen in connection with distinguishing the null class from individuals.
The predicate ‘is an individual’ can be defined in terms of the logic, i.e.,
I(x) =4 ~(Sy)S(yex), i.e., ye x is nonsignificant for all y, where the
variables x and y range over classes and individuals.

*The material in this paper is taken from my Ph.D. Thesis, A 4-valued Theory of Classes and
Individuals, submitted to the University of St. Andrews in 1970 and supervised by Professor
L. Goddard of the Department of Logic and Metaphysics.
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The advantages of this over Quine’s are obvious. No longer can it be
said that there is an ‘‘unwelcome sacrifice of elegance’’. One can dis-
tinguish between individuals and their unit classes and avoid the identity of
a material object with an abstract entity. The axiom of extensionality has
to be restricted to classes using the predicate ‘is a class’ to restrict the
general variables to class variables. The identity of individuals would have
to be established separately within the theory of individuals.

Just as € is taken as a paradigm predicate used for generating classes
by an abstraction axiom, membership of an individual can be taken as a
paradigm case of nonsignificance for generating significance ranges. The
rest of the classes can be obtained by adding arbitrary predicates, which
does not affect the consistency nor the general features of the theory.
Similarly with significance ranges, by the addition of arbitrary predicates,
the significance ranges of these predicates can be formed.

A theory of classes and individuals based on a 3-valued significance
logic is the next theory to be developed after completing the development of
some 3-valued significance predicate logics as in [1]. The theory is also
needed for the development of significance range theory because signifi-
cance ranges are classes which can be generated from their own form of
abstraction axiom, which would have to be added to such a theory of
classes.

1.2 The choice of the formal theory I use the functionally-complete
significance logic in [1], because it is necessary to be able to restrict
general variables so that they range over individuals, over classes, and
over sets.

I use an axiomatic theory of individuals to ensure the existence of
individuals and to widen the scope of the formal theory so that fusions?® of
individuals as well as classes of individuals can be formed. Suppes points
out about the set theory ZF, ‘“However, our axioms do not actually postulate
the existence of any individuals, and they are thus consistent with the view
that there are only sets in the domain of discourse’ (|12], p. 20). The
addition of an axiomatic theory of individuals to such a set theory would
overcome this problem. The theory of individuals I use is due to Goodman
| 6], but some additions are made in order to adapt it for inclusion into a
theory of classes and individuals. Also the primitive ‘o’ (read ‘overlaps’)
needs to be interpreted in such a way that it is significant for any two
individuals to overlap.

I use the class theory NBG as it is stronger than ZF and I follow
Mendelson’s treatment in Chapter 4 of |8] except for certain modifications
due to the presence of individuals or due to the use of the 3-valued
significance logic.

2 The formal theory
1. Primitives

v, vV, wW,X", Y, Z, ... (general variables over classes and
individuals)
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o (overlaps), ¢ (is a member of)
~, D, T, (connectives of the 3-valued significance logic)
A, S (quantifiers of the 3-valued significance logic).?

Formation Rules

1. If X’ and Y’ are variables then X'o ¥’ and X'¢ Y’ are atomic wiffs.
2. If B and C are wifs then ~B, (B D C), T,B are wffs.

3. If B is a wff and X'’ is a variable then (AX’)B and (SX')B are wifs.
Definitions

Cl(X") =q; (8Y')S(Y’e X'). (X’ is a class)
I(X'") =4y ~CI(X'). (X' is an individual)

Let us assume for the moment that there is at least one set (and hence at
least one class) and at least one individual.

(AR)P(R) =gy (AX")(I(X') D ¢(X7)).
(Sk)P(k) =4y OX'NT,I(X") & $p(X")).

Let &, I, m, n, .. . be individual variables.

(AX)9(X) =4 (AX")(CL(X') D ¢(X")).
OX)$(X) =4y BX')NT,CLX") & $(X")).

LetU, V, W, X, Y, Z, ...Dbe class variables.

M(X) =4 (SY)(Xe Y). (X is a set)
(Ax)d(x) =4y (AX)(M(X) D ¢(X)).
(Sx)¢(x) =gy BXNT,(MX)vI(X)) & ¢(X)).

Letwu, v, w, x, v, 2, . .. be set variables.

(Ax")p(x’) =ay (AX")(MX")vI(X') D ¢(X")).
Sx")o(x") =gy SX')NT,(MX')vI(X") & $(X')).

Letu’, v’, w', x’, ', 2’, . . . be variables over sets and individuals.

X'=Y =4y (AR)(Ro X" Z2koY')v(AZ')Z'e X' = Z'€¢ Y').
(X' is identical with Y)

Notice, in this definition, that if X’ and Y’ are classes then X’ = V' ~
(AZ"(Z'e X' = Z'"€e Y'), if X’ and Y’ are individuals then X' = Y’ ~
(AR)(koX"=koY’), and if X’ is an individual and Y’ is a class, or vice
versa, then X’ = Y’ is nonsignificant. Notice also how the disjunction v is
used to define identity over a range containing two different types of things.
The definition could have been made without the use of v by taking each
case in turn but it seems easier and more natural to use v.

I now give definitions restricted to individuals. In wusing these
definitions, one cannot substitute one side of the definition for the other
unless the variables X', Y', etc., are restricted to individuals or sets (as
the case may be).
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B <1l=4 (Am)(mokDmol). (kis partofl)
k=1=4 (Am)(mok =mol). (k is identical with )

| This is derived from the definition of X’ = ¥".]

B<l=4k<1&~(k=1). (kisaproper part of 1)

Bzl=4(kol). (k is discrete from )

kFux =z (Am)(m 2 k = (Al)(lex Dm z 1)). (k is the fusion of x)
kNux =4 (Am)(m <k = (Al)(lex Dm <1)). (k is the nucleus of x)

I now give definitions restricted to classes. Again, the definitions
cannot be used unless the appropriate variables restrictions are made.

XCY=4 (AX')(X'eX DX'eY). (X is a subclass of Y)
X =Y=45 (AX)(X'eX =X'e Y). (X is identical with ¥)

| This is derived from the definition of X = Y.]
XCY=4XCY&~(X=Y). (Xis aproper subclass of Y)

If the variable restrictions are violated a nonsignificant wff may
result. For example, 2 Cl, B Cg, X <Y, and X < k are all nonsignificant.
Except in the case of X’'oY’ and X'e Y’, these nonsignificant wffs are
avoided because it is simpler to use restricted variables and also the only
purpose they could serve would be to form significance ranges but they do
not introduce any new significance ranges which are not already obtained
from X’o Y’ and X'e Y'.

General Axioms

1. S(X'eX)
2. S(kol)
3. CUX")vCIU(Y') D ~S(X'oY").

Individual Axioms

1. kol = (Sm)(An)(nom>Dnok &nol)
. (SR)(kex) D (SI)(lFux)
3. Sx)((AR)(kex = ¢(R, 1), ..., 1) & (AY) ~(yex)), where ¢ is con-
structed using only o, ~, &, A, and variables quantified over individuals
4. k=12 keX=1cX
5. (SXNI(X').

Class Axioms

X=YD(AZ)(XeZ=YeZ)
Ax)(Ay")Sx)Au)u'ex = T(u'=x"vu' =y'))
(Sx)(Ax')(~x"¢€ x)
(Ax)Sy)(Ax')(x"ey = (82)(x'ec 2 & 2 ¢ x))

. (Ax)Sy)(Ax)(x"ey = TRy )y ex’ D y’ex))
(Ax)(AX)(Sy)(Ax)(x'ey =x"ex & x'e X).

nEgEzT3

Before introducing more axioms, I need to prove some theorems and
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introduce some definitions. To shorten the paper, the theorems are given
without proof.

T1 ~S(X'e k).

T2 k=1D> ¢(k)~ ¢(1), for any wif ¢.
T3 X=Y=XCcY&YcCX.

T4 X=X.

TS5 X=YDY=X.

T6 X=YDY=Z2>X=7Z.

T7 X =YD ¢(X) =~ ¢(Y), for any wff ¢.

Define a proper class as a class which is not a set.
Pr(X) =gy ~ M(X).

T8 Pr(X)DF(XeY).
T9 (Ax)(AY)S!Ix)Au ) u'ex = T(u' =x"vu' =y')).

We now introduce the definition, {x’, y’}, (the unordered pair of x’ and y’)
for the unique set x such that (Au’)(u’ex = T(u’ =x'vu’ =y’)). Also define
{x'}as {x', x'}.

T10  (Au')(u'e {x'}= T(u’ = x)).

Tl {x', y'}={y’, '}

T12  {x'}={y’}ox"=y".

T13 (Slx)(Ax')(~x"e x).

Introduce the definition 0 (the null set) for the unique set x such that
(Ax’)(~x'ex). We now have at least one set as required for the definition
of set and class variables. Individual Axiom 5 ensures the existence of at
least one individual for the definition of individual variables.

Define an ordered pair, {(x’, '), of x’ and y’ as {{x’}, {x’, y'}}

T4 (& yh =@, v Dx'=u'" &y =0v".
The definition of ordered pairs can be extended as follows:
(x’) :d/x, <X{, ey X,:+1> =df ((x{, ey x,:), Xn'+1>.

T15 XL o oxhy =, Ly D x =y & ... &x)=y).
T16 (Ax)S!'v)(Ax")(x' ey = (Sz)(x'ecz & z€ x)).

Introduce the definition U(x) (the sum set of x) for the unique y such
that (Ax’)(x'ev = (82)(x'¢ 2 & ze x)). Also define x Uy as U({x, y).

T17 (Ax)x'exUy=x"exvx’ey).
Define {x}, . . ., x.} inductively as {x{, . . ., x/_,}U {x.}.

T18  (Au')(u'edx!, .. ., xt=T@W =x)v...vT(u =x})).
T19  (Ax)S!y)(Ax)(x'ey = T(AY" ) (y'e x' D y'e x)).

Define the power set of the set x, P(x), as the unique y such that
Ax)(x'ey =TAY )y ex' D' x)).

T20 (Ax)(AY)S!y)(Ax)(x'ey =x"ex & x'e Y).
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Define the intersection set of the set x and the class Y, x NY, as the
unique y such that (Ax’)(x’ey =x'ex & x'¢ Y).

T21 X cx D M(X).
Define a univocal class (relation) as follows:
Un(X) =qy (Ax')AY)(AZ")(x', vV e X & (x', 20e X D T(y' =2')).

Further Class Axioms

B. (Ax{, .. ., x;, Y], ..., Y)S¢(xl,...,x/, Y, ..., YD (SX)(Ax], ...,
Pl oL xDeX = ¢lxl, . x], Y, oL, YY), where ¢ is constructed
using o, €, ~, O, T,, A, S such that only variables over sets and individuals
ave quantified, and x{, . . ., x;, Y{, . . ., Y, ave all the free vaviables of

¢ and X is not among them.

R. (Ax)(Un(X) D (SyN(Ax)(x'ey = Sy (y', xVe X & y'e x)))).

I. Sx)0ex & (Ay)(yex Dy U {ytex)).

T22  (SIZ)(Au)(u'e Z = (Sv")(Sw')(T(u' = {v', w") & v'e X & w'e Y)).

Introduce the definition X x Y (the Cartesian product of classes X and Y),
as the unique Z such that (Au')(u'c¢ Z = (Sv")Sw')(T(u' = ', w") & v' ¢
X & w'e Y)). Let X® be defined as X x X and X" be defined as X" x X.

T23 SIZ)Au) (u'e Z=u'e X & u'e Y).

Define X N Y (the intersection of classes X and Y) as the unique Z such that
T23 holds.

T24 SIZ)Au)(u'e Z =u'e Xvu'e Y).

Define X U Y (the union of classes X and Y) as the unique Z such that
T24 holds.

T25 (S!'Y)Au’)(u'e Y = ~u'e X).

Define X (the complement of the class X) as the unique Y such that
T25 holds. Also define X - YasX NY.

T26 SIX)Au)(u'e X =u’ =u’).

Define V (the universal class) as the unique X such that T26 holds.
T27T  (SIV)Au)(u'e Y = Sv) (', v'ye X)).

Define D(X) (the domain of X) as the unique Y such that T27 holds.
T28 S!IV)(Au)(u'e Y = (Sv") (', u)e X)).

Define R(X) (the range of X) as the unique Y such that T28 holds.

T29 XUY=XNY.
T30 X =X.

T31 VvV =0.

T32  Au)(u'e V).
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T33 Au)u'eX -Y=u'eX & ~u'eY).
T34 XNY=YNX.

T35 XNn(ynzZ)=(XNnYyY)nz.
T36 XNX=X.

T37 XNo=0.

T38 XNnvV=X.

T39 XUY=YUX.

T40 XU(vyuz)=(XUy)uz.
T41 XUX=X.

T42 XUo0=X.

T43 XUv="V.

T44 XU (YNZ)=(XUY)N(XUZ).
T45 XN(YUZ)=(XNY)U(XNZ).
T46 XNY=XUY.

T47 X -X=0.

T48 V-X=X

T49 V=0

Define a relation as follows: Rel(X) =; X ¢ V.
T50 (SIV)(Au)(u'e Y =TAv)(v'cu’ D v'eX)).

Define P(X) (the power class of X) as the unique Y such that T50 holds.
T51  (S!Y)(Au')(u'e ¥ = Sx)(u'e x & xe X)).

Define U(X) (the sum class of X) as the unique Y such that T51 ﬁolds.
T52 (SIX)(Au)(u'e X = TSv ) (u" = @', v")).

Define I (the identity relation) as the unique X such that T52 holds.

T53  (AX), .. X[, Y1, o YLISO(x!, .. X[, Y1, ..., Y1) D (SIX)(X ¢
Vi (Axl, .., x))xl, oo L xDeX = o(xl, .. x/, Y, ..., Yp)), where ¢
is constructed as in Axiom B.

Define {(x{, ..., x)lo(x{, ... %}, Y], ... Y¥,)} (the class of ordered

I-tuples such that ¢ holds) as the unique X such that T53 holds.
Define the inverse relation of X, X as {(x}, x5 |{x}, xDe X}

T54 R(X) = D(X).
Define the following:

Fnc(X) =4 Rel(X) & Un(X). (X is a function)
Y1X=4XN(YxV). (Restriction of X to the domain Y)
Un,(X) =4y Un(X) & Un(X). (X is one-to-one)

If there is a unique 2z’ such that (y’, z’)eX then X' =4 z'. XV =4
R(Y1X).

T55  (Ax)(Un(X) D (S!y)(Ax')(x"ey = (Sy )y, x)e X & y'¢ x))).
Define the set, R(x 1 X), as the unique vy such that T55 holds.
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T56 ~Axiom R=>+ Axiom S.

T57  M(D(x)).

T58 M(R(x)).

T59 M(x xy).

T60 M(D(X)) & M(R(X)) & Rel(X) D M(X).
T61 Frc(X) D M(x 1 X).

T62 Pr(V).

T63  (S!x)((Ak)(kex =kok) & (Ay)(~ye x)).

Define I (the set of all individuals) as the unique x such that T63 holds.

T64  (Au', Y, . . ., Y2)So(u’, YI,. .., ¥h) D (Slx)((AR) (ke x = (R, Y,
oY) & (Ay)(~yex)), where ¢ is any wff, not containing x free and
containing quantification over set and individual vaviables only, and where
kR, Y, ... Y} are all the free variables in ¢.

Define {k|¢(k, Y{, ..., Y})} (the set of all individuals # such that ¢
holds) as the unique x such that T64 holds. This is a more general form
than can be derived from Individual Axiom 3 alone.

Individual Axioms 1 and 2 yield the Goodman theory of individuals as
in [6]. Leonard and Goodman [7] develop a theory of individuals using sets
of individuals as well, but the set theory is taken from Principia
Mathematica and is not independently axiomatised. However, using In-
dividual Axioms 1, 2, 3, and 4, one can develop a theory of individuals and
sets of individuals,® which is stronger than Leonard and Goodman’s theory.
The set variables would range over sets with individual members only and
Individual Axiom 4 would have to be changed to:

4'. k=12 kex=lex.

The theory would develop the relationships between o, <, <, =, and z
such as:

o

~

1]
—

Sm)(m <k & m <1).
=k <Ilvk=1.
= (Am)(m z Il Dm 2z k).

The theory would define the fusion of the set x, Fu‘x, as the unique [ such
that [ Fu‘x, on the condition that x is nonempty. It would establish results
about fusions such as:

(Sk)(kex) D (Am)(m 2z Fu‘x = (Al)(lex Dm z 1)).
(Sk)(kex) D.x Ccy D Fu‘x < Fu‘y.

It would introduce the set of all individuals # such that ¢, {k: ¢(k)}, with
results like:

Sk)(p(k) & L <k) D1 < Fus{k: ¢(k)}.

It would define the sum of two individuals %2 and I, 2 + [, as the fusion of
{m:m = kvm =1}, with results like:

mz (k+l)=mZzZ kR&mZ 1.
(k+l)ysm=k<sm&l<m.
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It would introduce the negate of the individual &, &, as Fu‘{l: | Z k} on the
condition that (S1)(I "z &) holds, with results like:

S zk)D1LZ2k=1<k.
(SH(1 Z kYD k =k.

It would introduce the universal individual, U, as Fu‘{k: k =k}, with results
like:

koU

(AR)(E s1)=1=U

(SH)(I zk)DEk+Fk=U.

(SR)(~k =U & ¢(k)) = (Sk)(~Fk = U & ¢(k)).

The theory would define the nucleus of a setx, Nu‘x as Fu‘{k: SI)(lex &
~1 =U& k =1)}, provided that

@). (Sk)(SH(lex & ~l=V&k=1) _
(ii). ~Fu{k: Sl)(lex & ~1=U&Fk =1)}=U
(iii). . ~(Ak)(kex Dk =U)

all hold. In the case of (iii) failing to hold, Nu‘x =4 U, provided (Ak)(kex D
k =U) holds.

It would establish results about nuclei such as:

(S)AR)(kex D1l <k)D (Am)(m < Nu‘x = (Al)(lex Dm <1)).
(S)(AR)(Eey Dl <k) D x CyDNu'y < Nu‘x.

It would introduce the product of two individuals % and [, kI, as Nu‘{m: m =
kvm = 1}, provided kol holds, with results like:

kolDm <k &ms<l=m <Rkl
Sn)(n<k&n<l&n<m)Dk(lm)=(kl)m.

kol & ~k=U& ~l=UDRkl=F +1.

kol & kom Dkl + km = k(1 + m).

lom Dk+1Ilm=(k+1)(k+m).
~k=U&~l=U&kol&~(E<l)& ~(l<k)Dk+1="Fkl +RL+FEL

It would introduce the union and intersection, x Uy and x Ny, with results
like:

(Sk)(kex) & (Sk)(key) D. Fu‘(x Uy) = Fu‘x + Fu‘y.
(SI)(AR)(kexvkey DI <k)DNu‘(x Uy = (Nu‘x)(Nu‘y).

It would introduce the complement, ¥, and the universal set, V, with results
like:

Fu‘y = U B
(Sk)(kex) & ~Fu‘x = U D. Fu‘x < Fu‘x.

It would introduce the definition of an atomic individual as follows:

AL(E) =4 ~(S1(T <R).



394 ROSS T. BRADY

Then these can be proved:

At(R) D1 <kDIl=k.
At(k) & At(l) Dk 2 Ivk =1.

The 3-valued class theory can be continued as in Mendelson 8]
pp. 170-197. Some minor differences® need to be noted:

b

XWeY =4 XIrvY & (AZ)(Z C Y & Z+0D (Sy')(y'e Z & (Av')
(WeZ&~T =y") D W, 0vhHeX & ~@', ¥ X))). (X well-orders Y)

XConY =4 Rel(X) & (Au")(Av')(u'e Y & v'e Y & ~T(u=0')D
@', vheXv{@',ueX). (Xis a connected relation on Y)

E =g {(x', »")I T(x"€ y") . (The membership relation)
Trans,(X) =z (Ay)(ye X Dy C X). (X is transitive over sets)

Trans,(X) =4 (AR)(Al)(k <1 & le X D ke X). (X is transitive over
individuals)

Ovd(X) =4 E We X & Trans,(X) & ~(Sk)(ke X). (X is an ordinal)

Note the restriction here on the definition of an ordinal. This is
necessary to prevent each individual from generating a sequence, {%},
{k, {k}}, {#, {k}, {k, {k}}}, etc., which would satisfy the definition of
ordinals but would not satisfy the uniqueness requirement.

Ord(k) =y ~(kok).

Suc (k) =df ~(kok).

w =g {x'|x"c K & TAY)(yex' Dye K}

XY =g {u’ | (Sx)(T(x =u’) & Fnc(x) & D(x) = Y & R(x) ¢ X)}.

Further Class Axioms

AC. (Au)(uex Du+08& (Av)(vex &v2u>DvNu=0)) D (Sy)
(Au)(uex D (S!x)(x'euny)).

D. (AX)((Sx)(xeX) D (Sx)(xe X & ~(Sy)(yex & ye X))).
GCH. (Ax)~(Sy)(x 3 y 3 P(x)).
C. (Ax) (x is constructible). (to be defined).

As in Mendelson (8], pp. 198-199, AC is equivalent to the four other forms
of the Axiom of Choice. Notice the difference between my Axiom D and
Mendelson’s Axiom of Restriction. Individuals may belong to the intersec-
tion of x and X.

Now I will define the notion of constructible set, which is similar to
that on p. 87 of Cohen [2]. Define the set M, as follows: u'e M, = (Sk) T(u'=
{Ek}). I is a set by Individual Axiom 3, and hence M, is a set, using the
one-to-one correspondence between [ and M, and using Axiom R. If @ is a
limit ordinal, then the set M, is defined as the union of all the sets Mg, for
B<oa,ie. u'eMy=8B)(B <oa & u'ec Mg). The set My, is defined as the
union of the set M, and the set of all sets x for which there is a formula
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A(z', w{, ... wj), which is significant for all substitutions into its free
variables, such that if Ay, denotes A with all bound variables restricted to
MyUI, where I is the set of all individuals, then for some (constant) @! in
My U I, for each i, x = {z'e My U I/Ay,, (2", wi, . . ., w))}. [{z'e MyUI/
Ayor(2', wl, .. W)= {2 /2" e Mg UT & Ayyoi(2’, w1, ..., W)}

Now we show that M,,, can be defined in the formal system, given that
M, can be so defined. This proof follows that of Cohen [2], p. 92. For each
¥ = 0 let x, denote the set of all ordered triples {z,, z,, z3) where z, z,, and
z, are sets of ordered n-tuples (x!, ..., x!) for which there is a formula
Axf, ..., %! t], ..., t},), with exactly » quantifiers, but where A can be
nonsignificant for some substitutions into its free variables, such that
2y = {ed, oo xDe (My U DYTA (%t o, xg, H, LI, ze = {0,
e e (MyUD)"/FAy (xl, -« X, EL )], and 25 = {Ged, . w) e
(Mo U I)"/~SAy or(xt, .. ., x4t ..., t)), where e My U I, for all i. We
show that x, is expressible in the formal system by an induction on 7.
Firstly, in order to define x,, we define y, as follows: #’'e ¥y, ,= (Sy')(y’¢
My UI & (82,)(S2,)(82;3)(u’ = (21, 25, 25) & (Aw')(w'e z, = (Sx])(Sx)(T(w’ =
Gl x3) & x{eMy UT&x5e MqUI & T(x’ey’)) & (Aw’)(w'e 2z, = (Sx])(Sx4)
(T(w' = &, x) & x{e My UI & xje My U I& F(x{ey’) & (Aw')(w'e 25 =
Sx)SxH(T(w' = (x],x5) & xje MyUT & x5e My UIT & ~S(x{ey'N))v. ..
(for other types of formulas using ordered tuples from 1 to ).

This example is for the formula x{¢ J’ with ordered pairs (v, x3), this
particular disjunct yielding a set because of the Axiom R and the assump-
tion that M, is a set. ¥,,, will be a set because it is a finite union of sets.
Define y, as the union of all the y,,,’s where ne w—{O}. So y, is the set of all
ordered triples (z,, 2,, 2;) where 2z, 2,, and 2, are sets of ordered n-tuples
(!, . .., x for which there is a formula A(x{, ..., x,, t{, ..., ¢,) with no
connectives or quantifiers and such that z,, z,, and 2z, are defined as above.

Using an induction on the length of formulas without quantifiers
assume, for all 2 < 1, the set y, has been constructed to deal with all
formulas without quantifiers and with k connectives. To construct y; we
need ordered triples corresponding to formulas with [ connectives and
obtained from previous formulas by the use of one of ~, D, and T,,. u’ey, =
(82,)(82,)(S2,)(z,, 25, 23) € V-, & T(u' = (&,, 25, 23)))v (Sky)(Sky)(ky + by =
1-1¢& (SZL)(SZZ)(Sza)(824)(535)(526)«21, R2, Z3) € Vi, & (24, 25, Ze)€ Vio &
T(u' = {(z, N z4) UZ, 2 N2;5 2, NZg)))v (82,)(825)(S2,5) (2, 22, 250 ¥y &
T(u' = (z,, 0, 2, U 23))), where complements are taken with respect to
(M, UI)" for n-tuples. y; is a set because the y,’s for £ <[ are sets and
the z;’s are sets. Define x, as the union of all y,’s such that /¢ w. Now by
induction on » we will define x,. A set {z,, z,, 25) will be a member of x,
either if there is a set (z4, 25, 26) € X,-, Such that z4, z5, and z4 are sets of
(n + 1)-tuples and such that ¢!, . . ., xp ez, = (Sx§)(xfe My UI & (x§, x{,

o xezy), &l oL xhez, = Sxd)(xbe My UT & X4, x{, ..., X)ezs) &
~Sxi)(xfe My, UT & x§, x!, .. ., xpez) and &f, ... xp)ez3= (Axf)(xfe
M, UI > (x§,x{,... xlezs or if there is a set {z,, 25, 2¢)€ ¥,., such that
z,, 25, and 24 are sets of (n + l)-tuples and such that (x{, ..., x)ez, =
(Axd)(x§eMy UI D(xg, xl, . .. xp)ezy), &1, ..., x)ez, = (Sxf)(xbe M, UT &
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(b, oo xezs & ~(Sxb)(xbe My UT & (x§, . . ., xYezg) and (x], . . ., x/yez, =
(Sx§)(xbe My UT & {x§, ..., x)ezs). Then the set M,, is defined as the
union of the set M, with the set of all sets z,, where, in the ordered triple
{z,, 25, 25) which belongs to some x,, z, is the null set and z, and z, are sets
of 1-tuples. Thus the Axiom of Constructibility (Axiom C), in the form
(Ax)Sa)(xe M), can be formally defined in the system.

We now prove a theorem showing that only the connectives ~, &, and T
and quantifier A need be used in the predicate ¢ of the Axiom B to generate
all the classes that Axiom B generates.

Theorem 1 If ¢ is significant for all substitutions into its free variables,
then theve is a ¢' such that ¢ = ¢’ and ¢' contains only the connectives ~, &,
and T and the quantifier A.

Pyvoof: This proof is similar to the proof that M,,, can be defined formally,
given M.

There are finitely many atomic formulas occurring in ¢. Correspond-
ing to each one there are three classes defined as follows: If the atomic
formula is x’€y, say, then (Ax')(x'e Z, = T(x'e¥)), (Ax')(x'e Z, = F(x'€eV))
and (Ax')(x'e¢ Z; = ~S(x"e7¥)) give definitions of the three classes, Z,, Z,,
and Z;. If the atomic formula is x]e x}, say, then (Ax{)(Ax5)(x], xDe Z, =
T(x{exd), (AxD)Ax)(xl,x8eZ, =F(x{ex}) and (Ax))(Ax})(x!,x)eZ;=
~S(xle x4)) give definitions of Z,, Z,, and Z;. And so on for any atomic
formula appearing in ¢. If the atomic formula has no or one free variable
then the Z’s have 1-tuples for members and if the atomic formula has two
free variables then the Z’s have 2-tuples for members.

We now assume that Z,, Z,, and Z; have been found for any predicate ¢
with fewer than n connectives and quantifiers and take the quantifiers and
connectives in turn.

Let Z,, Z,, and Z; be the classes for ¢ and form ~¢. (Ax{, ..., x,)
(xf, o o o, xheZy = 4xl, ..., xh)eZy), (Ax], .o xl)(xl, .. xi)eZs =
Gl oo, xpde Zy) and (Ax], .. xh) (X, L xpe Ze = (xl, oL, X0 € Zs)

define the classes Z,, Z5, and Z; for ~¢.
Let Z,, Z,, and Z; be the classes for ¢, (where Z,, Z,, and Z, have

members of the form (x/, ..., x},)) and let Z,, Zs, and Z, be the classes

for ¢, (where Z,, Zs, and Z; have members of the form (x/ ,..., xi’l)).
(Ax!, oo xf)h, oo xpeZy = (xfy, o X )e Z & (X, L x;l> €
Zov~lxh, oo xl)eZ), (Ax), .. S X)L, X DeZy = ], o X e
Z, & x},,...,%])eZs) and (Ax], .. .,x]-'l)((xlfl, .. .,x;l)e Zy = (X,
x})eZ & ], ... x])e Z) define the classes Z;, Zs, and Z, for ¢, D ¢,
where x{ , . . ., x,.’l contains no repetition of variables.

Let Z,, Z,, and Z; be the classes for ¢ and form T,¢. (Ax{, ..., x})
i, oo xpeZy= (xl, oo xpe Zy), (Ax, o xp)(x, .., X)) € Zs=0€0)
and (Ax{, ... x))xi, ..., xpeZs = ~(x{, ... x})eZ,)define the classes
Zy, Zs,and Zg for T,9. Let Z,, Z,, and Z; be the classes for ¢(x’) and form
(Axo(x’). (Axl, ... x)(x!, .. xDeZy= (Ax(x, .. ., 5", ..., xDeZ))),
(Axl, .., xPDExL, oo xDe Zs = (Sx)(xl, o o ., %!, ..., xh)e Zs) & ~(8x7)
(xl, .o, %', o, xpe Zg) and (Axf, . . ., x)(x], .. ., xDe Zs = (Sx")({x],
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.. X', ..., xDe Z3) define the classes Z,, Z;, and Z4 for (Ax")¢(x".

(Axl, « o xPDWxt, o o xDeZy= (Sx)(xt, o o, X', .o, xpye Z)), (Ax,

o xDxl, L xheZs = (SxNxl, L. X, L xl) = Z5) & ~(Sx)((x],

Lxl oo xhe Z)) and (Axl, .. xD)xl, L xhe Zs = (AxD) (X, ..,
X', ..., X[)e Z3)) define the classes Z,, Z,, and Z; for (Sx")¢(x’).

Hence, for any formula ¢ there are corresponding classes Z,, Z,, and

Z, such that x{, .. ., xeZ, =T¢, x!, ..., xyeZ,=F¢ and (x/, ..., xX)e

Z,=~S¢, because of the method of constructing the Z’s for the formula ¢.
Since ¢ is significant for all substitutions into its free variables, Z, is the
null class. Hence ¢x{, ..., x/)e Z, = ¢, where Z, was constructed using only
~, &, T, and A, the uses of the quantifier § being replacable by ~A~
because S only quantifies two-valued formulas. Hence the ¢’ required can
be taken as (x{, . . ., x}ye Z,.

3 The meta-theory The next task is to prove that the formal theory is
relatively consistent to an applied NBG. This is more difficult than
would first appear since, in usual set or class theories containing indi-
viduals, there is no axiom asserting the existence of at least one individual
and hence one can ignore individuals when constructing a model or showing
consistency in any way. But in this theory containing Individual Axiom 5
(necessary of course for the development of a theory of individuals) we
cannot ignore individuals when constructing a model for the theory. Since
the theory of individuals can be shown to be consistent using a model
consisting of only one individual, we will construct a model for the class
theory also containing only one individual. The model cannot be an inner
model of any standard class theory because there is no such class theory
explicitly containing individuals.

We first construct a model N for the individuals and sets of the theory
and then extend it to a model N’ for the individuals and classes of the
theory. The domain of N and the valuations of the membership statements
are constructed by a transfinite induction on the ordinals. This is similar
to the construction of the constructible sets of the inner model of ZF, that
appears in [2], p. 87. The final aim is to establish a domain with the
following members: k, {k}, Mg, for all ordinals B, and all expressions of
the form: {z'e My U {k}/Ay oiri2’, w!, . . ., w])}, where w] is k or w/e M,
has the value 1 in the value assignment to follow, where all the bound
variables in AMau{ki are restricted to M, U {1, and AMau.{k} has the value 1 or
0 for all substitutions into its free variable 2’.

The restrictions of variable to M, U {k} are done as follows:

(Ax')(x'e My O f(x") & f(B).
(Sx"NT ,(x"e My) & f(x") vf(k).

Assume that these restrictions to M, U {k} apply for the whole construction
of the domain N.

The transfinite induction is as follows: We shall use the notation,
v (expression) = 1, 0, or . We will construct a transfinite sequence of
domains, Do C D, CDy, C ...CDy C Dy C...CDVcD’°cD'c...cC
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D" cC ...c D?, where DV will be the domain for sets and individual and D
will be the domain for classes and individual. The valuations made for each
domain will hold good for all domains containing it.

Let the domain D, consist of % (the individual) and {k}. Thenv(kok)=1,
v({ktok) = v(ko{k]) =v({kto{rY) =n,v(kek) =v({k}ek) =n, v(ke {k}) =1,
v({k}e{k} = 0. Let the domain D, consist of 2, {k}, M,, and all expressions
of the form: {z’e Mo U {k}/Ay,uiri(2’, W1, . . ., w})}, where W!e D, for all i,
and, for all z'e Do, Ay, 1z} has the value 1 or 0. Iy and ze D, - D,, then
v(koy) = v(yok) =v(yoz) = v({k}oy)=v(yo{k}) =n. Alsov(keM,) =0,
v(k}eMy) = 1,v(Mge k) =n,v(Mye {k}) = 0, v(Moge Mo) = 0. If ye D, - (Do U
{M,}), then v(Moey) = 0, v(vek) = n,v(ye {k}) = 0. v(x’e{z’e M, U {R}/
Aotz w1, .o WD = v(Aygo(x’, w1, . . ., W])), for allx’e Dy, where
the range of bound variables is taken as D, for the valuation. I yeD, -
(Do U {M,)), then if v(x'e¢y) = v(x’c {k}] for all x’e Dy, thenv (ye M,) = 1.
Call {k} the covvesponding member of D, for y. I it is not the case that
vix'ey) =v(x'e {k}) for all x’¢ Dy, then v (y e M,) = 0.

Let xe D, - (DoU {M,}). Let v(xeM,) =1. Then v(xe {2'¢ My U {r}/

Byoote(2', %0, o X)) = 0 (Bygutey({R ), X1, . . ., %)), where ¥/ e D, for all i,
and the range of bound variables in By, i} is taken as D,. Now let
v(xeMy) = 0. Then v(xe {z'e¢ Mo U {k}/Byooiei(2', %1, . . .,x})}) = 0. This

completes the valuation for D,.
We shall now show that the Axiom of Extensionality holds in D,. Let
v(x'e x) = v(x'e y) for all x’e D,, where x, ye D, - {k}.
vixe {kP) =0 =v(ye {k}.
(i) Letov(xeMo) = 1andxe Do. Then x is {k}.
a. Let ye Dy, then y is {k}, which is x. Hence v(ye M,) = 1 and

v(xe {ZIE MoV {k}/AMoU{kf(Z'> E{’ LR ﬁl')}) = v(ye {Zle My U {k}/AMQU{k}(Z’9

b. Let ye D, - (Do U {M,}). Then x is a corresponding member of
D, for y, v(yeMy) = 1 and v(ye {z'e My U {k}/Aygupei(2’, W1, . . ., W)} =
v (Apoute(¥, W1, . . ., W) = v(xe {2"e Mo U {k}/Ayooi(2, WL, . .., W))}.

c. Let y be M,. This cannot be the case because v (ke x) = 1 and
U(ke Mo) = 0.

(ii) Let v(xe M,) = 1 and xe D, - Do. x cannot be M, because v (Mye
M,) = 0.

a. Let y¢ Do, then this case has already been treated in (i).

b. Let ye D, - (Do U {M,}). x has a corresponding member, {%£}, of
Do. Hence v(x’'ex) = v(x'e {k}) for all x’¢ Dy, and v(x e {z’¢ M, U {R}/

Awoutid(2”, @1, « o W)Y = v (Ayeut(RE, w1, o WD) vlxey) =v(x’e {k]
for all x’e Do and v (ye Mo) = L. v(ye {2"e Mo U {k}/Ay iz’ w!, ..., w))}) =
v (Aot wi, . w)) =vlxe {27e Mo U {k}/ Ay, i(2”, Wi, . . ., w])}.

c. vy cannot be M, because v (ke My) = 0 and v (ke {k}) = 1.
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(iii) Let v(xe My) = 0. Then it is not the case that v(x’e x) = v(x’e {k})
for all x’¢ Dy.

a. Let ye D, - (D0 U {M,}). The above holds for y and hence

v(y e Mp) = 0. Hence v xe {2" e My U {RY/Ay oui(2', Wi, ..., W)} =
v(ve {z'e My U {k}/AM()utk LWL whh.
b. Let y be M,. Then v(yeMy) =0 and v(ye{z’e MyU {kl/
Ayt (21,0, oL W)Y = 0 =olxe {27 e Mo U {RY/Ay (27, w0, . . ., W)Y,

c. Let ye D,. Hence y is {k}and v(x’¢ey) = v(x’ ¢ {k}) for all
x'e Dy, which yields a contradiction.

This completes the proof.

Let xe D, - (Do U {M,}) and let v(x'ex) =v(x’c {k}) for all ¥'¢ D,. So
v(xe My) = 1. Letye D, - D,.

(I) Let v(yeM,) = 1. Then v(x'ey) =v(x’¢c {k}), for all x’¢ D,. Let

the x above be {z'e M, U ‘{k}/AMoutle}(Z', wy, ... w))}. Then v(yex) =
v(Amoutrik}, wi, . . ., W) = v({ktex) =v({k}e {k) = 0. v(ye {k}) =
v(yex).

(I1) Let v(yeM,) = 0. Then v(yex) = 0 = v(ye {k}). Hence, by the
Axiom of Extensionality, in all contexts, x can be replaced by {k}, its
corresponding member of D,. Hence v(By o}z, Wi, . . ., w]))(z', w]
all € Dy) is the same whether the range of the bound variables in Bmouikl is
taken as Dy or D,.

This completes the initial stage of the transfinite induction. The next
step is to assume for some ordinal o that domains Dﬁ, for all B8 < a, have
been constructed and that all valuations of the expressions constructed
from the members of these domains have been obtained in a way similar to
the valuation of expressions from D,. Dg consists of %, {k}, M,, for all y
such that 0 <y < B, and all expressions of the form: {z’e¢M, U {k}/
AMYUW(Z', w{, . . ., w})}, where /e Dy, (if B is a successor ordinal) or
w}e Dg (if B is a limit ordinal) and v(w}e My) = 1 or w/ is k, for all ¢, for y
such that 0 <y <B, and where Ay_ .} has the value 1 or O for all z'¢ Dy,
(if B is a successor ordinal) or z’¢ Dy (if B is a limit ordinal). The Axiom
of Extensionality holds in Dg and if xe Dg - Dy and v(xe My) = 1 then x can
be replaced by any of its corresponding members, in all contexts with the
domain Dg. Also v(BMWm(z’,E{, ..., X)) is the same whether the range
of the bound variables in BMYUW is taken as Dy or Dg.

We now define Dy,, as all members of the Dg’s, for all B < a, M,, and
all expressions of the form: {z’e¢ M,U {k}/Ay Um(z wl, ..., w}) }, where
w/!e D, such that v(w/e M,) = 1 or w’ is &, for all 7, whereO Y < a, and
where Ay, otz has the value 1 or 0 for all 2’e Dy. [If @ is a limit ordmal,
then y = a'is the only case we need to consider.]

If yand z¢ Dy, - D,, then v(koy) = v(yok) = v(yoz) =n. If xe D, - {k},
then v(yox)=wv(x0y) =n. Also v(ke M) =0, v(Mye k) =n and v(Mye M,) =
0. If xe D, - {k}, then v(xe M) = 1 and v(Mye x) = 0. If ye Dy, - (D, U {M,})
then v(Mye v) = 0, v(ye k) = n and v(ye {k}) = 0
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vix'e{z"e My U {k}/AM,yul;k}(z’, Wi, ..., W) = v(Ayopi(x’, WL, .o, W),
for all x'e Dy, where W/ ¢ Dy such that v (] e My) =1or w] is k, for all Z, and
where the range of the bound variables in Ay otk is taken as D, for the
valuation. [If @ is a limit ordinal, then y =« 1s the only case we need to
consider.]

Let x'e¢ Dy - Dy. If v(x'e M,) = 1, then v(2’ex’) = v(2’ey’) for all
z'e Dy, for some y’e Dy, where y’ is a corresponding member of D, for x'.

Then v(x’e {2"¢ Mye {k}/AMyU{k;(z wl,...,w)})= v(AMYU;k;(y wy, . . E,))
If v(x'eM,) = 0 then v(x'e {z e M, U {k}/AM Jolki(27, W, L, W) ) =
Ve Dyyy - (DgU {M,}) and 0 <y < a, then if v(x ey)=v(x'e z) for all x'¢ Da,

for some z¢ Dy, then v(ye M y) = 1 and 2 is called a corvesponding member
of Dy for y.

If it is not the case that v(x’ey) = v(x’e z) for all x’e D,, for some
ze Dy, thenv(ye M,) = 0

Let x€ Dyn - (Dy U {M}). Let v(xe M,) = 1. Thenv(xe {2’¢ M, U {k}/
AMyU{k}(Z'9 wi, . .., WP = v(Ay, 0wz, W, . . ., W), where z is a cor-
responding member of D, for x and where the range of the bound variables
is taken as D,.

Now let v(xeM,) = 0. Then v(xe {2'e M, U {k}/A, Julel(2!, W,

w/)}) = 0. Since the Axiom of Extensionality holds in Dy, any corresponding
member z, of Dy for x can be substituted in the above expression.

We shall now show that the Axiom of Extensionality holds in Dy;. Let
v(x’ex) = v(x’ey) for all x'e Dy, where x, ye Dy, - {k}. v(xe {kP)=0=
v(ye {k]). Let 0 <y <a. Let /e D, and v(w}e M,) = 1 or W} be k, for
all 7.

(i) Letwv(xe My) =1landxe D,.

a. Letve Dy. Then v(yeM,) =1 andv(ye {z'¢ M, U {k}/4, ,Um(z
wi, .. w)D = v Ay oy, Wi, ..., W) = v (Ay, Ugk;(x wl, ..., W)=
v(ve{2'e M, U {k}/AMyutk}(Z', wl, ..., W)Y, usmg the Axiom of Exten-
sionality in Dy.

b. Let y€ Dyyy - Dy. Then x is a corresponding member of D, for
y, v(yeM,)=1,andv(ye{z’eM, U {kY/Ay suwy(z', @1, . . ., W) —v(AMy.uak;(x
wy, .. wl)) =v(xe {z'e M,V {k}/AM U;k;(z wi, .. w,)})

(ii) Letwv(xe M,) =1 andxe Dy - Dy.
a. Let ye D). This case has already been treated in (i).

b. Let ye Dy, - Dy. x has a corresponding member, w, of D,y.
Hence v(x'ex) = v(x'ew) for all x'e Dy, and v (xe {2"¢ M, U {k}/AM o2,

wy, .., W)Y —v(AMyng}(w wi, ..., w)). v(x'ey)=vix’ ew) for all x’ eDa
and v(ye M,)=1. v(ye{z'e M, U {k}/AMyU{k;(z wy, .., w))) = v(AMWm(w,
wil, .. w,)) =v(xe {z"e M, U {k}/AM oz Wl W),

(iii) Let v(xe M,) = 0. Then it is not the case that v(x'e x) = v(x'e w)
for all x’¢ D, for some we Dy.

a. Let ye Dy. Then v(x’ex) = v(x'ey) for all x’e D,. This isa
contradiction.
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b. Let ye Dy, - Dy. Then it is not the case that v(x’'e y) = v(x'e w)
for all x’e Dy, for some we Dy,. Hence v(ye M,) =0 and v(ye {z'¢ M, U {k}/
Ay otn(2, W0, o W)Y = 0 =v(xe {z'e My U {RY/Ay jui(z’, @1, - . ., W))).

This completes the proof.

Let x€ Dosy - Dy and let v(x’e x) = v(x'e z) for all x’e Dy, for some
ze Dy(0 <y < a). So v(xeM,)=1. This covers all cases of v(xe M,) =1,
where xe D, - Dy, because x and z can be interchanged in all contexts in Dj.
Also x cannot take the form M;s, v < 6 < a, because v(Mse M,) = 0. Let x be
{z7e My U {k}/Ay,oui(2', w1, . . ., w))}, where 0 < k <@ and w/e D, and
v(wle My) = 1 or w; is k, for all 4.

Let y € Doty - Do

() Letv(yeM,) =1. Thenv(x'ey)=v(x"eu) for all x’e D,, for some
ue Dy. Then v(yex) = v(Ay,oai(u, Wi, . . ., w))) =v(uex) =v(uez). Let z
be {z’e Ms U {k}/Bysoie}(2', X1, . . ., %})}, where 0 <6 <y <a and X/e D,
(or Dy, if ¥ is a limit ordinal) such that v(x/e M;) = 1 or X/ is k, for all 1.

(i) Letv(yeMs)=1. Thenv(x’ey)=v(x'ew) for all x’¢ D,, for some
we Dg. Hencewv(ye z) = v(BMﬁum(w, X, ..., %) =v(wez).

a. Let & < k. Then Dg € Dy and w could have been used as the
corresponding member of D, for y and hence v (yex) =v(we z) =v(ye z).

b. Let 6 > k. Then D, C Dgand # could have been used as the cor-
responding member of Dgfor y and hence v(ye 2) = v(ue 2) = v(ye x).

(ii) Let v(ye Ms) = 0. Then wv(yez) = 0. It is not the case that
v(x’e y) = v(x’e w) for all x’¢ D,, for some we Ds. This also follows for u.
Hence v(ue M) = 0 and v(ue z) = 0. Hence v(yex) =0 =v(ye 2).

Let z be {£}. Then v(ye z) =0 and v(ye x) = v(uc z) = 0.
Let z be My, 0 < § <y < a. As above, if v(yeMs) = 1 (or 0) then
v(ue Ms) = 1 (or 0) and hence v(ye x) = v(ye 2).

(I1) Let v(ye M) =0. Then it is not the case that v(x’e y) = v(x’€ u)
for all x’¢ Dg, for some ue Dy. v(ye x) = 0.
Let z be {2'¢ Ms U {k}/ By, u3(2', X1, . . ., ¥p)}, where 0 < 8 <y <a and
%/e Dy, (or Dy, if v is a limit ordinal) such that v (X]e M;) = 1 or ¥/ is k, for
all 7.

(i) Letv(ye Mg)=1. Thenv(x’ey) =v(x'ec w) for all x’e Dy, for some
we Ds. If & < k, then Dsg C D, and v(x'e y) = v(x'e w) for all x’¢ D, for
some we Dy, which yields a contradiction. Hence, let § > k. v(ye2) =
v(we z) =v(we x). It is not the case that v(x'e w) = v(x'ecu) for all x’¢ D,,
for some ue Dy. Hence v(we M;) =0 andv(wex) =0. Hence v(yez)=0=
v(ve x).

(ii) Let v(ye Ms) =0. Thenv(yez)=0=0v(yex).
Let z be {k}. Thenwv(yez)=0=0v(yex).
Let z be M5, 0 < 86 <7y <a. Letv(ye Ms) = 1. Thenv(x'ey) = v(x’e w) for



402 ROSS T. BRADY

all x’e Dy, for some we Ds. If & < k, then Dy C Dy and v(x’e y) = v(x'e w)
for all x'e D,, for some we D, which yields a contradiction. Hence, let
6 > k. v(we Mg)=1=v(we x). It is not the case that v(x’e w) = v(x'e u)
for all x’e D,, for some ue Dy. Hence v(we My) =0. Hence v(we x) = 0,
which is a contradiction. Hence v(yeMs) = 0 and v(yez) = 0 =v(yex).
Hence, by the Axiom of Extensionality, in all contexts, x can be replaced by
a corresponding member of D,, 0 < y < a. Hence v(BMy‘Um(z',E{, ce
%p))(z’, w! all € D,) is the same whether the range of the bound variables in
BMYU;k;is Dy or Dy, where 0 <y <a.

The next stage of the transfinite induction is to consider the formation
of Dy, @ a limit ordinal. D, consists of k, {k}, M,, for all y such that
0 <y <a, and all expressions of the form: {z’e M, U {k}/Ay (2", w1,

., W;)}, where W!e Do and v(W!e M,) = 1 or W] is k, for all i, where
0 <y <a, and where AMW{H has the value 1 or O for all z’e¢ Dy. That is,
D, =ﬁl<Ja Dg. By the induction hypothesis, all the valuations for D, have been

made, the Axiom of Extensionality holds in D, and if Xe Dy - D, and
v(xe My) = 1 then x can be replaced by any of its corresponding members,
in all contexts with the domain D,. Also v(BMyuik}(z', X!, ..., %)) is the
same whether the range of the bound variables in BM),.J{H is taken as D,
or Dy.

Now define DV = U Da. DY consists of k, {k}, M,, for all @, and all

expressions of the form: {z'e M, U {k}/Ay, e3(z", w{, . . ., w])}, where
w{e DY and v(w/e M,) = 1 or w] is k, for all {, where a is any ordinal, and
where Ay, has the value 1 or 0 for all z’e DV. By the transfinite induc-
tion, all the valuations for DU have been made, the Axiom of Extensionality
holds in DY, if xe DY - D, and v (x€ D) = 1 then x can be replaced by any of
its corresponding members, in all contexts with the domain DY, and
v(Angoei(2’, wl, . . ., w))) is the same whether the range of the bound
variables in Ay, ) is taken as D, or DV.

The following valuations hold in DY:
If xe DV - {k}andye DY - {k}thenv(kok) =1,v(xok)=v(kox)=v(xoy) =
n, vke My) = 0, v(Mge My) = 1 if B<a, v(MyeM,) =0ify >a. Kx'c DY
thenv(x’e k) =n. Hye DV - {k}, thenv(ye {¥) =0 and v (ke {k}) = 1.
I x is{z’e Mo U {RY/Ay (2", w1, .., w])}, where w!e DY and v (w; ¢ M,) = 1
or w! is k, for all ¢, then v(xe M;) = 1 for all 5 >a, and v (M, e x) = 0 for all
T2a. Kfo(x'eM,)=1orx'isk, thenv(x'ex) = v(Ayopei(x’, Wi, . .., w]))).
If v(x'eMy) =0 and x' is not k, thenv(x’ex) = 0. v({k}e M) = 1, for all a.
If v(x'ex) =v(x'e z) for all x’e DY, for some z such that v(z € M,) = 1 for
some 0 < 7 < @, then v(xeM;) = 1. If it is not the case thatv(x’ex) =
v(x’'e z) for all x’e DY, for some z such that v(zeM;) = 1, for some
0 <7 <athenv(xeM;) =0. If v(x’eMg =1 thenv(x'e M, =1, for all
x'e DY, for all 6 and k such that 6 < k. Hence for any x’e DY, except for k&,
there is a least ordinal @ such that v (x’e M,) = 1. Hence v (x’¢ My) =0, for
ally <a andv(x’e My) =1 for all ¥y = a. Call this least ordinal, a.;. Note
that ayg = B+1,ay; =0, and ax is always a successor ordinal. If o, < a,,
then v(yex) = 0. If x is {z'e My U {k}/Ay  a1(2', ®!, . . ., @)}, then
ay <a+1l. IHov(yex)=1thenay <a,- 1.
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The domain DY and its valuations will form the model for the axioms
involving sets and individuals, which will be shown later. We now construct
a domain D¥ which, with its valuations, will form the model for the axioms
involving classes and individuals.

Let D° consist of all the members of DV and all the expressions of the
form: {z'/A(z',%{,...,%5)}, where X/e DY, for all i, where A contains
quantification only over sets and individuals, and where A has the value 1
or 0 for all z’¢ DY. In the following, all quantification over sets and
individuals that occurs in predicates A will be evaluated over DY.

It {z'/A(2", %1, ..., %5} e D° - DY, then v(y’e {2"/A(2", X!, .. ., X)) =
v(A(y', X!, . . ., %), for all y'e DU. If v(y’e{2'/A(2", %, . . ., %)} =
v(y'e w’) for all y’e DU, for some w’e DY, then v({z'/A(2", %], ... X})}e
U') = v(w'e U’), for all U'e D°. If it is not the case that v(y’e &’/
A(z', %, . . ., %)) = v(y’ew’) for all y'e DY, for some w’e DY, then
v({z"/A(2!", %, . . ., %) e U’) =0, for all U’e D°.

Given that D” and its valuations have been determined, D""' consists of

all of the members of D” and all the expressions of the form: {z//A(z’, ¥{,

%, Y1, ..., Y}, where X/e DY, for all i, and Y, ¢ D”, for all j, where
A contains quantification only over sets and individuals, and where A has
the value 1 or 0 for all z’¢ DY.

It {2'/A(2" %], .. X, YL, ., ) )je D" - D" then v(y'e {2’ /A(2", 7,
WXy, Yoo, 1)) = v(A(y',xl, e X, Y, ..., Y}), for all y re .

If v(y € {z'/A(z’ xl, R AN Yp')}) —v(y ew’) for all y’e DY, for
some w'e DY, then v({z’/A(z’, X/, . . .,x,’,,, Lo L THteU) =v(w'e U,
for all U’e D"™. I it is not the case that v(y’e {z'/A(z' .. %, YL,
, 7))} = v(y’ew’) for all y'e DY, for some w’e DY, then v({z'/A(z’,E{,

W Ep, Vi, .o, T e U) =0 for all U'e D", Hov(y'e V') =v(y'ew’) for

all y'e DY, for some w'e DV, where V'eD” - DY, then v (V'e U') = v(w'e U')
for all U'e D" - D™. If it is not the case that v(y'e V') = v(y’e w’) for all
y'e DU, for some w'e DY then v (V'e U’) = 0, for all U’e D"*' - D"

We need to show that if v(y’ew’) = v(y'ew!) for all y’e DY, then
v(w'e U') =v(wle U'), for all U’e D" - D", where w’ and wje DV. By the
Axiom of Extensionality for DU, the above holds for all U’e¢ D°. Let us
assume that the above holds for U’e D". Now let U’e D"*' - D". For some

predicate A, U’ is {2'/A(2", %, .. ., %}, Y, ..., Y} v(w'e U") =v(A(w’,
X, .. %, Y, ..., Y)). I¥;eD"- DY, then either v (¥; e w’) = v (¥; e wf) =
0 or v(y,e w') =v(ylew’) =v(y/e w]), for some y/e DV. Hence v(A(w’, x],

WX, Y.L, T) = o(Alw, XY, .. L%, Y, ..., Tp)) and w(w'e U') =

v(wle U'). This completes the proof.

Let D% = U D" and let DS have the valuations obtained by induction on
the D"’s. Hence DS consists of all the members of DV and all expressions
of the form: {z'/A(z',%l, ..., %5, Yi, ..., ¥;)}, where ¥/e DY, for all ¢,
and y]eDS for all j, where A contams quantlflcatlon over sets and
individuals only, and where A has the value 1 or 0 for all z2’¢ DV.

I {2//A(z", %, . . ., %, Y., .. Y{;)}e DS - DY then v(y’'e {2’'/A(z’,
X, ..., x5 Yi,. Y,,)}) —v(A(y' x' 7Y, ..., 7)), for ally’e DV.
If v(y’'e {z'/A( z' JXL, XL Y .,?[,')}) =v(y'e w’) for all y’e DY, for
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some w'e DY, then v({z'/A(2", %], .. . X, Y, ..., V)teU)=v(wel"),
for all U’e DS. If it is not the case that v(y'e {2'/A(z’, %I, ..., %y,
Y, ..., YD =v(yew’) for all y'e DY, for some w’e DY, then v({z'/
A(2' )X}, . . . %, Yi, ..., TNteU’) =0, for all U'e DS, Ifv(y’ew’) =
v(y'ew!) for all y’e¢ DV, then v(w’e U’) = v(w/e U’) for all U’e D, where w’
and w!e DY. This follows by induction using an above argument.

Now we will show that D® and its valuations form a model, N’, for all
the axioms.

The domain for classes and individuals is D°®, the domain for indi-
viduals is {k}, the domain for sets and individuals is DY, the domain for
classes is DS - {k}, and the domain for sets is DY - {k}.

The General Axioms 1, 2, and 3 are obviously valid in the model N'.
Individual Axiom 1 is valid because there is only one individual, 2, in the
model. Individual Axiom 2 is valid because the fusion of x is k. Individual
Axiom 3 is valid because x is either {k} or 0, where 0 can be taken as
{z'e My U {r}/~(ke {k})}. Individual Axioms 4 and 5 are valid because there
is one individual, k.

For showing the validity of Axiom T, let v(xeX) = v(xe Y) for all
xe DS, where X and Ye DS. If X and Ye DY, then we have already shown
that v (Xe U’) =v(Ye U’), for all U’e DS. If Xe D - DY and Ye DY, then by
the construction of Ds, v(XeU') = v(YeU') for all U'e DS. Similarly, if
XeDVand Ye DS -DV. LetXe DS - DV and Ye DS - DV.

a. fo(y'eX) =v(y’ew’) for all y’e DY, for some w’e DV, then
v(y'eY) = v(y'ew’) for all y’e DV, for some w’e¢ DV. Hence v(Xe U’) =
v(w'e U') =v(YeU’), for all U'e DS.

b. If it is not the case thatv(y’e X) =v(y’ew’) for ally’e DY, for
some w'e DY, then it is not the case that v (y’e ¥) =v(y’ew’) for all y’e DY,
for some w’e DU. Hence v(XeU’) = 0 = v(Ye U’), for all U'e¢ DS. Hence
Axiom T is valid in the model.

To show that the Axiom P is valid in the model, let x’ and y’ be unequal
to k. Let ay <a,. Then v(x’e May,) =v(y'e May,) = 1. The required x is
then {2’ e My, U {k}/(Aw")(w’ e M, D T(w'ez’ 2w'ex") & T(kez' =
Eex’) . (Aw’)(w'e Ma,, > T(w'ez’ 2w'ey’)) & T(kez'2key’)}. Now let
x' be unequal to & and let y’ be k. Then the required x is {z'e M,,, U {r}/
z'e {k}v.(Aw')(w'e My, D T(w'e2z’ Zw'ex’')) & T(kez' =kex’)}. If x’and
y’ are both &, then the required x is {k}.

Axiom N is valid as the required ¥ can be taken as {z'e Mo U {k}/
~(ke {k}}. As before, call this 0.

For showing the validity of Axiom B, consider the predicate ¢(x7, .

ooy

xf, Y{, . . ., Y}), where only variables over sets and individuals are
quantified, and where ¢ is significant for all substitutions into its free
variables. The required x is {z//(8x]) . . . Sx)(Aw")T(w' ez’ 2w’ ¢
Gl o x) & dxl, .. x}, YL, ..., ¥)} The (i, ... x]) is defined the

same way as earlier in this section, using the set x, used to show the
validity of Axiom P.
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For the Axiom U, the required x is {z’eMax U {k}/(Sv') T, (v'e M) &
v & v'ex)v.z'e k& ke x}.

For the Axiom W, consider all the members x’ of x in the model, i.e.,
such that v(x’e x) = 1. All of these members will be members of My, -1,
i.e., such that v(x'e Max_L) = 1, or be k. Consider a set S of only those
members of x which are members of the set D,_,. Any member of x not in
Dy, will be replaceable by a member of ¥ in D, _, in all contexts. Let the
set T be the set of all subsets of S. Form a subset R of T such that
XeR =XeT & (82)(ze DV & (Aw')(w'e DV D. v(w'ez)=1=w'e X)). [By
transfinite induction, the class V of ordered pairs{(x’, y'), x', y'e¢ DY, such
that v(x’e y’) = 1 can be constructed so that ‘v(w’e z) = 1’ can be replaced
by ‘(w’, z")e V’.] For each member X of R, since there is a member z of
DY there is a least ordinal a, such that v(ze M,) = 1. Hence choose a z
from D,, satisfying the above property. So to each member X of R we can
choose a corresponding z from DY. Since there is a set of such z’s, there
is an ordinal 8 which is the sup of all ordinals a.. Hence the required y can
be taken as {z'e¢ Mg U {k}/(Aw")(w'e Mg>. T(w'ez' D w'ex)) & T(kez' >
ke x)}. This is the required power set of x because, by the above argument,
all possible subsets of x will be members of M.

Next we will show that Axiom R is valid but firstly in a form applicable
to sets and individuals only. That is, if A(x’,y’, u!, ..., u}) is univocal
then (Sy)(Ay')(y’ey = (Sx")(A(x', y',ul, ..., u},) & x'ex)), where quantifi-
cation in A is over sets and individuals only, and where A is significant for
all substitutions into its free variables. By Theorem 1, we need only
consider wffs A such that A contains only the connectives ~, &, and T and
the quantifier A. By the result in the appendix of this paper we need only
consider wffs A such that A has all of its quantifiers, A and E, at the
beginning of the formula. [In the proof in the appendix Sp can be defined as
~(~Tp & ~T ~p) and T(Ex)A(x) ~ (Ex)(Ay)(TA (x) & SA(y)).] The proof
will follow that in [2], pp. 90-92.

Lemma 1 Let y' = ¢(x’) be a univocal function defined by a formula
Ax', y' ul, . .. uy) for some uleDY and such that x'e DV implies
o(x')e DY. If u'e DY then theve is a w'e DY such that if v' is the vange of ¢
onu’ theny'ev’ D.v(y’cew’) =1, for all y'e DY. [v'is a set of members of
DV and cannot belong to DY.]

Proof: Note that if v(w!e z’) = v(wlex’) for all w/e DY and where z’ and
x'e DY, then v(whe $(2')) = v(whe ¢(x’)), for all wie DY. For each x’ such
that v(x'eu’) = 1 and x'€ Dy,,-,, let g(x’) be the least ordinal @ such that
v(p(x')e My) = 1, if ¢(x’)e DV - {k}, and let g(x’) be 0 if ¢(x’) is k. Let B be
the sup of all these g(x’)’s. Clearly y’cv’ D v(y’e Mg U {k}) = 1, for all
y'e DY. [Mg U {k} can be taken as {z’¢ My U {k}/ke{k}}.]

Lemma 2 Let A(x!, ..., x;}) be a wff with the above vestrictions on
connectives and quantifiers and with its quantifievs, A and E, at the
beginning of the formula. Let 3¢ DV - {k}. There is an M, U {k}e DY such
that if v(z'e¥’') = 1 then v(z'e My U {k}) = 1, for all z'¢ DY, and for all

)
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¥fe DY such that v(Xfe My U{k}) = 1, v(A(X], . . ., %)) = 0(Ay,ou(F, - - -,
Xp), wheve Ay iy is A with all its bound vamables restricted to M, v {k}.
[(My U {k} can be taken as {z7e My U {r}/ke {k}}.]

Proof: By the above conditions, A is of the form Q,y{ . . . QuYy} B(xy{, . . .,
x5, 90, ..., vh), where Q,(1 <7 <m) is either A or E. Let u’e¢ DV - {r}.
For 1 <% < m there are functions f,(X{, ..., x,, y{, ..., y!.,) defined for
X!,y inu’ (i.e.,v(Xeu’) =1 and v(y]e u’) = 1) with the following property:
If Q, is E and there is a set or individual y/e¢ DV such that:

(1) . 'er‘+1y;+l . ‘mef;lB(E{’ L 'y_x-rgy 5’—{, M .3_)1',, yr'-H’ M yrln)

is nonsignificant in the model, or given that there are no sets or individuals
y! in DY such that (1) is nonsignificant in the model, there is a set or
individual 3! in DY such that (1) is true in the model, then f, = a where a is
the least ordinal such that there is a 3/e My U {k} (i.e., v(F/e My U {k}) =
satisfying either of the above conditions. If no such y; exists, put f, = 0. If
Q, is A (i.e., ~E~), then f, is defined the same way as for E except that (1)
is replaced by its negation.

Let B be the sup of f,(x],y/) for all x/ and y/e Dg,-1, Such that
v(x!eu’) = 1 and v(y]eu’) =1, and all » for 1 <% <m. Put (w)*=u'U
Mg U {k}. This union can be formed using the Pairing Axiom and Sum Set
Axiom which have already been shown to be valid in the model. So
(u')*e DV. Now we define a sequence z, with z§ as M, U {k}, if a is the least
ordinal such that v(¥'e M,) = 1, and Z1,, = (Z;)*. So Z,e DY, for alln. Let

=U z}. This requires the validity of the Axiom of Infinity, which will be
shown later. Assuming this, z’¢ DV. So 2z’ = U{M;/B <a’'}U {k}, for some
a'. Z' = Mg U {k} if @’ is a limit ordinal or Z' = My _, U {k} if a’ is a
successor ordinal. If v(x'e My) = 1 then v(x’e2z’) =1 for all x’e DY, and
hence if v(x’ey’) = 1 thenwv(x'eZ’) = 1 for all x'e DY.

Now we need to show that v (A(x], . . ., %) =v(4z(x], ..., x}) for all
x!e DU such that v(¥/ez’) = 1. Let C(X, . . ., ¥4, %1, .. .,¥;) denote the
statement (1). Assume that we have shown that, for ¥ >7,, C ~ C; is true
in the model, for all X/ and y; e DV such that v (¥/ez’) = 1 and v (y/eZ’) = 1.
Certainly this is the case for 7, = m. Then with v = 7,, given that
v(x/ez’) = 1andv(y/ez’) = 1, they must all lie in Z} for some &.

Let Q,4, be E. Then if C(x!{, ..., x4, v., ..., 5! is true in the model
then there is a y/,,¢ DY such that v (y/,,e2{4,) = Land C (X}, . . ., X4, V1, . . .,
9/,.) is true in the model and for all 3/, ¢ DY, C(X{, .. ., X5, %!, .. ., ¥/, is
significant in the model. By assumption, Cz (x, ..., %}, yi, . . ., /1) is
true for the chosen y/,, and significant for all y/,,¢ DV such that v (3/, ¢
z') = 1, and hence Cy(¥!, . . ., X}, ¥i,...,¥/) is true. E C(x], ..., %,
y{, . . ., ¥!) is false (in the model) then for all y/,,e DY, C(X!, . . ., X},
Y!, ... ¥l is false. By assumption, Cz (X!, . . ., xh ¥! ... y},) is false
for all y/,, ¢ DY such that v(J/,,¢ Z’) = 1 and hence C; (%!, .. ..}, 5!, . . .,7}1)
is false. If C(¥{, ..., %}, 3!, ... ¥!) is nonsignificant (in the model) then
there is a y/,,¢ DU such that v (3}, e Z{,) = land C (X, . . ., X5, VI, . . -, Viu1)
is nonsignificant. By assumption, Cz (x{, . . ., X;, ¥, . . ., ¥.,) is non-

b
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significant for the chosen %/,,, and hence Cz (X!, . . ., X}, Vi, - - -, y4) is
nonsignificant.

Let Q,,, be A (i.e., ~E~). If C(X!, ..., X, 9., ..., ¥} is true (in the
model) then for all ¥/, ¢ DY, C(x!, . . ., X., I, . . ., ¥lu) is true. By
assumption, Cz (X!, ..., %), ¥!, ..., ¥/) is true for all y/,, ¢ DY such that
v(y/,,€2’) =1 and hence Cyz(x!, ... %, yi, ..., y)) istrue. If C(X!, .. .,
X! 9/, ... yl) is false (in the model) then there is a y/, e DY such that
vV 2y =1and C(X],. .., X, ¥, ... ¥/ is false and, for all y/,,¢ DY,
C(x!, ..., %\, vy, ..., 9/) is significant. By assumption, Cz(¥{, ..., %,
y!, ..., Y..) is false for the chosen ¥/, and significant for all ¥/,,¢ DY such
that v(y/,.e 2’) = 1, and hence Cy (X!, . . ., X}, ¥i, . . ., y!) is false. If
c(x{,...,x., 9., ...,9!) is nonsignificant (in the model) then there is a
v/, ¢ DY such that v (¥, ¢ 24) = 1 and C(XL, . . ., X, V!, . . ., yl.) is
nonsignificant. By assumption, Cz(x}, . . ., X4, ¥{, . . ., ¥/4;) is non-
significant for the chosen y/,,, and hence Cz(X{, . . ., X, ¥1, . . ., ¥;) is

nonsignificant. This completes the proof.

Theorem 2 The Axiom of Replacement in the form: (Ax')(Sly’)A(x’,
youl .. ub) & (Ax', v ul, oo up) SA(x!, v ul, ... ul) D (Sy)(Ay')(y'e
y= (Sx)A(x', v, ul, ..., un) & x'ex)), wherve A contains quantification
over sets and individuals only, is valid in the model.

Proof: Let A(x',y’, u}, ..., u}) define a univocal function in DY: y’ = ¢(x'),
for particular uf, . . ., up in DU. Let xe DY and let 7’ be the range of ponx.
[7’ is a set of members of DY but does not itself belong to DU.] By
Lemma 1, there is an a such that z’ e’ D. v ' ¢ Mg U {k}) = 1, for all
z'e DU, We can assume that x, u, . . ., up all belong to M, U {k}, i.e.,
v(Xe My U {k}) =1 and v (ule My U {k} =1 for alli. Taking M, U {k}as the
vy’ of Lemma 2, it follows that for some u, v(A(x’, '/, ul, . . ., up)) =
v (Auyoted(x, 9, @1, . . ., Up)), for all x’, y’e DY such that v (x'e My U {rh=1
and v(y’e My U {k}) = 1. Also v(z'e My U {k}) = 1 implies that v (z’e M, U
- {r}) =1, for all z’¢ DV. Hence, for all z’e DV, z’¢ v’ Dwv(z'e My U {k}) = 1.
Also, v(x" e My VU {k}) = 1 and v(u}e M, U {k}) = 1, for all i. Hence the
required ¥y can be taken as {y’eM, U {k}/Sx')(T,(x" e My) &x'eX &
Awpotex”, 97, ul, oo up))v(kex & Ay ok, v’ a4, . . .,u5))}. For arbi-
trary #{,. . .,uy, ¥, an ordinal g can be found so that the above y represents
the set v’ in DY, in that 2’e 7’ iff v(2’e¢y) = 1, for all z’¢ DU. Hence the
above form of the Axiom of Replacement is valid in the model.

Lemma 3 If Xe DS - DY, then theve is a Ye D° such that, for all Z'e D*,
v(Z'e X)=v(Z'e Y).

Proof: Let Xe¢ D' - D” and assume that the lemma holds for all members
of D". Let X be {z'/A(z",u!, ..., a4, V!, ..., VI)}, where #/e DU, for all i,
and V' D” for all j. By the assumptlon for each V’e D" there is a W’e D°
such t {hat U(Z’e V!)=v(Z'e W) for all Z'¢ D¥. LetX be {z'/A(z", %!, . . .,
Uy, Wi, .. W,)} Then, by the Axiom of Extensionality, which is valid in
the model, v(Z’e X) = v(Z’e X,) for all Z’e¢ DS. Ifv(Z'¢ W’) =v(Z'e?y’) for
all Z'¢ Ds for some y’¢ DY, then replace the W’ in A by the y’. If there is
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no such 3’e DY then replace any statement of the form W’e X' in A by any
false statement and replace any statement of the form x'e W]’ by its
equivalent predicate expression, i.e., if W’ is {z’/B(z’)} then x'e¢ W’ is
replaced by B(x'). For statements in A of the form X'e W’ where
X'e DS - DY, if v(Z’e X') = v(Z’ey ) for all Z’¢ DS, for some y eDUthen
replace X' by ¥’ and replace y'e W’ by its equ1valent predicate expression,
and if there is no such y’ then replace X'e W’ by any false statement. Let
A’ be the resulting form of A after these replacements have been made.
Let Y be {2'/A"(2",ul, .. .,y %, ..., %)} YeD° v(Z'c¢Y) = v(Z'eX,)
for all Z’¢ DS and hence v(Z'e Y) =v(Z'e X) for all Z'e DS.

Theorem 3 The Axiom of Replacement (R) in the form: Un(X) D
(Sy)(Ax")(x'ey = Sy)(y',xYe X & y'e x)), is valid in the model.

Proof: Let Xe D* - DY and let X be univocal. By Lemma 3, there is a
YeD° such that v(Z’e¢X) = v(Z’'eY), for all Z'e DS. Let Y be {z’/
Az, ul, ... a)) So (v, xeX ~ (Sz/)(T(Aw')(w'ez’ zw’e (y',x")) &
A(z’,uf, . .., u)) is valid in the model. Let the expression on the
right-hand side of the ‘~’ be called B(y’, x’, u{, . . ., ;). Since X is
univocal, so is B(y’, x’, u{, . . ., 4},). Hence, by Theorem 2, the Axiom R is
valid in the model.

Since Axiom R implies Axiom S formally, Axiom S is valid in the
model.

We will now test the validity of Axiom I (Axiom of Infinity). If
v(ye My)=1then v(y U {y}e Myy,) = 1 since y U {y} can be taken as {z'¢ M, U
{k}/z" ey v. (Aw’)(w' e My D T(w' ez’ = w'ey)) & T(kez'=key)}. Also
v({z2'e My U {k}/~(ke {ED}e M,) = 1. Hence the required x can be taken
as M.

We will now test the validity of Axiom D, the Axiom of Regularity.
Since X has at least one member, which is a member of DY, let a be the
least ordinal such that some member of X is a member of M,. Let
v(yeX)=1 andv(ye My) = 1. Theny is either M,_,, {k} (if @ = 0), or of the
form {z’e My, U{k}/Ay,_owi(2", W], . . ., w])}, where v(W/e M,.,) = 1 or w/
is &, for all Z. Hence any member of y will be a member of M,_, or be k.
Hence there are no set members of y that are members of X and the Axiom
D is valid in the model.

We will now test the validity of Axiom C, the Axiom of Constructibility.
Formally this is (Ax)(Sa)(xe M,). Firstly we need to show that the ordinals
defined according to the formal theory and interpreted in the model are in
one-one correspondence with the M,’s of the model, that is, with the
ordinals used to set up the model. Before doing this, we need the following
lemma:

Lemma 4 ‘' is an ordinal’ is absolute, i.e., if Trans,(z) & y' ez & (y' is
an ordinal), then y' is an ovdinal, wheve (y'is an ordinal), means that all the
bound vaviables in ‘y' is an ovdinal’ ave vestvicted to 2.

Proof: Absoluteness can be shown for x =y, z = {x, y},z = (x, ), etc., as
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in Cohen {2], p. 94. However, in the definition of ¢y’ is an ordinal’, we need
to replace ‘EWey”” by ‘ECony’’. This can be done as in [10], pp. 35-36.
Then the absoluteness of ¢y’ is an ordinal’ will follow.

We will now define the ordinals in the model. Let 0 be {z'¢ M, U {k}/
~(ke{k})}. Then v(0eM, = 1 and the smallest ordinal a such that
v(0e My) =11is 1. Let a be defined in the model and let the smallest ordinal
B such that vl@eMg) =1 be @ + 1. Let @ + 1 be {z’e¢ My, U {k}/z"¢

v. (Aw")(w'e My, D T(w'ez’ = w'ea)) & T(kez’ =kea)}. Clearlyv(a +
le Myy) = 1. If vl@ + le My,,) = 1 then @ + 1 is either M, or a subset of
M, U {k}. Since v(@ea + 1) =1 then v(ae M,) = 1, which is a contradiction.
Hence @ + 2 is the smallest ordinal such that v (@ + 1e My,,) = 1. Now let a
be a limit ordinal and assume that for all 8 <ea, B is defined in the model
such that the smallest ordinal v such that » (Be My) =1isB+1. Letabe
{z'e My U {k}/(2' is an ordinal)y, Lizl- Since ‘x is an ordinal’ is absolute
and M, U {k} is transitive then a is the set of all ordinals in M, U {k}and is
hence the required limit ordinal. Clearly v(@e M,,,) = 1. If vi@e M,) = 1,
then v (ae Mﬁ) = 1 for some 8 <a. Since v(Be @) = 1 then v (Be Mg) = 1, which
is a contradiction. Hence o + 1 is the smallest ordinal such that
vide Myy) = 1.

Hence all the ordinals can be defined in the model satisfying the
properties of the ordinals and such that the smallest ordinal £ such that
viae MB) 1is a + 1, for all the ordinals a. Hence the ordinals a defined in
the model are in one-one correspondence with the My’s of the model.

To show the validity of Axiom C, in the model, we must show that the
M,'s of the formal theory, when interpreted in the model, have the same
members as the My s of the model. This is shown by transfinite induction
on the ordinals, the one-one correspondence above dispelling any ambiguity
between the ordinals defined in the model and the ordinals used to construct
the model.

Clearly M, of the model can be taken as a member of DY with the same
members as that of the formally defined M,, interpreted in the model.
Assume that the same holds for M,. M,,, is formally defined as the union
of M, and the set of all sets x such that there is a predicate A, which is
significant for all substitutions into its free variables, and x = {z'e¢ M, UI/

Aygu(2’, @1, . .., w[)}, where W/e My U I, for all i. Since My U {k} can be
taken as My U I, mterpreted in the model, {z’¢ M, U {k}/AM oz, W, .
w;)} can be taken as {z'e My UI/Ayui(2’, W}, . . ., W)}, mterpreted in the

model. Hence M,,, of the model can be taken as the formal M,,,, inter-
preted in the model. If @ is a limit ordinal and the above property holds for
all B < a, then the M, of the model, satisfying the property of being the
union of all the M,’s such that 8 < @, can be taken as the formal M
interpreted in the model.

Since there is an @ such that v (xe M) =1, for all xe DV, (Ax)(Sa)(x e M,)
is valid in the model. Hence Axiom C is valid in the model.

The next step is to show that the Axiom of Choice (A.C.) is valid in the
model, using Axiom C. There are various equivalents of the Axiom of
Choice, which can be shown by the methods in Mendelson, {8], pp. 197-199,
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with little or no modification to allow for individuals. One of these
equivalents is the Well-Ordering Principle: (Ax)(Sy)(yWex), and so it is
sufficient to prove it. This proof follows that in Cohen, [2], p. 95.

Lemma 5 Theve is a wff Alz, w, MyU {k}, v) such that if v is a well-
ordeving of the set My U {k}, the velation z <w = A(z, w, My U {k},v)
induces a well-ovdeving of the set My, U {k}, where A is significant for all
substitutions into its free variables.

Proof: Enumerate the countably many formulas B,(x’, t{, . . ., /). We have
already essentially shown how to express the relation C(z, n,t[, ... &)
z={z"e My U{R}/ (B yoiri(2', t, . . ., t}). Now the well-ordering y induces

a natural well-ordering on the set of all possible (%k + 1)-tuples (, ¢{,

., 1) where t/e M, U {k}, for all i. For each z¢ M,,, we can define ¢(z)
as the first (k + 1)-tuple, for some %, under this well-ordering, such that
C(z, ¢(z),t!, ..., t}) holds. Now we can define A by having z <w mean
p(z) < ¢(w). One can easily add % at the beginning of the well-ordering so
that # is the first member of M,,, U {k}. Thus M,,, U {k} can be well-
ordered.

By transfinite induction, we can define a well-ordering on My U {k} as
follows: M, U {k} is {k, {k}} and so can be well-ordered. If a is a limit
ordinal and the well-ordering has been defined for all My U {k} with B <a,
we well-order M, U {k} =ﬁ£]aMﬁ U {k} in an obvious manner. By Lemma 5,

if Mg U {k} can be well-ordered then M,,, U {k} can be well-ordered, and so
My U {k} can be well-ordered for all a. Since Axiom C is valid in the
model, let ¢(x) be the least ordinal @ such that v(xe My) = 1. Define x <y
if ¢(x)<o(y) or if ¢(x) = ¢(y) =@ and x precedes y in the well-ordering of
M, U {k}. Thus we have given a single formula A(x, y) which well-orders
all sets. Hence Axiom A.C. is valid in the model.

The next step is to show that Axiom GCH is valid in the model, using
Axioms C and A.C. The proof follows that in Cohen, (2], pp. 95-98 and
82-83. Instead of using ranks in the Skolem-Lowenheim Thereom on p. 82,
use the least ordinal @ such that xe M,. This does the required job of
restricting the Axiom of Choice to sets and so the theorem follows
similarly to the proof of the validity of the Axiom of Replacement in the
model. One does, of course, only need to consider formulas A(x{, . . ., x7)
containing only the connectives ~, &, and T and with its quantifiers, A and
E, at the beginning of the formula.

Lemma 6 For all infinite a, ﬁa = i, in the model.

Proof: ﬁn is finite, for all integers n. ﬁ,, > n since ae My,,, for all
ordinals a. Hence M, =%, =w®. If a is a successor ordinal and 7% = B for
all B <a -1, then the number of predicates Ayq_, U {k} is M,_, and hence

]_W =My, =a - a-1= If ¢ is a limit ordmal and MB = [3 for all 8 <a, then
M, ﬁ?ﬂ 7% <ax E = E. Since Be MgH, > @ and hence M, = a@. Hence, for
all infinite &, My = @ in the model.
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Thus, in the model, Lemma 1 of |2], p. 96, follows, where a set x is
extensional if y and zex and ~(y = z) implies (Sx’)(x'ex &. (x'ey &
~x'ez)v(x'ez & ~x’'ey)). In the theorem on p. 73, [2], concerning the
unique one-one map ¢ from an extensional set to a transitive set, let the
rank of x be the least a such that xe M,, and if 2 is an individual ¢ A then let
¢(k) = k and if rank (x) = 0 then let ¢(x) =x = {k}. In the proof of ¢ being
one-one, where @ = max(rank X’ rank Y’) = 0, X’ = Y’ = {k}, since the proof
is being carried out in the model. If X’ and Y’ are individuals then it is not
the case that ~(X’ = Y’). If X’ is an individual and Y’ is a set then
~T(¢(X') = ¢(Y")). So the one-one condition is: T(X’'=Y’') iff T(¢(X’) =
¢(Y’)). The rest of the proof follows as in Cohen, [2], and we can use the
unique ¢ -isomorphism in the proof of Theorem 1 in (2], pp. 95-97. The next
result we need is the absoluteness of ‘x’e M,’. Since the proof is being done
in the model, if ke T and l ok then le T for any transitive set 7. Hence we
can show that %’ =3’ is absolute and use this to show the absoluteness of
‘x'e¢ M,’, following through the steps in Cohen [2], p. 94, and using my
formal definition of the M,’s. Now Theorem 1 ([2], p. 95-7) will follow.
The Axiom GCH can now be shown to be valid in the model by the proof at
the bottom of [2], p. 98.

Hence all the axioms are valid in the model and the formal system is
consistent relative to the theory needed to set up the model. NBG, with
individuals added in the style of ZF, is sufficient to do this, the D,’s being
sets of expressions and DV, D° D', . . . D" ... D¥, all being proper
classes of expressions. These expressions are treated as individuals and
sets and classes are formed from them, and so the formal system is con-
sistent relative an applied NBG set theory.

This leaves a number of questions unanswered. We have not proved
formally that Axiom C implies Axiom AC. This however looks very
doubtful because Axiom C does not say anything about the well-ordering of
the set of all individuals, I. However, if an extra axiom, call it WOI, was
added which ensured the possibility of well-ordering the set of all
individuals, then it seems likely that Axiom AC would follow.

However, Axiom C formally implies Axiom D.

It also seems likely that Axiom C, together with Axiom WOI, formally
implies Axiom GCH. To prove this, it seems, involves dispensing with the
individuals altogether in the normal proof of Axiom GCH from Axiom C
because they affect the cardinalities in the form of Axiom GCH. It seems
the result can be proved by building up a transfinite sequence of N,’s,
similar to the M,’s, but with N, = 0 instead of {{k}, {1}, etc.}, and so the
individuals are excluded completely from the construction. Then show that
the Axiom GCH holds for the sets belonging to the class 9 N, and, using

the Axiom AC, that to each set belonging to U M, there is a set belonging
to U N, with the same cardinality. *

aHowever, Axiom GCH formally implies Axiom AC.

The question that now arises is that of the independence of the Axioms
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C, GCH and AC. It seems likely that these can be shown by forming inner
models along similar lines to those of Cohen in [2]. As well as the
“generic’’ sets that Cohen uses, one also needs the generic sets, {k}, {I},
etc., for all the individuals, and at each stage in the transfinite construction
one should form subsets of My U I, as in the model N of this section.

One could also add to the formal system ordinary language predicates
so that these can be used to generate classes. The addition of these does
not affect the consistency proof nor the development of the formal theory if
they are introduced by adding general predicate variables and general
subject variables to the formal theory. For the purpose of proving
consistency one can specialise the predicate variables to those concerning
membership and overlapping of classes and individuals. In the development
of the formal theory, whenever a wff-schema appears, as in forms of the
Abstraction Axiom and Axiom of Replacement, a general predicate variable
can be substituted. This would then allow one to apply the formal theory in
order to generate classes from ordinary language predicates.

Appendix

Theorem If A is a wff of S5 (see |1]) containing only the comnectives ~,
&, v, T, and the quantifiers A, S, then theve is a wff A’ of 85 such that
A =~ A’ and A’ has all of its quantifiers, A, S, V, E°® at the beginning of the
formula.

Proof: The following are valid and hence provable in 85:

~(Ax)A=~ (Ex)~A.

~(Sx)A~ (Vx)~A.

~(Vx)A~ (Sx)~A.

~(Ex)A ~ (Ax)~A.

(Ax)A & B ~ (Ax)(A & B), where x is not free in B.

(Sx)A & B =~ (Sx)(A & B), where x is not free in B.

(vx)A & B ~ (Vx)(A & B), where x is not free in B.

(Ex)A & B ~ (Ex)(A & B), where x is not free in B.

(Ax)AvB ~ (Ax)(Av B), where x is not free in B.

(Sx)AvB =~ (Sx)(Av B), where x is not free in B.

(VX)A(x)vB =~ (vx)(Sy)(Sz)(Aw) ~(~(A(x)vB) & ~(T ~B & ~SA(y) &
TA(z) & ~T ~A(w))), where X is not free in B.

(Ex)A(x)vB ~ (Ex)(Ay)(Az)((A(x)vB) & ~(T ~B & ~SA(y) & TA(z))),
where x is not free in B.

T(Ax)A ~ (Ax)TA.

T(Sx)A ~ (Sx)TA.

T(Vx)A(x) ~ (8%)(AY)(TA(x) & ~T ~A(¥)).

T(Ex)A(x) ~ (Sx)(Ay)(TA(x) & SA(y)).

Applying these equivalences to each connective in turn, one can construct
an A’ such that A’ ~ A and the quantifiers of A’ are in front of a formula
containing connectives only.
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NOTES

1. See [3], [11], [S], [4] and [1] for accounts of nonsignificance and of 3-valued significance
logic.

2. See Leonard and Goodman [7], pp. 47-8.

3. The connectives and quantifiers are those of the system S5 from [1]. These are given as
follows:

~ 1 DJ 1 0 n T, (‘1’ denotes truth, ‘0’ denotes falsity,
1o 111 0 »n B and ‘n’ denotes nonsignificance)
0|1 o1 1 1 0|n

n|n nil 1 1 nin

(AX")p(X') is true if ¢(X') is true for all X'.

(AX")¢(X') is nonsignificant if $(X’) is nonsignificant for some X.
(AX")p(X'") is false, otherwise.

(SX")p(X') is true if ¢(X') is true for some X'.

(SX")¢(X") is nonsignificant if ¢(X") is nonsignificant for all X’
(8X")p(X') is false, otherwise.

Other connectives that are used in the sequel are as follows:

&lton v|1 0n =|10n

1j1 0n 141 1 1 1|1 O n
0({0 0 n 0|1 0 0 00 1 1
nin n n n|il 0 n nin 1 1

T F s | o1 07 =]1 0 n
111 110 1}1 1]1 O0n 14}1 O n
0|0 o1 0|1 0 1 n 0(0 1 n
n |0 n|o nl0 nln n n nln n n
~,1 0 n

1{1 0 O

0|10 1 O

ni0 0 1

The definitions of these in terms of ~, D, and T, can be found in [1].
4. Such a theory is developed in my Ph.D. thesis, A 4-valued Theory of Classes and Individuals.
S. Fuller details can be found in my thesis, in Chapter 4.

6. In the significance logic S6 in [1], (Vx)A4 =47 ~(Sx) ~4 and (Ex)A4 =4 ~(Ax)~A.
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