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SIGNIFICANCE RANGE THEORY

ROSS T. BRADY

1 Introduction The object of this paper* is to examine some aspects of

significance range theory, assuming a background of class theory and

introducing significance ranges as a special kind of class. Such a class

theory is developed in [2], where a 3-valued significance logic (in fact, S5

of [l]) is used to set up an axiomatic theory of classes and individuals, the

class theory being similar to Mendelson's treatment of NBG in [6] and the

theory of individuals being an extension of Leonard and Goodman's Calculus

of Individuals [5]. The Abstraction Axiom B of this theory will be used for

the purpose of generating significance ranges. The symbolism used in this

paper is as follows:

U', V, W, X', Y', Z ' , . . . (variables over classes and individuals)

£/, V, W, X, Y, Z, . . . (variables over classes)

u'', v', wf, x*, v', z', . . . (variables over sets and individuals)

u, υ, w, x, y, z, . . . (variables over sets)

k, I, m, n, . . . (variables over individuals)

o (overlaps)

e (is a member of).

The connectives and quantifiers from S5 that are used are the following:

- & 1 0 n v l O r c D l O r c

1 0 1 1 0 « 1 1 1 1 1 1 0 w
0 1 O O O r c 0 1 0 0 0 1 1 1
n n n n n n n 1 0 n n l l l

*Much of the material in this paper is taken from my Ph.D. thesis, A 4-valued Theory of
Classes and Individuals, which was supervised by Professor L. Goddard and submitted to the
University of St. Andrews in 1970.
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= 1 0 n T F S Tn

l l O r c 1 1 1 0 1 1 1 1

0 0 1 1 0 0 0 1 0 1 O n

n n \ I n 0 n 0 n 0 n n

(AX')φ(X') is true if φ(X') is true for all classes and individuals Xr.
(AX')φ(X') is nonsignificant if φ(X') is nonsignificant for some class or
individual X'. (AX')φ(X') is false otherwise.

(SX')φ(X') is true if φ(Xr) is true for some class or individual X'.
(SX')φ(X') is nonsignificant if φ(Xr) is nonsignificant for all classes and
individuals X'. (SX')φ(X') is false otherwise.

The quantifiers A and S are defined similarly for the other variables.
Restricted quantification is carried out as follows:

(As)φ(s) =df (AX')(R(X') =) Φ(X'))
(Ss)φ(s) =df (SX')(TnR(Xf) & φ(X')).

The variable s ranges over all the X"s such that R(X') is true and there
must be at least one such X'.

As in [2], the relation Ό ' , meaning 'overlaps', is such that it is
significant for individuals to overlap and nonsignificant otherwise, and the
relation ζe>, meaning 'is a member of, is such that it is significant for
individuals or classes to be members of classes and nonsignificant
otherwise.

The form of the Abstraction Axiom B of [2] needed is:

(A*ί, . , x'm, X'l9 . ., X'n)SSφ(x[, . . ., x'm, X[, . . ., X'n)

-D (SX)(Ax[, . . ., * ; ) « * { , . . ., xί)e X Ξ Sφ(x'l9 . . ., x'my X[, . . ., X'n))

where quantification in φ is over sets and individuals only, x[, . . ., x'm ,
X[9 . . ., X'n are all the free variables of φ, and X is not among them. Also,
if R(x') is a restricting predicate for a restricted quantification over xf in
φ then x[, . . ., xf

m must not occur free in R(x').
Since SSp is valid in the logic, the above form simplifies to:

(SX)(Ax'l9 . . . , * ; ) « * ' , . .,xί)eX = Sφ(xl, . . ., xί, X[, . . . , « ) ) ,

with the same proviso.

Although this would seem to yield the most natural definition of a signifi-
cance range from Axiom B, this does not specify the class X uniquely.
Hence we will use the following definition: The unique class X such that

( A s ' ) ( * ' e X = (S*ί, . . . ,£i)(T(;z ' = <*ί, . . . , * ; » &
Sφ(x[, . . ., * ; , F{, . . ., Yi)))9

is a significance range, (φ, of course, contains quantification over sets and
individuals only, x[, . . ., Xm are all the free variables of φ, Y[, . . ., F»' are
constants, and the above condition applies to restricted quantification.) We
shall call this unique class X, the significance range of φ(x[, . . ., x'm,
Y[, . . ., Yή). We shall also call φ the generating predicate for X.
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2 The connectives and quantifiers used to define significance ranges

2.1 The initial problem Since there are no restrictions on the connec-
tives that can be used to construct φ, the unique class X, such that

(Az')U'eX= (S*ί, ._• ., *i)(Γ(*' = <x[, . . ., *i»
& STnφ(x[, , X'm, Yl, , Yi))),

is the significance range of Tnφ. But STW£ = Tp, and hence every class
uniquely defined as a class of m-tuples for some predicate φ(x[, . . ., x'mi

Y[, . . ., Y£), which is significant for all substitutions into its free variables,
is the significance range of Tnφ(x[, . . ., x'm, Y[, . . ., Yi), i.e., every such
class is a significance range.

This is an undesirable result as there are many examples in ordinary
discourse of classes which are not significance ranges of any predicate, if
one restricts the connectives used to construct predicates so that the
predicates so formed can be interpreted in ordinary discourse. A simple
example of such a class is the class consisting of a single member, say, a
particular leaf of a tree or a number. Unless Tn is used in restricting the
S-quantifier [l] p. 181, it cannot be used to construct a predicate which can
be interpreted in ordinary discourse. Tn is an operator which can convert a
false sentence to a nonsignificant one, so there must be something
intrinsically nonsignificant about Tn. Tn has no interpretation on its own
and it was only introduced to serve the purpose of restricting the
S-quantifier and such restricting does not give an interpretation to Tn. The
difference between classes and significance ranges on this point is that, by
Theorem 1 of [2], all classes can be generated by predicates constructed
using only the connectives ~, &, and T and the quantifier A, whereas by
introducing further connectives, such as Tn, one may define significance
ranges which would not have been definable had these further connectives
not been added. It remains to determine what connectives and quantifiers
should be used in constructing predicates to generate significance ranges.

2.2 Interpretation in ordinary discourse for the connectives and quantifiers
One of the requirements is that the predicates constructed using these
connectives and quantifiers must be such that they can be interpreted in
ordinary discourse. This should also apply to predicates used to generate
classes, but the only reasons for allowing all connectives and quantifiers is
that it simplifies the formal treatment not to place restrictions on them and
no classes are formed which could not have been formed by using predi-
cates with some interpretation in ordinary discourse. If there is no such
interpretation of a predicate then there would be no such interpretation of
the class generated by it nor of its significance range.

The connectives, ~, &, and T, can be interpreted as 'not', 'and', and fit
is true that', respectively. As explained in [l], v can be used to formally
construct fX'vgX', which has the same value as (/ or g)Xf, which can be
interpreted in ordinary discourse as a predicate disjunction. The example
given was *x is a holiday or likes cheese7. The quantifier A can be
interpreted as 'for all'. As explained in [l], the quantifier S can be
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interpreted as 'for some' as in the example, 'Something is happy* or 'For
some X', X' is happy'. As also pointed out, v can also be used to express
S-quantification over a finite range. Given a predicate A(X') such that
A(X') is true for some Xf, the quantifier S restricted by the predicate A
can be interpreted as 'for some X1 such that A(XfY. Formally this is
represented as (SX')(TnA(Xf) & φ(X')), where φ is the predicate which is
quantified. Given a similar predicate A(X'), the quantifier A restricted by
the predicated can be interpreted as 'for allX' such that A (X')9. Formally
this is represented as (AX')(A(Xr) D φ(X')), where φ is the predicate which
is quantified. The connective S can be interpreted as 'it is significant that'.
The connective D, as well as being used to restrict the A-quantifier, can be
interpreted as 'if it is true that . . ., then . . .'. This has to be interpreted
in a similar way to the material implication of the two-valued propositional
calculus, in that if the antecedent is not true then the implicational state-
ment is vacuously true and if the antecedent is true then the implicational
statement takes the value of the conclusion.

However, peculiar significance ranges can be formed by using the
connective D. Form the significance range X such that (A.z')(z*e X =
Siφ^z') => Φ2U'))- Hence (Az')(z'e X = ~ Tφ,(zf) v.Tφy(zf) & Sφ2(z')). Thus,
X is the union of the ~T -range of φι and the intersection of the T-range of
φι and the significance range of ψ2- ^ is a peculiar sort of construct from
these ranges. In the above example if the significance range of φ2 is empty
(which can sometimes occur, e.g., as the intersection of two disjoint
significance ranges) then the significance range X is the ~ T-range of φu

i.e., the union of the ~S-range of φ1 and the F-range of φlm Take the
example of the predicate Xf = 2 in formal arithmetic. Its ~ T-range
consists of everything except the number 2.

The purpose in formalising the notion of a significance range, apart
from its tie-up with 3-valued significance logic, is to elucidate the informal
notion of a sort of thing, that is, a class with some homogeneous content. In
this paper, significance ranges are taken as elucidating a sort of thing or
some sorts of thing, whereas atomic significance ranges (to be formally
introduced later) are taken as elucidating a single sort of thing.1

Going back to the ~T-range of Xf = 2, this cannot be a significance
range because of the inhomogeneity of its content, the number 2 being the
same sort of thing as the number 3, say. So not all connectives used to
construct predicates, which can be interpreted in ordinary discourse, can
be used in the formation of significance ranges.

2.3 Significance ranges constructed from other significance ranges The
foregoing argument in the case of D suggests that significance ranges
should be constructed from other significance ranges rather than from
T-ranges, F-ranges, ~T-ranges, and ~.F-ranges. This does seem plau-
sible enough since classes such as the one above consisting of everything
except the number 2 should not be able to influence the construction of
significance ranges. In order to satisfy this property the connectives and
quantifiers must produce predicates whose significance depends only on the
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significance of the atomic formulas in the predicates. For example, the
connective & satisfies the property because S(p & q) = Sp & Sq. In fact,
what is required is for the connectives and quantifiers to be able to be used
to form an ζs-n sublogic\

An s-n sublogic is obtained by grouping together the significant values,
1 and 0, and calling it the value s, while the nonsignificant value n remains
intact. In order to be able to perform this on a connective or quantifier one
must be able to consistently assign the value 5 or n in the 2-valued matrix
of the connective and in the 2-valued description of the quantifier. One can
do this for the connectives ~, &, v, T, S and the restricted and unrestricted
quantifiers A and S as follows:

~ & s r c v s n T S

s s s s n s s s s s s s
n n n n n n s n n s n s

(AX')φ(X') takes the value s if φ(X') takes the value 5 for all X' (restricted
or unrestricted).
(AX')φ(X') takes the value n if φ{X') takes the value n for some X'
(restricted or unrestricted).
(SX')φ(X') takes the value s if φ(X') takes the value s for some X'
(restricted or unrestricted).
(SX')φ(X') takes the value n if φ{X') takes the value n for all X' (restricted
or unrestricted).

However, there is no consistent assignment for D.

D s n

s s s or n
n s s

If p is significant and q is nonsignificant then p D q is significant or
nonsignificant according to whether p is false or p is true, respectively.
This is, in fact, what caused the problem about significance ranges
generated by predicates containing D.

However, consider the connective N defined by the matrix:

N

1 n
0 n
n 1 .

N can be consistently assigned values in an s-n sublogic as follows:

N

s n
n s

where N satisfies the equivalence, SNp = ~Sp. Form the significance range
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X s u c h t h a t (Az')(z'e X = SNφ(z')). By t h e e q u i v a l e n c e , (Δz')(z'eX =

~Sφ(z')). So the significance range of Nφ(z') is the ~S-range of φ(z').
But not every ~S-range is a significance range. Consider the predicate

tXt is prime\ This has a significance range consisting of all natural
numbers. Its ~S-range would consist of all things which are not natural
numbers. This can hardly be said to be a significance range because one
cannot isolate the natural numbers from the other rational numbers or
from the other real numbers so as to form a significance range without the
natural numbers. Such a significance range would not exhaust one sort of
thing or many sorts of things, without containing only a part of such a sort
of thing. Hence the connective N, although it can consistently be assigned
values in an s-n sublogic, cannot be used to form predicates which
generate significance ranges.

2.4 The positίvίty requirement The preceding argument suggests that
the connectives and quantifiers which can be used to form an s-n sublogic
should be positive so that the significance of any predicate constructed
using them depends positively on the significance ranges of the atomic wffs,
i.e., it does not depend on the ~S-ranges of any of the atomic wffs. The
s-n sublogic of such monadic and dyadic connectives is represented by the
following matrices:

Monadic:

(1) I (2) I (3)
s s s s s n
n s n n n n

Dyadic:

(1) s n (2) s n (3) s n

s s s s s s s s s

n s s n s n n n n

(4) s n (5) s n (6) s n

s s n s s n s n n

n s n n n n n n n

I have shown in [l] that ~, &, v, and T, and connectives defined in
terms of them, assuming that the constants 1, 0, and n are obtainable from
the theory of classes and individuals, will not only exhaust all of the above
possibilities for monadic and dyadic connectives but also exhaust all of the
'positive' connectives which can be used to form an s-n sublogic.

If a quantifier, when used over a finite domain, can be replaced by a
"positive" connective which can be used in forming sen s-n sublogic, then
this quantifier can be defined in terms of A and S. Both A and S are
"posit ive" because the significance of the quantified statements, (AX')φ(X')
and (SX')φ(X'), can be determined from the significance of the φ(X')'s.
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The same applies for restricted quantification since (AX')(A(Xf) D φ(X'))
takes the value 5 iff φ(X') takes the value 5 for all X' such that A(Xr), and
(SX')(TnA(Xf) & φ(X')) takes the value s iff φ(X') takes the value s for
s o m e Γ such that A (X').

2.5 The resulting significance ranges Now that the connectives ~, &, v,
and T and the quantifiers A and S (restricted and unrestricted) have been
characterised, let us see what significance ranges result from predicates
constructed using them.

Since S~p = Sp, the significance range of ~φ(z') is the same as that of
φ(z'). So no new significance ranges can be introduced by using ~. Since
STp is valid, the significance range of Tφ(z') is the universal class of all
sets and individuals. Intuitively, there should be a significance range of all
classes and individuals determined by using a predicate such as 'X' is a
member of the null class (or any particular class)'. One of the drawbacks
of the present theory is that one can only form classes of sets and
individuals and not classes of classes and individuals, in general. Accept-
ing this drawback, the significance range of all sets and individuals,
obtained above, is the closest one can get to the desired significance range
of all classes and individuals. The predicate φ(zf) can also be a.constant,
taking the value 1, 0, or n. If it takes the value 1 or 0 then its significance
range is the same as for Tφ(z'), as above. If it takes the value n then its
significance range is empty. This is the same as would be produced by the
intersection of two disjoint significance ranges, which will be considered
next. Since S(p & q) = Sp & Sq, the significance range of φι(zf) & φ2(zr) is
the intersection of the significance ranges of φι(zf) and φ2{zr) If these two
significance ranges exhaust some sorts of things then their intersection
exhausts the common sorts of things, if it consists of anything at all.1 For
example, the predicate (xf is blue and hard (physically firm)' has a
significance range consisting of all material objects, which is the intersec-
tion of the significance ranges of all extended things and all material
objects, these two significance ranges being determined by the predicates,
ixf is blue' and (x' is hard (physically firm)', respectively. Consider also
the predicate ixr is blue and is a holiday'. Its significance range is empty
because the significance ranges of ixr is blue' and ζx' is a holiday' are
disjoint. However, this empty significance range is quite all right because
it is determined by the predicate ζx' is blue and is a holiday' and because in
establishing the notion of significance range it is awkward to try to avoid
including it.

Since S(p\t q) = Sp vSq, the significance range of φι(z') v φ2(zf) is the
union of the significance ranges of φι(z') and φ2(zr). If these two signifi-
cance ranges exhaust some sorts of things then their union exhausts these
sorts of things.1 For example, the predicate ζxr is blue or is a holiday' has
a significance range consisting of all extended things and all days, which is
the union of the significance range of all extended things, determined by the
predicate 'xf is blue', and the significance range of all days, determined by
the predicate 'xr is a holiday'.
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Since S(Ax')Φ(x'> zf) = (Ax')Sφ(x', zr), the significance range of
(Ax')φ(x', z') is the intersection of the significance ranges of φ(x', z'), for
a l lx ' . The significance range of (Ax')φ(x', zf) would then exhaust all the
common sorts of things present in all of the significance ranges of the
φ(xf, z'Ys.1 For example, the predicate (x' is similar to everything' or
{Ay'){xf is similar to yf) has an empty significance range because it is the
intersection of many disjoint significance ranges of the predicates txf is
similar to y", for all y'. However the predicate ixt likes everything' has a
significance range consisting of all animals because it is the intersection of
identical significance ranges of the predicates <x' likes y", for all y'.

Since S(Sx')φ(xr, z') = (Sx')Sφ(x', zr), the s i g n i f i c a n c e range of

(Sx')φ(x', zr) is the union of the significance ranges of φ(x', z'), for al l#' .
Γhe significance range of (Sx')φ(x', z') would then exhaust all the sorts of
things present in at least one of the significance ranges of the φ(xr, z'Ys.1

For example, the predicate *x' is similar to something' has a universal
significance range because it is the union of the significance ranges of the
predicates, ixt is similar to y", for all y', and there is always something
which is similar or not similar to x'. The predicate *x' likes something'
has a significance range consisting of all animals because it is the union of
identical significance ranges of the predicates, ixt likes y", for all y1.

The significance ranges resulting from the use of restricted quantifi-
cation are restricted unions and intersections of significance ranges,
determined in a similar way to those obtained from using unrestricted
quantification. So, the connectives ~, &, v, and T and the quantifiers, A and
S (restricted and unrestricted) are satisfactory for the purpose of deter-
mining significance ranges. The predicates constructed using them can be
interpreted in ordinary discourse. Because they are "positive" connec-
tives which can be used to form ans-w sublogic, the significance ranges of
predicates formed using them depend only on the significance ranges of
atomic predicates (and on the universal significance range). Hence, instead
of significance range theory being just a theory of s-ranges of classes,
according to the definition in the introduction, significance range theory is
an independent subtheory of the theory of classes. That is, significance
ranges do not depend on T-ranges, F-ranges, ~T-ranges, ~F-ranges, or
even ~S-ranges. Significance ranges have their own characterisation as
being classes whose members exhaust one sort of thing or exhaust some
sorts of things, assuming that these classes are classes of 1-tuples.
Significance ranges of (ordered) n-tuples derive their character from the
significance ranges of 1-tuples. Here, the empty and universal significance
ranges must be included as well. Classes, on the other hand, can be made
up of arbitrary members, where there is no necessity to exhaust a sort of
thing just because one of that sort is a member. The formal definition of
significance range is as follows:

The unique class X, such that (Az'^z'eX = (S#ί, . . ., x'm){T{z' =
(x[, . . ., #£)) & Sφ(xl, . . ., x'm, Y[, - - , Yή))), where φ is constructed using
only the connectives ~, &, v, and T and only the quantifiers A and S
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(restricted and unrestricted) and where quantification in φ is over sets and
individuals only, is the significance range of φ(x[, . . ., x'm, Ύ[, . . ., Ύή).
(The conditions on x[, . . ., x'm,X are as in Section 1.)

2.6 Reduction of the connectives to {&, v}

Theorem 1 If X is the significance range of φ(x[, . . ., xή), constructed
as above, then there is a predicate φf(x[, . . ., x'm), constructed using only
the connectives & and v and only the quantifiers A and S {restricted and
unrestricted), such that X is the significance range of φr(x[, . ., xr

m)

Proof: We first need to prove a corollary of Theorem 1, that is, for the φ
and φ' of the theorem, Sφ = Sφ'. Since φ and φf both have the significance
range X,

(WHz'e X = (S*ί, . . ., xί)(T(z' = (x'l9 . . ., *£» & Sφ(x[, . . ., x'm)))

and

(Aizr)(z'eX = (S*ί, . . .,x'm)(T{z' = (x[, . . ., x'm)) & Sφ'(x[, . . ., #;)))•

Hence,

(As')((S*{, . . ., xrm)(T{z' = <κ£, . . ., *£» & Sφ(xί, . ., x'm))

Ξ (s^ί, . . ., χί)(τ(z' = < ί̂, . . ., ^ » & sφ'Uί, . . ., *;))).

Hence, put >ε' = (y[, . . ., 3;̂ ) and, since

(s* ί , . . .,*;)(r«3>£, . . .,yi> = < ί̂, , ^ »
&Sφ(^ί, . . ., xί)) = Sφ(yί, . . . ,y i ) ,

SΦiyί, . . .,yί,)= s*'(yί, . , ? ; ) .

The proof of Theorem 1 is by induction on the number of connectives
and quantifiers used in the construction of φ.

1. It is clear in the case of atomic wffs.

2. Let φ be ~ψ. By the induction hypothesis, there is a ψ', constructed
using only &, v, A, and S, such that Sψ = Sψf. Since Sφ = Sψ, Sφ = Sψ'. Let
φ' be ψ', which is constructed in the required way.

3. Let φ be ψ1 & ψ2- By the induction hypothesis, there are predicates
ψ[ and Ψ2? constructed using only &, v, A, and S, such that Sψι = Sψ[ and
Sψ2 = Sψ£. Since Sφ = SψL & Sψ2, Sφ = Sψf & Sψ£, and Sφ = S(ψί & ψ^). Let
φ' be ψ[ & 2̂? which is constructed in the required way.

4. Let φ be ψιvψ2- By the induction hypothesis, there are predicates
ψ[ and ψ!>, constructed using only &, v, A, and S, such that S1//1 = Sψ[ and
Sψ2=Sψ!>. Since Sφ z-Sψ^Sψz, Sφ = SψlvSψϊ and Sφ = S(ψJvψJ). Let φ; be
ι//(v 1//2, which is constructed in the required way.

5. Let φ be Tψ. Since Sφ = STψ, Sφ is true and so φf can be a conjunc-
tion of any significant atomic wffs of the class theory so that the free
variables are the same as those of φ.
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6. Let φ be (Ax')ψ(x')- By the induction hypothesis, there is a
predicate ψf(xf), constructed using only &, v, A, and S, such that
Sψ(x') = Sψ'(x'). Since Sφ = (Ax')Sψ(x'), Sφ = (Ax')Sψ'(x') and Sφ =
S(Ax')ψ'(xf). Let φf be (Ax')ψ'(x'), which is constructed in the required
way.

7. Let φ be (Sx')ψ(x'). By the induction hypothesis, there is a
predicate ψ'(x'), constructed using only &, v, A, and S, such that Sψ(x') =
Sψ'(x'). Since Sφ = (Sx')Sψ(x'), Sφ = (S*')Sι//(*') and Sφ = S(Sx')ψ'(x'). Let
φf be ( S Λ Γ ' ) ^ ' ^ ' ) ? which is constructed in the required way.

8. Let φ be {Ax')(A(x') ^ ψ(x')). By the induction hypothesis, there is
a predicate ψ'(x'), constructed using only &, v, A, and S, such that Sψ(x') =
SΨ'(AΓ'). Since Sφ = (Ax')(A(xf) D Sψ(*')), Sφ = {Ax'){A{xr) D Sψ'(x')) and
Sφ = S(Axf)(A(xf) D ψ'(*'))- Let φ' be (A*')(A(*') D ψ'(#')), which is con-
structed in the required way.

9. Let φ be (Sx')(TnA(xr) & ψ(x')). By the induction hypothesis, there
is a predicate I//(ΛΓ'), constructed using only &, v, A, and S, such that
Sψ(x') = Sψ'(x'). Since Sφ = (S^'X^VU*') & Sψ(x')), Sφ = (Sx')(TnA(xf) &
Sψ'(x')) and S0 = S(S#')( TWA(ΛΓ') & ψ'(x')). Let φ' be ( S ^ O ί ^ ^ ί ^ O & *//'(*')),
which is constructed in the required way.

This theorem shows that, for significance ranges consisting of
1-tuples, once one has a set of significance ranges obtained from atomic
predicates, then by forming all the unions and intersections of these
ranges, one can obtain all the significance ranges of predicates constructed
from these atomic predicates. In the case of the relations o and e, the
following significance ranges are obtained:

1. The significance range of o is the class X such that (Az')(z'e X =
(Sx')(Sy')(T(zf = (xr, y')) & S(x'oy'))). Since S(x'oy') = I(x') & I(y'), X is

the class of all ordered pairs of individuals [2]. By taking either xf or yf

as constant, the significance range of 1-tuples resulting from this will
consist of all individuals, i.e., it will be the set /.

2. The significance range of e is the class X such that (Az')iz'e X =
(Sx')(Sy')(T(zf = (xf, y')) & S(x'ey'))). X i s the c l a s s of all o r d e r e d p a i r s ,

(xf, y'), such that xf e V (the class of all sets and individuals) and y'e T (the
class of all sets). If xf is taken as a constant then the significance range
of 1-tuples resulting from this will be the class of all sets, T. If y' is taken
as a constant then the significance range of 1-tuples resulting from this
will be the class of all sets and individuals, V.

If one considers the atomic predicate x'ek0, for some particular
individual k0, then its significance range is the null class, <jb. Thus the
atomic predicates formed using o and e yield the four significance ranges
consisting of 1-tuples, φ, /, f, and V. Notice here the unusual situation
where one significance range is a difference of two others, i.e., T = V - I
or/ = V - T. This is brought about by the rather technical use of the word
"overlaps" where it is applied to all individuals.

Section 5 of this paper deals with more complicated relations.
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3 Atomic significance ranges

3.1 Definition of an atomic significance range I want to define the notion
of atomic significance range so that, if it consists of 1-tuples, it is
characterised as a class whose members exhaust just one sort of thing. It
is clear that the union of at least two mutually disjoint significance ranges
cannot be an atomic significance range. So, let us define an atomic
significance range as a nonempty significance range which cannot be
expressed as the union of at least two mutually disjoint nonempty signifi-
cance ranges.2

3.2 Problem of determining whether a significance range is atomic
In order to find out whether a given significance range is atomic it is
necessary to know all the significance ranges which are subclasses of it.
Hence it depends on the different predicates in a language as to whether a
significance range is atomic or not. With some technical languages, where
all the predicates are well-defined, it is an easy task to determine which
are the atomic significance ranges. For example, in the theory of classes
and individuals of [2], if no other predicates are added to the original ones,
e and o, then the atomic significance ranges, consisting of 1-tuples, are the
set of all individuals, /, and the class of all sets, T.

However, if one takes into account the predicates of ordinary dis-
course, one is not always sure of a significance range being atomic. For
example, whether the significance range of material objects is atomic or
not depends on whether there are significance ranges of animate or inani-
mate objects, say, or whether there are significance ranges of certain types
of animate objects which exhaust all of the animate objects and there are
significance ranges of certain types of inanimate objects which exhaust all
of the inanimate objects. So it depends on the types of predicates one has
in the language.

3.3 Relation between atomic predicates and atomic significance ranges
One would suspect that there is some connection between atomic signifi-
cance ranges and atomic predicates. However, there are atomic predicates
yielding nonatomic significance ranges. For example, the predicate "owns
a car" 3 has a significance range consisting of people and companies
(including the state). This occurs because "owns" is a legal term and can
only legally apply to people and companies. It is clear that people form a
significance range because of predicates like "works in the l ibrary". Also
companies form a significance range because of predicates like "merged
with Consolidated".

There are compound predicates yielding what seem to be atomic
significance ranges. For example, "x is blue or is hard" has a signifi-
cance range consisting of all extended things, which is obtained by forming
the union of the significance ranges of extended things and of material
objects. This significance range seems to be atomic because there seems
to be no predicate with all nonmaterial extended things as a significance
range. Another example of a compound predicate with what seems to be an
atomic significance range is " is prime and divisible by 2" , with a signifi-
cance range of natural numbers.
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However, I think that given an atomic significance range there is an
atomic predicate with this significance range. If an atomic significance
range consists of just one sort of thing then, if it is distinguished as a
significance range at all by means of predicates, there should be some
atomic predicate which applies to things of this sort. The example given
above, "is blue or is hard", bears this out as "is blue" has the same
significance range as "is blue or is hard".

4 Axίomatίsation of significance range theory I wish to add to the
3-valued theory of classes and individuals, definitions and axioms dealing
with significance ranges. The predicate "x is a significance range" cannot
be defined using the previous definition because quantification over predi-
cates would be required and I wish to develop the theory as a first-order
one. Quantification over significance ranges is essential and, to ensure
this, I will introduce the primitive predicate R to read "is a significance
range". Then add the following definitions:

(AF)φ(F) =df (AX')(R(X') D φ(X'))
(SF)φ(F) =df (SX')(TnR(X') & φ(A")) .

Let F, G, H, J, . . . be such variables ranging over significance ranges.

(Af)φ(f) =df (AX')(R(Xf) & M(X') =) φ(X'))
(Sf)φ(f) =df (SX')(Tn(R(Xf) 8z M(X')) & φ(X')) .

Let/, g, h, j, . . . be such variables ranging over set significance ranges.

A t ( F ) =df F Φ p & ~(SG)(SH)(G Φ f i & H Φ < β & F = GUH&GnH = <β).

The class Axiom B can be extended so that φ can be constructed using
the predicate constant R as well as the relation constants, o and e . This
then allows the formation of the class of all set significance ranges as the
unique class X such that (Az')(z'e X = TR(z')). The informal definition of
atomic significance range is equivalent to the formal definition because one
can always form the union of all but one of the disjoint significance ranges
in the event of there being more than two disjoint significance ranges.

Axioms

1. SR(X) & ~SR(k).

2. dSF)(Az')(z'e F = (Sx[, . . ., x'm)(T{z' = (x[, . . ., *i» & Sφ(x'l9 . . ., x'M,
Y[, . . ., Ym))), where φ is constructed using only the connectives ~, &, v,
and T and only the quantifiers A and S {restricted and unrestricted), where
x[, . . .yX.m we all the free variables of φ, and where φ contains quantifica-
tion over sets and individuals only.

3. ( A / ) ( / e l D . / c F w & ~/c7 w + 1 )=> (Sg)(Az')(z'eg = (Af)ifeX => z' e/)).

4. ( A / ) ( / e l D . / c f & ~fcVm+1) D <SG)(A*')(*'eG s (SfHfeX&z'ef)).

5. For i = 1, . . ,,k, let Pi denote an (ordered) ni-tuple where each of its
elements are one of x[, . . ., x'm, with no repetitions. Each of x[, . . ., xf

m

must appear in at least one of Pl9 . . ., Pk> (Fί c VH & ~FL c FW l + 1) & . . . &
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(Fk c Vnk & ~Fk c Vnk+1) D (SG)(A*')U'e G ^ (S*ί, . . ., x'J(T(z' =
<*{, . . ., xί)) & Λ e FJL & . . . & Pfee Fk)).

6. Same conditions as for Axiom 5.

(F, C F H - ^ C y W l + 1 ) &. . . & (Fk c vnk & ~ ^ c vnk+1) D (SG)(A* f)

(* 'e G Ξ ( S * { , •> x!n)(T(z! = (x[, . . ., xln)) & ( Λ ^ i v . . . v P έ c i^))) .

7a. Let xf be not in the first position of the ordered (m + \)-tuple or let xr

be in the first position and (Ax') be unrestricted or let xr be in the first
position and (Ax') be restricted using the predicate, x' = constant, for some
constant.

(SG)(Az')(z'e G = (S*ί, . . ., x'm)(T(z> = (x{, . . ., *;»
& (Δx')U(x') ^ <λτί? . . ., x\ . . ., xί)eF))).

7b. Let the condition on 7(a) be not satisfied.

F c Vm+ι & ~ F c Vm+2 D (SG)(Az')(z'e G = (Sx[, . . ., *;)
(T(zf = (χ'l9 . . ., #;» & (Ax')U(x') D < [̂, . . ., ΛΓ', . . ., xί)e F))).

8a. Same condition as for 7(a) except that (Axr) is replaced by (Sxr). The
axiom is as for 7(a) with '(Ajv')(i4(Ar')=>' replaced by ((Sx')(TnιA(x')&'.

8b. Same condition as for 7(b) except that (Axr) is replaced by (Sxf). The
axiom is as for 7(b) w#/z '(AΛ OWfΛ:')̂ ' replaced by '(Sxr)(TnA(xf)&,\

Commentary on the axioms Axiom 1 determines the significance range
of the predicate R. Axiom 2 corresponds to the informal definition of a
significance range, given in Section 2. However, because of the lack of
quantification over predicates, the axiom cannot ensure that there is such a
wff φ for every significance range F. For this reason, one cannot in
general define significance ranges in terms of other significance ranges,
using Axiom 2. Hence there is a need for Axioms 3 to 8.

The condition, (A/)(/eX=>./ c Vm & - / c Vm+L), on Axioms 3 and 4
means that all the members of X consist of m-tuples, that is, they do not
entirely consist of (m + &)-tuples, for some k ^ l . 4 If a significance range
consists of m-tuples, in this sense, then it can only be generated by
predicates of the form φ(x[, . . ., xr

m), where x[, . . ., x'm are all the free
variables of φ. In general, the purpose of the above condition is to ensure
that, given that a significance range F is being defined in terms of some
other significance ranges, if these significance ranges are replaced by
their generating predicates using Axiom 2, then the significance range F is
then generated by a predicate in the manner of Axiom 2.5 However, in
Axioms 3 and 4 where the intersection and union, respectively, of a class X
of significance ranges are being defined as significance ranges, this is only
achieved for X finite. In these axioms, the idea is extended to apply to an
infinite number of significance ranges, thus allowing significance ranges to
be formed that are not generated by predicates as in Axiom 2. The
informal definition of a significance range is extended so that all
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intersections and unions of significance ranges of m-tuples are significance

ranges and not just those which can be generated by the predicates φ of the

given form. Note that, in Axiom 4, if X is a set then G is a set.

Axioms 5 and 6 are generalisations of the cases of forming finite

intersections and finite unions, respectively, of significance ranges.

Axiom 5 also deals with the case of forming Cartesian products of

significance ranges.

Axioms 7 and 8 use restricted quantification in place of the conjunc-

tions and disjunctions of Axioms 5 and 6, respectively. By putting xre V for

A(x'), the restricted quantification can be made unrestricted. The condi-

tions on Axioms 7 and 8 are such as to allow G to have a generating

predicate if F has one. In Axiom 7, consider the case of F consisting of

(m + &)-tuples, for k > 1. If xr is not in the first position, then F has a

generating predicate of the form φ(y[, . . ., y^, xr

2, . . ., x', . , xr

m) and G

has a generating predicate (Ax')(A(xf) D φ(y[, . . ., y'k, x
r

2, . . ., x', . . ., xή)).

If xr is in the first position, then F has a generating predicate of the form

φiyίi - •> yL xu - •> xm)' K then (Axr) is unrestricted then G has a

generating predicate (Ay[, . . ., y0φ(y[, . . ., y'k9 x[, . . ., #£). If (Ax') is

restricted by x' = constant, where the constant must be some k-tuple

(yί> •> 3̂ )> t h e n G h a s a generating predicate (Ay[, . . ., 3>ί)((:yί = Vi) &

• & (3>ί = 3̂ ) D Φ(3>ί> , 3>j(, *ί> •> x'm))' In Axiom 8, the generating

predicates for G are constructed similarly.

Theorem 2 Tjf Fly . . .> Fk consist of m-tuples, then Fι Π . . . Π Fk is a

significance range.

Proof: In Axiom 5, put «t = m, for i = 1, . . ., &. Hence (SG)(A^')(^/e G =

(Sxί, . . ., O ( T ( ^ ' = U{, . . ., xQ) & <y{, . . ., *;> e f\ & . . . & <*ί, . . .,

xίn)eFk)) and (^ί, . . ., < ) e G = (ΛΓJ, . . . ^ e ^ f c . . . & <*J, . . .9x^)eFk.

G, Fί9 . . ., Fk are all contained in Vm and G = F1 Π . . . Π F Λ .

Note: Fj_ Π . . . ίlF^ may consist of (m + fe)-tuples for any k ^ 0. Also, if

one of the F* 's is a set, then F L Π . . . Π ^ is a set.

Theorem 3 If Fu . . ., Fk consist of m-tuples, then FιΌ . . . U Fk is a

significance range consisting of m-tuples.

Proof: In Axiom 6, put m = m, for i = 1, . . ., k. Hence (SG)(Az')(z'e G =

(SX[, ., X'm)(T(z' = (X[, . . ., Xin)) & «^{, . . ., *£>€ JF> . . .V<ΛΓ{, . . ., X'm)<i

Fk))) and (x(, . . . , < > e G = (x[, . . ., ^ > e F,v . . . v (ΛΓJ, . . ., ^ ) e F A .

G, Fl9 . . ., F^ a r e all contained in Vm and G = F L U . . . U F*,. Let

~F> c 7 * + 1 , for some z = 1, . . ., m. Let (yj, . . ., yβe F{ & (y[, ., y£>4

Vm+L. Hence <y{, . . ., y£e G and ~ G c F w + 1 .

Note: If all of the F / s a r e se t s , then Fι U . . . U Fk is a se t .

Theorem 4 If F Q Vm, then i)L(F), . . ., 3bm{F) are all significance

ranges.

Proof: By putting ^ e V for A(#') in Axiom 8, {Az')(zr e GL Ξ (SAΓ{, . . .,

O ί ^ ^ = <pc[, ., *;.!» & (S<)((^!, . . , 4 i ^ i ) ^ ) ) ) Hence G, c

Fm" x and (x{, . . ., ̂ ^ e G, = (SΛΓ;)«ΛΓ{, . . .,x^)eF). Using Axiom 8 again,
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( A s ' ) ( * ' e G 2 = (Sx[, . . . , * i - 2 ) ( T ( s ' = <*ί, . . .,x^2))8z(Sx^)((x[,. . ., xj>.2,
xί-Je d ) ) ) . Hence G2 c F " " 2 and (x[, . . ., x^2)eG2 = (Sx .Jίfrί, . . ., ^ O e
Gx). Substituting for GL, (x'l9 . . ., *£_ 2 ) e G2 Ξ (S*4-i)(S*i)«*ί, . . ., Ari>e F) .
Let this process continue until we form Gm.l9 such that GOT-i c V1 and
W ) e G , . l Ξ (SΛΓίXSΛΓ̂ ) . . . (Sx'm)((x[, . . .,xln)eF). Hence GW.L = A J F ) and
JZ>i(F) is a significance range. Similarly, by omitting the appropriate
S-quantifier, Jb2(F), . . ., 3bm(F) are all significance ranges.
Note: If F is a set, then JB^F), . . ., 3>m(F) are all sets. If F consists of
m-tuples then 3>Y(F) consists of 1-tuples.

Theorem 5 If Flf . . ., Fm all consist of l-tuples, then, F L x . . . x Fm is
a significance range consisting of m-tuples.

Proof: In Axiom 5, put k = m and m = 1 for all i = 1, . . ., m. Then,
(Az'Hz'eG = (S*{, . . .,xί)(T(z' = (x[, . . ., x^)) 8zx[e FL 8z . . . & * £ e F J ) .
Hence G c Vm and G = Fί x . . . x Fm. Let G c Vm+1. Then all members of
G are of the form ((y[, yί), yί, ., yiι+ι) andF L c V2. By the condition of
the theorem, ~F, c V2 and hence ~G c 7WI+1.

Theorem 6 If XLx . . .x Xm is a significance range, then Xl9 . . ., Xm

are all significance ranges.

Proof: Since Xι x . . . x l f f l c Vm, by Theorem 4, Z L , . . .,Xm are signifi-
cance ranges because X{ - 3b\i{Xγ x . . . x l j , for z= 1, . . ., m.

Theorem 7 If Fl9 . . ., Fm are atomic significance ranges consisting of
l-tuples, then Fγ x . . . x Fm is an atomic significance range {consisting of
m-tuples).

Proof: The proof is by induction on the number m\

(i) The theorem holds in the case of m = 1.

(ii) Assume that the theorem holds for Cartesian products of m atomic
significance ranges and consider Fι x . . . x Fm+1. By Theorem 5, Fi x
. . . x Fm+ι is a significance range. Let JF\ x . . . x Fm+1 be nonatomic and
let Fj. x . . . x Fm+ι = Gi U G2, where GL Φ fi, G2 φ fi, and GYC\ G2 = fi. The
domains Ib^Gj and «2>ί (G2) are significance ranges, for all i - 1, . . .,
m + 1, because of Theorem 4. If JfyiGj Π Λ, (G2) = Jδ, for some i = 1, . . .,
m + 1, then, since Λ/ίGJ U Λtf(G2) = F f , ^ / ( G j ̂  0 and 2>* (G2) Φp, F{

would be nonatomic, which contradicts the condition of the theorem. Hence
ΛiίGi) Π 3>i(G2) Φ fi, for all i = 1, . . ., m + 1.

Let ym+1e Λ Λ + ^ G O Πi) m + 1 (G 2 ) . Then, for some y[, . . ., y'm, (y{, . . .,
y'm, %+ι)e G, and, for some z[, . . ., z'm, (z[, . . ., z'my %+ι)e G 2 . Using Axiom
8, form the significance range Hι such that (y[, . . ., yίn)^ Hi = ( S ^ + i )
(Tn(yί+ι = yi+i) & <3>ί, ., y'm, 3>;+i>e G J and ί̂ ! c F m . Similar ly, form the
significance range H2 such that (z[, . . ., z'm)eH2 = ( S > s ; + 1 ) ( r w ( ^ + 1 = yi + 1 ) &
<*{, . . ., ^ί,, ̂ + 1 ) e G2) and ίΓ2 c Vm. HγΦfi and i/2 Φ fi. HίΌH2 = F,x
. . . xFm. If <y{, .,yίι)eHιf)H2 then <y{, . . ., y'm, y^+ι)e G x Π G 2 . Since
Gi Π G2 = Jδ then HL Π H2 = fi. Hence F : x . . . x Fm is nonatomic. This
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contradicts the induction hypothesis. Hence Fι x . . . x Fm+ι is atomic and
the theorem is proved.

Theorem 8 If Xι x . . . x Xm is an atomic significance range and Xi (ΛV2 -
P for all i - 1, . . ., m, then Xl9 . . ., Xm are all atomic significance ranges.

Proof: By Theorem 6, Xl9 . . ., Xm are all significance ranges. Let X, , for
some i = 1, . . ., m, be nonatomic. Then Xi = Gι U G2, where Gx Φ p, G2 Φ p
and d n G 2 = p. Since ~G X c F 2 and ~ G 2 c 7 2, by Theorem 5, Xι x . . . x
X,-! x Gi x Xi+1 x . . . x Xm and Xx x . . . x X,-^ x G2 x Xi+ι x . . . x Xm are
both significance ranges. Call them Hι and H2, respectively. HL Φ p,
H2 Φ p, Hi Π H2 = p and Eγ U H2 = X : x . . . x Xm. Hence Xx x . . . x Xm is
nonatomic, which is a contradiction. Hence Xu . . ., Xm are all atomic.

Theorem 9 For each member zf of a given set significance range fλ

such that fL c Vm and fι Π Vm+1 = jί, ί/ίβrβ zs an atomic set significance
range which is contained in all significance ranges with zf as a member.

Proof: Form the class Y such that (Ax')(x'e Y = (Sy)(T(xf = y) &R(y) &
z'ey & y c / J ) . Using Axiom 3, form the significance range hγ which is the
intersection of all the significance ranges which are members of Y.
hγΦp because fLe Y and zr e hL. (Ag)(ge Y D hι eg). If G is any signifi-
cance range such that z'e G, then G Γ\fLe Y, hι c G ΠΛ, and hL c G. Hence
hι is contained in all significance ranges with z1 as a member. Let hι be
n o n a t o m i c a n d hL =gL \Jg2, w h e r e gLΦ fi, g2 Φ p a n d gι Πg2 = p . z'e gλ o r
z'e g2 but not both. Let z'e g^ Since gι cfl9 g^e Y and K Q gx. But £\ c hu

which is a contradiction. Hence hγ is atomic and satisfies the theorem.

Theorem 10 Given a nonempty class X of atomic significance rangesr

consisting of m-tuples, so that the union F of these atomic significance
ranges cannot be expressed as a disjoint union of two unions of atomic
significance ranges from X then the union F is an atomic significance
range.

Proof: By Axiom 4, F is a significance range. Let F be nonatomic and
F = Gi U G2, where GγΦp, G2Φ p and G^n G2 = p. There is at least one
member h of X such that some member of h is a member of GL and some
member of h is a member of G2. This is so, since if all members / of X
are such that / c Gi or / c G2 then the union of t h e / ' s such that f Q Gγ and
the union of the /'s such that f Q G2 would be disjoint, contradicting the
condition on X. Consider the significance ranges h Π Gγ and h 0 G2.
h Π Gx Φ p, h Π G2Φp, (h Π Gx) Π (h Π G2) = p and (k Π GJ U (fc Π G2) = h.
Hence h is nonatomic, contradicting the condition on X. Hence F is atomic.

Corollary If f1 and f2 are two atomic significance ranges, consisting of
m-tuples, such that fx Π/2 Φ p thenfι Uf2is atomic.

Proof: In Theorem 10, let X = {Λ, /2}.

Theorem 11 Each nonempty nonatomic set significance range f, such that
f c Vm and f Π vmJrl = jδ, is a union of mutually disjoint atomic significance
ranges.
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Proof: By Theorem 9, each member z' of / is a member of an atomic set
significance range which is contained in all significance ranges with z' as a
member. Form the class Y such that

(Ax') (x'e Y= (Sg)(T(x' = 'g) &At(g)
& ( S * ' ) ( * ' e / & z'eg& (Ah)(z'e h D g c ft)))).

N o t e t h a t (Ah)(z'e h Ό g Q h) = {AH)(z'e H ~D g c H) b e c a u s e , if z'e H t h e n
£ ' e # Π/ and hence g c H (Ί/ and g c H. By the proof of Theorem 9 all the
members of Y consist of m-tuples. Using Axiom 4, form the union h of all
the atomic significance ranges that are members of Y. Note that, since
there is a unique atomic significance range belonging to Y for every
member z' of /, Y is a set by the Axiom of Replacement. Hence the union h
is a set.

/ c h. Let h - f Φ ft and let x'e h - f. Then #'e gΊ, where g^ is some
member of Y. Hence, there is some z[ such that z[ef & z[e gL&, (A/z)(-ε{e
/z z> £ L c /z). Consider the significance range, ^ Π / . Then z[e gγ Of and
«§Ί Π / c gv Since z[e gι Π f i) gγQ gλ Γ\ f, there is a contradiction. Hence
f = h. T h e n / i s a union of atomic significance ranges. L e t / b e the disjoint
union of unions of these atomic significance ranges, that i s , / = (J /&, where

kel

I is an index set, and fk Π // = fi for k Φ I and k, lei. Let / have one
member only. Then / cannot be expressed as a disjoint union of two unions
of its atomic significance ranges. By Theorem 10, / i s anatomic signifi-
cance range, contradicting the condition on /. Hence / has at least two
members. Each fk cannot be expressed as a disjoint union of two unions of
its atomic significance ranges. By Theorem 10, each A is an atomic
significance range and hence / is a union of mutually disjoint atomic
significance ranges.

5 Significance ranges of homogeneous and heterogeneous relations

5.1 Significance ranges of 2-place homogeneous relations Before treat-
ing n-place relations in general, I wish to consider the simpler case of
2-place relations. Goddard, in [3], pp. 155-162, distinguishes two types of
relations: homogeneous and heterogeneous. He defines the significant
domain, call it DR, of the relation R such that (Az')(z'e DR = S(Sx')(z'Rx')).
He also defines the significant converse domain, call it CR, of the relation
R such that (Az')(z'e CR = S(Sx')(x'Rz')). He defines R as homogeneous if
x'Ry' is significant for an arbitrary choice of x' from D# and y' from C#,
i.e., S(x'Ry') = x'e D,R &y'e CR, and S(x'Ry') = S(Sy')(x'RyΊ & S(Sx')(x'Ry')-

If F is the significance range of R, i.e.,

(Az')(z'eF = (Sx')(Sy')(T(zf = <*', y')) & S(x'Ry'))),

then {xr,y')e F = S(x'Ry'). The domain of F, Λ(F), is defined by:
(Ax')(x'eΛ(F) = (Sy')((x',y')eF)). Hence x'e 2(F) = (Sy')S(x'Ry') and
x'e 3>(F) = S(Sy')(x'Ryf). Then J2>(F) = DR. The range of F, #{F), is de-
fined by: (Ayf)(y'e Jξ(F) = (Sx')i(x', y') e F)). Hence y'e Λ{F) =
(Sx')S(x'Ry') andy'e Λ{F) = S(Sx')(x'Ry'). Then #{F) = CR.
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By the homogeneity of R, (xf, y')e F = S(Sy')(x'Ry') & S(Sx')(x'Ryr) and
(xr, yf)e F = xfe 3(F) 8z y'e Jξ(F). Hence F = 2>(F) x <K(F). An alternative
definition of homogeneity is that a relation R is homogeneous iff its
significance range F satisfies the identity, F = Jb(F) x <R(F).

5.2 Significance ranges of n-place homogeneous relations The above
definition can be generalised to n-place relations: an n-place relation R is
homogeneous iff its significance range F can be expressed as the Cartesian
product of its domains, i.e., F = ΛX(F) x . . . x 2)n(F). Hence, in this case,
SR(x[, . . ., x'n) Ξ x'e Λt(F) & . . . & *ίe A«(F).

Let us call a nonempty significance range F, consisting of n-tuples,
homogeneous iff F = Jb^F) x . . . x 3)n{F). In this case, by Theorem 4 or 6,
Jb^F), . . ., 3bn{F) are all significance ranges, but one can only ensure that
Jbv(F) consists of 1-tuples. By Theorem 8, if F is atomic and 3>i(F) Π
V2 = ft for all f = 1, . . ., n, then D^F), . . ., £n(F) are all atomic.

Theorem 12 /f / is a nonatomic homogeneous set significance range,
consisting of n-tuples, such that 3>i(f) Π7 2 = ft, for all ί = 1, . . ., n, then f
is a union of mutually disjoint atomic homogeneous significance ranges.

Proof: If 3)j(f) is nonatomic, by Theorem 11, it is a union of mutually
disjoint atomic significance ranges. Since / is nonatomic, by Theorem 7,
not all the «$,•(/)'s are atomic. Consider Cartesian products, ^ x . , . x ^ ,
where, if Jbdf) is atomic, g{ = JZ>t (/) and where, if £*(/) is nonatomic, g t

is one of the mutually disjoint atomic significance ranges in 3>i(f). There
are at least two such Cartesian products. By Theorem 7, gγ x . . . x gn is
an atomic significance range. Also gi x . . . x gn is homogeneous since
&i(gι x . . . x gn) = £"*•• Form the union X of all such Cartesian products.
Since each member of i>i(/)x . . .x A*(/) is a member of exactly one of
such Cartesian products, / = X and / is a union of mutually disjoint atomic
homogeneous significance ranges.

Theorem 13 (a) If F is an atomic homogeneous significance range,
consisting of n-tuples, such that 2>i(F) Π V2 = p, for all i = 1, . . ., n, then
F is a Cartesian product of atomic significance ranges.
(β) If f is a nonatomic homogeneous set significance range, consisting of
n-tuples, such that Jb,i(f) Π V2 = ft, for all i = 1, . . ., n, then f is a union of
mutually disjoint Cartesian products of atomic significance ranges.

Proof: (a) Since / = 3>i(f) x . . . x Λn(/), by Theorem 8, £,(/), . . ., Λn(/)
are all atomic significance ranges, (β) follows from the proof of Theorem
12, since them's are atomic significance ranges.

5.3 Significance ranges of 2-place heterogeneous relations A 2-place
relation R is heterogeneous iff it is not homogeneous. Let F be the
significance range of a 2-place heterogeneous relation R. Let x^e $(F).
Form the significance range H2 such that (Δy')(y'e H2 = S(xίRyr)). Now
form the significance range Hγ such that {Δx')(xre Hι = (Δy')(S(xόRy') ^
S(x'Ry'))). Let GX(/ = HL x H2. By Axiom 2, Gx^ is a significance range.
Gx^ is a nonempty proper subclass of F and Gx^ = 3>(GX^) x <R(GX£). Hence
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GX(/ is the homogeneous significance range of the relation, (Ay')(S(xoRyf) D
(x'Ry')) &xόRy'. One can also form a similar significance range Gy£ by
choosing y'Q from <R{F). Thus each member x£e Jb(F) determines a
homogeneous significance range G X / C F and also each member y&e #(F)
determines a homogeneous significance range Gy^cF. Given any (XQ, yζ)e F,
<*o> yί)e Gx, and {x'o, y'0)e Gyr. Hence F = U °G,j, where G^ = J&(Gxj) x

Λ(Gχj), and also F = , ^ ( F ) G y £ , where Gy£ = ̂ (Gy^) x dξ(Gy^). Hence the

significance range F of a 2-place heterogeneous relation R is a union of
homogeneous significance ranges.

5.4 Significance ranges of n-place heterogeneous relations An w-place
relation R is heterogeneous iff it is not homogeneous. Call a nonempty
significance range F, consisting of ^-tuples, heterogeneous iff F is not
homogeneous.

Theorem 14 If F is a heterogeneous significance range, consisting of
n-tuples, such that 3>ji(F) ΠV2 = ft, for all i = 1, . . ., n, then F is a union of
homogeneous significance ranges.

Proof: Let x~[e Jb^F). Hence there a r e se t s or individuals x!,, . . .,xή such
that x~'2e £2(F), . . ., Tcίe &n{F) and (x[, . . ., "xfye F. F o r m the significance
range Hn such that (Axί)(xίe Hn = (Sx[, . . ., x^ι){Tn(x[ = x{ & . . . & <- x =
3ζ_L) & (x'l9 . . ., <_1 5 <>e F)). Hence ^ e ^ n and Hn c ΛΠ(F). Given ^ W ) we
now form the significance range En.γ such that

(AxUHxi-i* Hn i = (s^ί, ., <-2)(r w (*; =
ΛΓJ & . . . & ^ - 2 = xU) & ( A ^ ) ( ^ e /fw D <r{, . . .,
xi)eF))).

x ή-it Hn-i, since

{Ax'n){xή<i Hn D <ίί, . . ., < _ 2 , x ^ , ^ ) e F ) .

Also #W_L c JZ)w-i(F). Given Hn and //^^ we can form the significance range
Hn_2 such that

( A < _ 2 ) « _ 2 e jyw_2 = (Sx[, . . ., Λrw '-3)(^(^ί = £ { & . . . & < - 3 = ?»-3) &
(Ax^L)(Ax^)(xUe Hn^ & λ:w'e ^ w D <x(, . . ., x$eF))).

x~ή-2t Hn-2> since

(A^-JW-ie #w_! = (Axβixϊe Hn D <?{, . . ., Jw'.2, ^ . l 7 ^ ) e F)).

Also /ίn_2 c Λw. 2(^) By induction, we can form the significance range//Ί
such that

(Ax[)(x[eH^ (Axί) . . . (Ax'n){xf

2tH2ϊk . . . & x^e Hn z> (x[, . . .,xζ)eF)).

x[e Hl9 since, by the definition of H2,

(Axί)(xίeH2 = (Ax$ . (Ax'n)(x!>eH3 & . . . &*w'e
//w D <̂ {, ^ , . . ., * w ' )eF)).

Also Hι c 2)γ{F). Hence nonempty significance ranges Hί9 . . ., Hn can be
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formed so that (Ax[, . . ., xή)(x[e Hι & . . . 8z xήe Hn^ (x[, . . ., xή)e F), for
each member (x[, . . ., x£) of F.

Let HL x . . . x Hn = G, where G is a significance range by Theorem 5.
Since 3>άG) = #;, for all i = 1, . . ., w, G is a homogeneous significance
range. Since for every member (x[, . . ., jζ) of F, (#{, . . ., 4 ) is a member
of such a homogeneous significance range G, and since all such homoge-
neous significance ranges G are contained in F, F is a union of homoge-
neous significance ranges.

Theorem 15 If F is a heterogeneous significance range, consisting of

n-tuples, such that 2>ι(F) Π V2 = p, for all i = 1, . . ., n, ίften F is a union of

Cartesian products of atomic significance ranges.

Proof: In the proof of Theorem 14, the homogeneous significance ranges G
are such that i>;(G) Π V2 = ft, for all i = 1, . . ., w. Hence by Theorems 13
and 14, the theorem follows.

Theorem 16 If F is an atomic (heterogeneous) significance range, con-
sisting of n-tuples, such that «2>? (F) Π V2 = p, for all i = 1, . . ., n, then
3>i{F) is an atomic significance range, for all i = 1, . . ., n.

Proof: Let 2>i(F) be nonatomic, for some i - 1, . . ., n. Then Jb{(F) -
Gγ U G2 where Gγ φ p, G2 Φ φ and GL Π G2 = $Z). Using Axiom 5, form the
significance range H± such that

(Az')(z'e HL = (Sx[, . . ., x'n)(T{z' = (x[, . . ., xβ) & <#{, . . ., x£> e F &

x}e d ) ) .

Similarly, using G2 instead of GL, form the significance range H2. H^ Φ p,
H2 Φ p, Eγ Π H2 = p and Hv U H2 = F. Hence F is nonatomic, which is a
contradiction. Hence A ^ F ) , . . ., 3>n(F) are all atomic.

5.5 Significance ranges of 2-place stratified heterogeneous relations
By Theorem 14, if F is a heterogeneous significance range, consisting of
2-tuples, such that 3>(F) Π V2 = p and Λ{F) Π V2 = p, then F = , U Gxr,

where Gx/ = Λ(G^) x <R{GX<). If the JZ)(Gx^)'s are such that i>(Gχ/) Π
JZ)(GX{) = {δ or iv(G^) = Λ(Gxj) for each x& Φ x[ and ̂ , x[e Λ(F), then F is a
union of mutually disjoint homogeneous significance ranges. At least two of
the J&(G*j)'s must be distinct, otherwise ^>(GX^) = 3>(F), for a l l ^ e Λ(-F),
and F is homogeneous.

Define F as a stratified heterogeneous significance range, consisting of
2-tuples, if Λ(F) Π 7 2 = 0, </?(F) Π F 2 = p, and either J&(Gxj)n ^ ( G x ί ) = p
or i>(Gx7) = A(GX/), for each ^ ^ χ{ and ^ , ^{e Λ(F), and either Λ(Gxφ
Π ^ ( G x { ) = jδ or ^?(GX/) = Λ(GX{), for each xί ^ ^ ί and ^ , Λ:ίe Λ(F).

Theorem 17 If F is a stratified heterogeneous significance range,
consisting of 2-tuples, then

(a) x'e JXGxj) & y'e Λ(F) - Λ(Gxj) D <JC, y O / F ,

(β) * ' e i ) ( F ) - JZ)(G^) & y'e Λ(G^) D (^', y ' > ^ ,

/ o r βflc/z xj e Λ(-F).
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Proof: Note that D(F) - 3>(GX{) Φ p and Λ(F) - <R(GX>Q) Φ p as otherwise F
would be homogeneous. To prove (a), let y'e <K(GX[) where X(GX') Π
Λ{GX>) = p and x& Φ X[. Let <#', y ' J e F . Then (i ' ,3) ') fG x j for some
x'2e 3>(F). Hence #'e 3>(GX$ and y'e <#(Gχ/). By the definition of stratified
heterogeneity, 3>{GX>) = 2>(GX>) and tf(Gx{) = Λ(G^). Hence tf(GX(;) Π
Λ(GX$ = p. By the construction of Gxi, (Ay')(y'e Λ{Gxj) = (x&, y')e F). By
the construction of JZ>(Gχ/), (A#')(#'e A(GX/) Ξ (A;y')K#£, y')e F D <#', ;y'>e
F)). Since Λ(Gxj) = Λ(GX^), ^ e Λ(G x ί) and (Ay')«^, yθe F D (X&, y')eF).
Hence y'e <R(Gx0 3 / e <R{GX>) and Λ{GX$ c Λ{GX>), which is a contradic-
tion. Hence (x',y')ψF.

Similarly, for (0), if #'e ΛfJF1)- Λ(GX^), thenx'e Λ(GX{), where «2>(G^)n
3>{Gxι) = ̂ ). The proof follows the same line as that for (a).

Corollary If F is a stratified heterogeneous significance range, con-
sisting of 2-tuples, then (jc',y')eF =>. x'e J&(GXc;) = y'e <R{GX>), for all
x£e 3)(F), and hence there is a one-one correspondence between the distinct
3>(Gx^Vs and the distinct H{Gx^s.

Proof: By Theorem 17, (xf, y')e F D. x'e Λ(GX^) 3 / e Λ(Gxj) and (x',y')e
F Ώ.y'e Λ(Gxi) ^x'e J>(Gxi). Hence <*', y*)eF D. x'e 3>{GX&) =y'e Λ(Gxi).

Theorem 18 If f is a stratified heterogeneous significance range, con-
sisting of 2-tuples, then f is a union of mutually disjoint Cartesian products
of atomic significance ranges.

Proof: From the definition, it is clear that/is a union of mutually disjoint
homogeneous significance ranges. From Theorem 13, each homogeneous
significance range is either a Cartesian product of atomic significance
ranges or a union of mutually disjoint Cartesian products of atomic
significance ranges. Hence the theorem follows.

Examples of stratified heterogeneous relations: T h e r e l a t i o n , x' =y'1 i s a
stratified heterogeneous relation because S(x' = y') = (I(x') & I(y')) v
(M(x') & M{y')). (=9 is ambiguous between individual identity and class
identity.

The relation e under Type Theory is a stratified heterogeneous
relation. If F is its significance range, then 3)(F) consists of individuals
(type 0) and classes (of all types) and Jt{F) consists of classes (of all
types). 3>{F) and #(F) are ''stratified'' as follows: Individuals (of type 0)
in J>(F) correspond with classes of type 1 in Λ(F). For all n, classes of
type n in 3>{F) correspond with classes of type n + 1 in <R{F). Each
correspondence is such that an arbitrary choice from the two components
yields significance and if one chooses from noncorresponding classes then
nonsignificance results. The relation e is ambiguous between the relations
en(n = 0, 1, 2, . . .) where Den consists of classes or individuals of type n
and C6n consists of classes of type n + 1.

The relations "is between" and "is next to" are stratified heteroge-
neous relations because they are ambiguous between "is spatially between"
and "is temporally between'' and between "is spatially next to" and "is
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temporally next t o " , respectively. The significant domains and significant
converse domains of the "spat ia l " relations contain only things that occupy
space, places, points, etc., whereas the significant domains and significant
converse domains of the " temporal" relations contain only times, days of
the week, etc.

5.6 Significance ranges of n-place stratified heterogeneous relations
By Theorem 14, if F is a heterogeneous significance range, consisting of
ft-tuples, such that Λ, (F) Π V2 = fi, for all i = 1, . . ., n, then F is a union of
homogeneous significance ranges G, since, for each member (x[, . . ., xή) of
F, such a significance range G can be constructed. Label them as
G(sί?...,*/>. Hence F = ̂ U j χ , ) e , F G ( ( X ί , . . . , 4 > , where G < 4,. . . ,*> ) =i> 1 (G ( * ί , . . . Λ ) )χ

. . .x ^>«(G<,χί,...,*,£>)• Define F as a stratified heterogeneous significance
range, consisting of n-tuples, if, J&, (F) Π F 2 = <p, for a lH = 1, . . ., ft, and
for a l i i = 1, . . ., ft, Λ, (G(*/,...,*{,>) Π £*(G(y l,...,y>>) = 0 or Λ, (G<χ[,...,*£>) =
^•(G<y/,...,y£>.), for each <*{, . . ., < ) * ( yί, . . ., y£) and <xr{, . . ., x£),

(y[, .,y£>e F.

Theorem 19 If f is a stratified heterogeneous significance range, con-
sisting of n-tuples, then f is a union of mutually disjoint Cartesian products
of atomic significance ranges.

Proof: Let (x[, . . ., x£)e G^/,...*^ and (x[, . . ., x£)e G<y{,...,y^>. Hence, for
allz = 1, . . ., n, ̂ /e Λi(G< x { ,...,x^>) andx/e Λ^G^/,. . . ,^)). By the definition
of stratified heterogeneity, i>i(G<*[,...,*^>) = *^ί(G<yί?. >y4)̂  ^ o r a l l z Hence
G<x[,...,x^) = G(y[>...>y^> and the homogeneous significance ranges G are
either equal or disjoint. By using Theorem 13, the theorem follows.

Theorem 20 All stratified heterogeneous significance ranges are non-
atomic.

Proof: Let F be a stratified heterogeneous significance range, consisting
of ft-tuples. There must be at least two distinct homogeneous significance
ranges, G<*/,...,*/,>. For any <#{, . . .,x^)e F, F = G(3c'/,...,^>U (F - G^,...,*&>),
where G ^ , . . . , ^ ) Φ p, F Φ G^, . . . , *^ , and G ( ί { , . . . ,^>n (F - G(3?ί,...,^>) = 0 .
Hence F is nonatomic.

6 The finiteness argument

6.1 Tft̂  presentation of the argument The aim is to present an argument
showing the finiteness of the number of significance ranges consisting of
1-tuples. This argument does not give a proof but gives some idea of the
type of counterexamples it could have and establishes the general plausi-
bility of there being only finitely many sorts of thing.

The method is by examining the sorts of thing with infinitely many
members. The only possibility of infinitely many material objects is if
they extend infinitely in space or if atoms are infinitely divisible. Even if
either is the case then there would be only finitely many significance ranges
of predicates relating to them. There are infinitely many type-sentences
but only finitely many significance ranges containing type-sentences be-
cause of grammatical rules.
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In mathematics, there are many concepts, such as sets, classes,
points, lines, real numbers, etc., which give rise to infinite classes.
Because mathematical theory is well-defined, it is possible to determine
all the significance ranges that occur in it. For example, "x is prime" and
"x is divisible by 2" determine the significance range of all natural
numbers. ζix is greater than 2.56" and "x is between 2 and 2.4" deter-
mine the significance range of all real numbers, "x has 4 subgroups"
determines the significance range of all groups. Although conventional
mathematics does not contain significance ranges, they can be introduced
as indicated in the above examples.

Hence there are only finitely many such significance ranges with
infinitely many members. Also there are only finitely many sorts of thing
with infinitely many members because there are only finitely many
mathematical concepts.

Now consider the sorts of thing with finitely many members. These
would include people, days of the week, companies, etc. The number of
such sorts of thing is finite. Hence the number of finite significance ranges
is finite. If one forms a significance range F, with infinitely many mem-
bers, it would be a finite union G of infinite significance ranges and finite
significance ranges. F would take this form because it would be generated
by a predicate which would be formed using conjunctions, disjunctions and
quantifiers. Since there are only finitely many of the type of infinite
significance range that is contained in G and also only finitely many finite
significance ranges, the number of such significance ranges F is finite.
Hence there are only finitely many significance ranges (consisting of
1-tuples).

Using this result, the number of significance ranges F, consisting of
w-tuples, such that i \ (F) consists of 1-tuples, for all i = 1, . . ., n, is
finite. This follows because F c «2>i(F) x . . . x 3)n(F), where the number
of possible significance ranges for 3bi{F) is finite.

6.2 The scope and limitations of the argument The argument is subject
to the predicates, relating to the sorts of thing with infinitely many
members, being well-defined enough to be able to determine their
significance ranges and to count the number of such significance ranges.
However, artificial counterexamples can be constructed as in the theory of
types. There are denumerably many significance ranges: individuals
(type 0), classes of type 1, classes of type 2, etc. In fact, in some recent
class theories, there are a transfinite number of types and hence a
transfinite number of significance ranges. Firstly, these theories are
artificial and do not represent the ordinary discourse notions of member-
ship and of class. Secondly, nonsignificance in these theories is excluded
by the formation rules or just replaced by falsity.

The argument is also subject to there being only finitely many sorts of
thing with infinitely many members. An artificial counterexample to this
would occur if one considered infinitely many mathematical concepts with
specialised predicates relating to each so that these predicates generate
significance ranges, corresponding to each such concept.
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7 Sommers' Principle

7.1 Statement of the Principle There are many examples of two atomic
significance ranges consisting of 1-tuples, which are disjoint or which are
such that one is properly contained in the other. But it is extremely
difficult to find atomic significance ranges consisting of 1-tuples, which
properly intersect, i.e., atomic significance ranges F and G such that
F ΠG Φ p, F - G Φ p and G - F Φ p. Sommers, in [7] and in [8], develops a
theory of significance ranges in a rather different way to that in this paper.
In his theory, he affirms the equivalent of "Two atomic significance ranges
consisting of 1-tuples, do not properly intersect". Hence I will call this
Sommers' Principle. In Sommers' theory, the two significance ranges are
atomic because he "locates" a significance range in different places if the
predicate determining it is ambiguous. For example, on p. 177 of [7], he
gives 'reasonable' two locations, one according to the use of 'reasonable'
in "A man is reasonable" and the other according to the use of 'reasonable'
in "An argument is reasonable".

7.2 The argument in its favour Let us examine a case where Sommers'
Principle fails. The intersection of the two atomic significance ranges is a
significance range, not necessarily atomic. It consists of some sorts of
thing and is properly contained in two distinct atomic significance ranges
both consisting of just one sort of thing. In ordinary discourse, when some
sorts of thing are all of some other sort of thing, that is, they have a more
general classification, then any other more general classification is more
general or less general than the first. That is, there is a total ordering of
classifications of things which are members of some significance range,
or, indeed, of any particular thing at all.

Consider the example of some sorts of thing which are all material
objects. The significance range could be determined by the disjunction of
the predicates "is a member of the British Cabinet", with the significance
range of people, and "is a good creamer", with a significance range of
animals. The members of this significance range can be generally
classified as material objects, extended things, substances (as in Aris-
totle's theory of substance), and individuals. Some of these classifications
may not be atomic significance ranges but anyway each one in the sequence
contains all earlier ones in the sequence. This is an example of the total
ordering of classifications.

There is another example of this in mathematics. Consider the
sequence of classifications, natural numbers, rational numbers, algebraic
numbers, real numbers, complex numbers, and mathematical objects. Here
again, all natural numbers are rational numbers, all rational numbers are
algebraic numbers, all algebraic numbers are real numbers, all real
numbers are complex numbers, and all complex numbers are mathematical
objects.

This argument is in terms of sorts of thing but this would also be
borne out in the case of atomic significance ranges as determined by
predicates. The total ordering of classifications supports Sommers'
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Principle because the negation of the Principle entails that there is a
significance range whose elements can be classified in two different ways
such that one is not more general than the other.

There is some difficulty in finding counterexamples to the Principle
especially in ordinary discourse. However, one would be able to artificially
construct counterexamples by specifying the significance ranges of artifi-
cially constructed predicates in such a way as to produce properly
intersecting atomic significance ranges. In this case, it would be more of a
property of the predicates than a property of the world and its classifica-
tion into sorts of thing.

Sommers' Principle does not have the same intuitive appeal for atomic
significance ranges consisting of ^-tuples as it does for those consisting of
1-tuples. Sommers' Principle can fail for n-tuples even though it holds for
1-tuples. For example, let F c V2 and ~F c V3 and let F = Gλ U G2, where
F, Gx and G2 are atomic and G^ G2 Φ p, F - Gι Φ p, and F - G2 φ p. Also
let J>(F) = JZ>(GL), Λ(F) = 3>(G2), JZ>(G2) c JZ>(Gj and ^ ( G j c Λ(G2), where
iKGj, 2>(G2), <#(GJ and Λ?(G2) are all atomic and all consisting of 1-tuples.
Then Sommers' Principle fails for F without contradicting it for the
domains and ranges, which consist of 1-tuples.

7.3 The inverted tree structure of atomic significance ranges As in
Sommers' theory, the Principle yields an inverted tree structure for
atomic significance ranges, consisting of 1-tuples. Two such atomic
significance ranges can be identical, one can be properly contained in the
other, and they can be disjoint. Hence the class of atomic significance
ranges containing a given one is totally ordered by the relation of proper
containment. The tree structure is of the type as shown:

The dots represent atomic significance ranges. If a dot X is higher than a
dot Y and connected by a line going upwards only then the significance
range represented by X properly contains the significance range repre-
sented by Y. Note that there is no null atomic significance range contained
in all atomic significance ranges, also that there is no universal atomic
significance range containing all atomic significance ranges. I think it is
unlikely that the universal significance range is atomic because each thing
in the universe can probably be classified in some way, as in the
Aristotelian categories, so that it is contained in an atomic significance
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range which is not universal. Sommers' Principle has the effect of
preventing anything of the forirΛ /appearing in the tree.

Sommers' Principle provides a structure result which completes the
structure of homogeneous and heterogeneous set significance ranges F,
consisting of n-tuples, such that 3>i{F) Π V2 = ft, for all z = 1, . . ., n, since
these significance ranges can be expressed as a union (disjoint or other-
wise) of Cartesian products of atomic significance ranges consisting of
1-tuples, and since Sommers' Principle provides the structure for atomic
significance ranges consisting of 1-tuples.

7.4 Consequences of Sommers' Principle

Theorem 21 Given Sommers' Principle, if F is anatomic significance
range which is finite6 union of atomic significance ranges G{, consisting of
ί-tuples, for i = 1, . . ., k, then F is equal to one of these atomic signifi-
cance ranges G, .

Proof: The proof is by induction on k.
(a) If k = 1, the theorem holds.
(b) Let the theorem hold for k atomic significance ranges G*. Let F be a
finite union of (k + 1) atomic significance ranges G;, i = 1, . . ., k + 1.
Consider Ff - \j G{, for i - 1, . . . , & . Hence by the induction hypothesis,

i

F' = Gj, where G7 is one of Glf . . ., Gk. Therefore, F = G, U Gk+ι. By
Sommers' Principle Gy U G^+1 = Gj or G&+1, since F is atomic. Hence F = Gj
or Gk+ι and the theorem is proved.

Theorem 22 Given Sommers' Principle, if f is an atomic set significance
range, such that f (Ί V2 = ft and such that there are only finitely many
significance ranges contained inf, then there is a member zf of f such that
(AH)(z'e H D / cH).

Proof: By Theorem 9, for each member y' of /, there is an atomic
significance range gy> such that (AH)(yf e H D gy, QH). AS in the proof of
Theorem 11, form the union h of all these atomic significance ranges, gyl.
Also, as in the proof of Theorem ll,f = h. By the condition of the theorem,
there are only finitely many g y ' s and hence, by Theorem 21, f = gz,, for
some z'ef. Also, (AH)(z'e H D / C H).

NOTES

1. Here I am assuming that the significance ranges consist of 1-tuples, i.e., are not contained in

V2. [Kis the class of all sets and individuals.]

2. Cf. Goddard and Routley's definition of "minimal category" in [4].

3. The relation "owns" is discussed in [3], p. 162.

4. Note that every (m + &)-tuple, for k > 1, is an m-tuple.
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5. To take an example, if a union G of two significance ranges, Fx and F2, is being formed such

that {χ\, . . . , x'm) e G = (x\, . . . , x'm) e Fι v <x'ls . . . , x^) e F 2 , where Fx consists of ra-tuples

and F2 consists of (m +/c)-tuples (k > 1), then there may not be a predicate φ such that

OcΊ, . . . ,x'm) e F2 = Sφ(x'ι, . . . ,x'm).

6. Theorem 21 will not follow for a transfinite union of atomic significance ranges because of

the following counterexample in the case of the limit ordinal, ω. Let the atomic significance

ranges G, , for / e ω, be such that Gt C G, + 1. F, being the union of these G '̂s will be atomic.

But F is not equal to any one of the G/'s.
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