Notre Dame Journal of Formal Logic Volume XXI, Number 2, April 1980 NDJFAM

CONSTRUCTIVELY NONPARTIAL RECURSIVE FUNCTIONS

BRUCE M. HOROWITZ

Rose and Ullian [3] called a total function f(x) constructively nonrecursive iff for some recursive function g(x), $f(g(n)) \neq \varphi_n(g(n))$ for all $n \in N$, where $\varphi_n(x)$ is the partial recursive function with index n. We define a partial function f(x) to be constructively nonpartial recursive iff for some recursive g(x), $f(g(n)) \neq \varphi_n(g(n))$, where \simeq is equality for partial functions. We say that f(x) is constructively nonpartial recursive via g(x). Note that for total functions, the two concepts coincide.

An example of a constructively nonpartial recursive function which is a total function is:

$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{if } \varphi_x(x) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

Indeed, letting g(x) = x, we have

$$f(g(n)) = f(n) = \begin{cases} \varphi_n(n) + 1 \neq \varphi_n(n) = \varphi_n(g(n)) & \text{if } \varphi_n(n) \text{ is defined} \\ 0 \neq \varphi_n(n) = \varphi_n(g(n)) & \text{otherwise} \end{cases}$$

As an example of a constructively nonpartial recursive function which is not total, we have:

 $h(x) = \begin{cases} \text{undefined} & \text{if } \varphi_x(x) \text{ is defined} \\ x & \text{otherwise} \end{cases}$

h(x) is constructively nonpartial recursive via g(x) = x.

The theory of constructively nonpartial recursive functions is intimately connected with the theory of productive sets. As an analogue to the fact that any 1-1 recursive function is the productive function for some set, we have the following:

Theorem 1 For every 1-1 recursive function g(x), there is a function f(x) which is constructively nonpartial recursive via g(x).

Proof: Suppose g(x) is a 1-1 recursive function. Let $g^{-1}(x) = (\mu y)(g(y) = x)$; $g^{-1}(x)$ is partial recursive. Define

Received June 30, 1978

$$f(x) = \begin{cases} \varphi_{g^{-1}(x)}(x) + 1 & \text{if } \varphi_{g^{-1}(x)}(x) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

Then

$$f(g(n)) = \begin{cases} \varphi_{g^{-1}(g(n))}(g(n)) + 1 = \varphi_n(g(n)) + 1 & \text{if } \varphi_n(g(n)) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

Thus, f(x) is constructively nonpartial recursive via g(x).

Rose and Ullian showed that the characteristic function of a productive set is constructively nonrecursive. We show a more general form of this theorem for partial functions. Let Df be the domain of f(x).

Theorem 2 If Df is productive, then f(x) is constructively nonpartial recursive.

Proof: Suppose Df = A is productive. Then A is completely productive via some recursive function h(x). Let the recursively enumerable sets be defined so that $\omega_n = D \varphi_n$. Now by definition of h(x), if $h(n) \in A$ then $h(n) \notin \omega_n$. Thus, $\varphi_n(h(n))$ is undefined. But $h(n) \in A$ implies f(h(n)) is defined. Alternatively, $h(n) \in \widetilde{A}$ implies $h(n) \in \omega_n$, and so $\varphi_n(h(n))$ is defined. But $h(n) \in \widetilde{A}$ implies f(h(n)) is undefined. Thus, $f(h(n)) \notin \varphi_n(h(n))$ for all $n \in N$.

Let $\overline{C}_A(x)$ be the partial characteristic function for A, i.e.,

 $\overline{C}_A(x) = \begin{cases} 0 & \text{if } x \in A \\ \text{undefined} & \text{if } x \notin A \end{cases}.$

Corollary 2a The partial characteristic function of a productive set is constructively nonpartial recursive.

Proof: If A is productive, then $D\overline{C}_A$ is productive.

Corollary 2b There are 2^{\aleph_0} constructively nonpartial recursive functions.

Proof: There are 2^{\aleph_0} productive sets.

At this point it would be instructive to inquire whether the usual arithmetical operations on functions preserve constructive nonpartial recursiveness. We have:

Theorem 3 The following do not necessarily preserve constructive nonpartial recursive functions:

- a. addition
- b. multiplication
- c. functional composition.

Proof: Let A be such that A, \widetilde{A} are productive. Then $C_A(x)$, $C_{\widetilde{A}}(x)$ are total constructively nonpartial recursive functions.

a. $C_A(x) + C_{\widetilde{A}}(x) = 1$, a recursive function.

b. $C_A(x) \cdot C_{\widetilde{A}}(x) = 0$, a recursive function.

274

We thus see that even the added criterion of totality does not preserve constructive nonpartial recursiveness.

c. Suppose again, that A, \widetilde{A} are productive, and further, that $0 \in \widetilde{A}$. Now

$$\overline{C}_A(x) = \begin{cases} 0 & \text{if } x \in A \\ \text{undefined} & \text{if } x \notin A \end{cases} \text{ and } \overline{C}_{\widetilde{A}}(x) = \begin{cases} 0 & \text{if } x \notin A \\ \text{undefined} & \text{if } x \in A \end{cases}$$

 $\overline{C}_A(x), \ \overline{C}_{\widetilde{A}}(x)$ are constructively nonpartial recursive. Consider $\overline{C}_A(\overline{C}_{\widetilde{A}}(x))$. If $x \in A$, then $\overline{C}_{\widetilde{A}}(x)$ is undefined, hence $\overline{C}_A(\overline{C}_{\widetilde{A}}(x))$ is undefined. If $x \notin A$, then $\overline{C}_{\widetilde{A}}(x) = 0$. Since $0 \in \widetilde{A}$, $\overline{C}_{A}(\overline{C}_{\widetilde{A}}(x))$ is undefined. Thus, $\overline{C}_{A}(\overline{C}_{\widetilde{A}}(x))$ is the completely undefined function, and is not constructively nonpartial recursive.

Note that if we also require $1 \in A$ then the total functions C_A and $C_{\widetilde{A}}$ may be used to show $C_A(C_{\widetilde{A}}(x)) = 1$, a total recursive function.

While the first example of this paper shows the converse of Theorem 2 to be false, we do have the following:

Theorem 4 (a) If f(x) is constructively nonpartial recursive via g(x), such that $\varphi_x(g(x))$ is defined implies f(g(x)) is undefined, then Df is productive: (b) If, in addition, f(x) is an onto function, then Df is creative.

Proof: (a) Assume that f(x) is constructively nonpartial recursive via g(x). Also assume that $\varphi_x(g(x))$ is defined implies f(g(x)) is undefined. Let $\omega_n \subseteq Df$. Then $D\varphi_n(x) \subseteq Df$. If $g(n) \in Df$ then f(g(n)) is defined; hence $\varphi_n(g(n))$ is undefined, and so, $g(n) \notin D\varphi_n(x) = \omega_n$. Df is productive via g(x).

(b) For any constructively nonpartial recursive function f(x), it must be that f(g(x)) is undefined implies $\varphi_x(g(x))$ is defined. Thus, we have f(g(x)) is undefined iff $\varphi_x(g(x))$ is defined. Since g(x) is onto N, f(x) is undefined iff $f(g(g^{-1}(x)))$ is undefined iff $\varphi_{g^{-1}(x)}(g(g^{-1}(x)))$ is defined iff $\varphi_{g^{-1}(x)}(x)$ is defined. The ontoness of g(x) guarantees $g^{-1}(x)$ is recursive. Thus Df is recursively enumerable, and thus creative.

In [2], we showed, directly, that if a set is completely productive via an onto recursive function, then its complement is creative. We now use results of this paper to obtain an interesting proof of this.

Theorem 5 If A is completely productive via an onto recursive function, then \widetilde{A} is creative.

Proof: Suppose A is completely productive via f(x), an onto recursive function. Consider $\overline{C}_A(x)$. We know that $D\overline{C}_A = A$. $\widetilde{A} = \{x | \overline{C}_A(x) \text{ is unde-}$ fined]. Since A is productive, by Corollary 2a, $\overline{C}_A(x)$ is constructively nonpartial recursive. In fact, examination of the proof of Theorem 2 shows that $\overline{C}_A(x)$ is constructively nonpartial recursive via f(x), the complete productivity function for A. It is also seen that if $\varphi_n(f(n))$ is defined, then $f(n) \in \omega_n$; hence by the complete productivity of f(x), $f(n) \notin A$. Therefore, $C_A(f(n))$ is undefined. Application of Theorem 4 allows us to conclude \widetilde{A} is recursively enumerable. Hence \widetilde{A} is creative.

275

We also showed in [2] that the complement of a creative set is completely productive via a recursive permutation. Thus, we have:

Theorem 6 If A is creative, then $\overline{C}_{\widetilde{A}}(x)$ is constructively nonpartial recursive via a recursive permutation.

Proof: \widetilde{A} is completely productive via a recursive permutation h(x). By the proof of Theorem 2, $\overline{C}_{\widetilde{A}}(x)$ is constructively nonpartial recursive via h(x).

REFERENCES

- Horowitz, B. M., "Constructively non-partial recursive functions and completely productive sets" (abstract), *The Journal of Symbolic Logic*, vol. 42 (1977), p. 143.
- [2] Horowitz, B. M., "Sets completely creative via recursive permutations," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 24 (1978), pp. 445-452.
- [3] Rose, G. F. and J. S. Ullian, "Approximation of functions on the integers," *Pacific Journal* of *Mathematics*, vol. 13 (1963), pp. 693-701.

Rutgers University Newark, New Jersey