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THE SUBSTITUTION INTERPRETATION AND THE EXPRESSIVE
POWER OF INTENSIONAL LOGICS

JAMES W. GARSON

The substitution interpretation may be employed in place of the
objectual interpretation in giving the semantics for first-order logic,
without affecting the class of formulas defined as valid. If the usual
definition of satisfaction is given, namely that a set is satisfiable just
in case its members are all true on some model, and the substitution
interpretation is used, the notion of satisfaction is no longer compact. So
notions of semantic entailment and satisfaction differ from those generated
by the standard account. However, with a simple adjustment to the
definition of satisfaction, compactness is restored, and notions of satis-
fiability and semantic entailment match exactly those of the standard
account, at least as far as their extensions go. An adjusted definition of
satisfaction suitable for the substitution interpretation looks something like
this: a set of formulas is satisfiable just in case there is a syntax for
first-order logic which has those formulas among its well-formed for-
mulas, and a model for that syntax such that every formula of the set is
ruled true. In a sense to be made somewhat clearer below, (semantics for)
first-order logic has substitution interpretation invariance (sii), at least
when the definition of satisfaction is adjusted correctly.

The same is not true of intensional logics. The results of Garson [2]
show that a semantics for topological logic is not sii, and one of the results
of this paper will be that Thomason's Q2 is not sii either [4]. We need to
present some of the details of these two systems. We give here a definition
of w-semantics for topological logic. A w-model is a triple (C, F, ύ) where
C is a non-empty set (of possible worlds, contexts, etc.), F is the set of all
transformations on C, and u is an interpretation function which assigns
intensions to the terms and predicates as we would expect:

u(n) e F, for each term n
u(pi)e{f:f:C -*P(C1)}, for each j-ary predicate P 7 where (P' indicates
power set.
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The truth value of a formula A at c(Uc(A)) on model U is defined to be
either 1 or 0 according to the following:

(P) ί/ c (PV . .ny) is 1 iff ( 4 ) ( c ) , . . ., κ(n, )(c)>€ u(Pj)(c)
(~) UC(~A) is 1 iff Ϊ7c(i4) is 0
(=>) UC((A D 5)) is 1 iff *7C(A) is 0 or UC(B) is 1
(T) Uc(ΊnA) is 1 iff Uu(nχc)(A) is 1

(0) Uc(VxA) is 1 iff ϋf/xc(A) is 1 for all /e F, where l//* is the model
identical to £7 save that u(x) is /.

We have assumed here that our language has ~, D, and V as its logical
primitives, and that it also contains a symbol T (read 'at') which takes
a term n and a sentence A into a new sentence ΊnA. We will assume for
the rest of this paper that the definition of satisfaction appropriate for the
substitution interpretation is used, for it makes no difference which is used
when the standard interpretation of the quantifiers is used. Validity is
defined from satisfaction as usual.

When we change this semantics so that (0) is replaced by

(S) Uc(VxA) is 1 iff Uc(An/x) is 1 for each term n

the set of formulas ruled valid (hence the sets of formulas ruled satis-
fiable) changes. It was shown in [2] that the semantics using (S) is easily
axiomatized, and that the semantics is equivalent to one which employs (0),
but where F is a set of transformations on C, rather than the set of all
transformations on C. However, ^-semantics, as we have first defined it
(using (0)) has not been axiomatized and there are formulas which it
validates which cease to be valid when (S) is used. Clearly ^-semantics is
not sii.

The same is true of Q2. A Q2-model u is a sextuple1 (C, R, F, I, ψ, u)
such that C is as before, R is a binary relation on C, F is the set of all
functions from C to /, / is a (non-empty) set of individuals, ψ is a function
that takes each c eC into a subset ψ(c) of /, and u is as before. The truth
value of a formula at c on U is defined by (P), (~), (̂ >) and the following:

(D) UC(BA) is 1 iff Ud(A) is 1 for all d such that Red
(Q20) Uc(VxA) is 1 iff Uf/xc(A) is 1 for all / such that f{c)eψ(c).

Thomason reports that Kaplan has shown that this semantics is not
axiomatizable. He takes this failure as a sign that there is something
fundamentally wrong withQ2, and that it points out the need for introducing
the concept of a substance into the formal theory.

But Q2 has intuitive appeal, and so it is satisfying to know that it can
by rescued simply by adopting the substitution interpretation. When

(Q2S) Uc(yxA) is 1 iff Uc(An/x) is 1 for all n such that u(n)(c)e ψ(c)

is replaced for (Q20), the resulting semantics is easily axiomatized.
Completeness can be demonstrated along the lines of Garson [l]. The
system which is adequate, and the main definitions and lemmas of the
completeness proof, appear in the appendix. It is interesting to note that
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when we retain (Q20) and relax the condition that F is the set of all
functions from C into /, we arrive at the same system, just as was the case
in topological logic. So we can rescue Q2 without resorting to the substitu-
tion interpretation. We probably want to rescue Q2 in one or the other of
these ways, for there are formulas such as BxDByy = x (read 'something
exists necessarily9) which are intuitively unacceptable, but valid on the
original definition of Q2 by virtue of the fact that the domain of quantifica-
tion is the set of all functions from C into /. The original definition, then,
makes unwarranted ontological assumptions.

The property of sϋ is a property of a semantics, not a model. It has to
do, primarily, with how the truth clause for the quantifier affects the final
definition of satisfaction. This property, then, is not the proper study of
model theory. Model theory studies models, and during this study, it is
presumed that the definition of truth on a model is held fixed. Intensional
languages have the property that the definition of satisfaction is sensitive to
the techniques used in the truth definition. So for these languages, it is
worthwhile to open a new branch of study: semantics theory, the study of
the effects of the use of different styles of truth definition within the same
class of models. It would be interesting to know under what circumstances
a semantics is sii. Perhaps we can connect this property with some purely
model-theoretic result. The Lowenheim-Skolem Theorem comes immedi-
ately to mind and, as we shall see, this intuition is correct.

Before we come to that, however, I would like to engage in a small
diversion that may put that result in a slightly different light, and suggest
areas for further research. We might guess that the reason first-order
logic is sϋ but certain intensional logics are not is that the latter have
more expressive power, given their semantics. We know, for example, that
when the quantifiers are deleted from first-order logic every formula has a
finite model. When the quantifiers are restored, however, we can construct
a formula that has no finite model. We might express this by saying that
the quantifiers allow us to express the property that our domain is (de-
numerably) infinite. We know by the Lowenheim-Skolem Theorem that
first-order logic cannot express that the domain is superdenumerably
infinite, but if we add the quantifier > so that (>xΦx)Θx is interpreted as
claiming that the cardinality of the set of things that satisfies Φ is greater
than the cardinality of the set of things that satisfies θ, then we can find a
formula which is true only on superdenumerable models. We can write a
sentence to ensure that the cardinality of the set of things that satisfies θ
is denumerably infinite. When this sentence is conjoined to (>xΦx)Θx the
result will be satisfied on a model when the cardinality of the set of things
that satisfies Φ is greater than omega. In a sense, > adds expressive
power to first-order logic.

Let us formalize this notion of expressive power. A language is
composed of a syntax (recursive definition of the wffs) and a semantics.
The semantics defines a class of models and a recursive definition for
'formula A is true at c on model U\ We assume that the truth definition is
intensional for generality, but for extensional languages the mention of c
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may be ignored or deleted. A language is recursive iff the set of formulas
defined valid on its semantics is recursive. A language -C expresses
property P (of a model) just in case there is a set of formulas of that
language which is satisfied on one of its models with P, and in no model
without P. The definiens is equivalent to Ίt is not the case that every set
of formulas satisfied on a model of «C with P is satisfied on some model
without P', so we have the following results about expressive power:

(1) First-order logic cannot express that the domain of a model is super -
denum erab ly infinite.

Proof: By the Lowenheim-Skolem Theorem

(2) A recursive language is decidable if it cannot express that the domain
of a model is infinite.

Proof: If the language cannot express infinity, then it has the finite model
property, and so is decidable.

It would be interesting to know in what sense intensional operators add
expressive power to first-order logic. In intensional languages, there is a
rich variety of topics to investigate, since the domain F of quantification is
a set of functions. So we may investigate such standard properties as
whether F is closed under composition, or whether it contains inverses,
etc. Some results about expression of some properties of this kind appear
in [2], but much more needs to be done, especially for modal languages.
We may also investigate the properties which are familiar from model
theory for first-order logic, such as questions about the cardinality of F.
The next thing we want to do is give a result of this kind. We will show how
to connect a property of semantics theory (namely, sϋ) with one of model
theory (namely whether superdenumerability can be expressed). We will be
showing in effect that a language is sίί just in case the Lowenheim-Skolem
Theorem holds for it, given that it satisfies some minimal properties.

We will call a language standard just in case its semantics is defined
so that the intension of any complex expression is a function of the inten-
sion of its immediate subexpressions, and mention of the domain of quan-
tification appears only in the clause giving the intension of a formula whose
main operator is a quantifier, and the clause for the quantifier has the
shape:

(Q) UciyxA) is 1 iff Uf/xc{A) is 1 for all / such that θ(/,c)

where θ(/,c) is some property expressed in the metalanguage whose only
parameters a r e / and c. We have had to pick a notation for (Q) for the sake
of concreteness, which limits our definition of a standard language some-
what. Still, the theorem to follow will not depend on any of the notational
details. We should note, however, that there are intensional languages with
quantifier clauses which do not have the form (Q), for example, those of the
form

(Qf) Uc{\fxA) is 1 iff Uf(c)/xc(A) is 1 for all / such that θ(/,c).
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Hintikka [3] has investigated languages of this kind, but their axioms are
quite cumbersome. The results of this paper do not apply to such systems.

Before we state and prove our theorem, we need to define siί, more
exactly. Let us assume for the rest of this paper that Sί is the semantics of
a standard language, and that S|s is the semantics like Si save that where S
has a truth clause for the quantifier of the form (Qj), Sls has a clause of the
form:

(OS) Uc(VxA) is 1 iff Uc(An/x) is 1 for all n such that θ(u(n),c).

A standard language with semantics S is sϋ just in case any set of formulas
is satisfiable on S| exactly when it is satisfiable on S!s.

Theorem A standard language is siί just in case it cannot express super-
denumerάble infinity.

Proof: The proof depends on two simple lemmas. We will write 'Sαtβίw)'
for 'for some c in the set C of Uy and every AeW, UC(A) is 1 on semantics

si'.
Lemma 1 For any models U, Ur which differ only in their domains F, Fr of
quantification, Sαtgĵ W) iff Sαfrĝ W).

Proof: Obvious, since semantics S's will not mention the domain in any of
its truth clauses.

Lemma 2 If the domain of quantification F of U is {u(n):n is a term} where
u is the interpretation function of U, then Sa\{^JW) iff Sαtg;(W).

Proof: Show Uc (A) is 1 on S)s iff UC[A) is 1 on S by induction on the structure
of A. The case for the quantifier is guaranteed because F for U is {u(n):n is
a terra}. We should note, however, that the proof does depend on the fact
that U^n)/x{A) is U^A^/x) in semantics S. That follows because a standard
language's semantics calculates the intension of an expression only on the
basis of the intensions of its subexpressions.

Now we are ready to prove the Theorem. To prove it from left to
right, suppose that a standard language with S as its semantics is sir, and
suppose that there is a model that satisfies W on S which has a super-
denumerable domain. It follows that for some model 17, Sat'ss(w). By
Lemma 1, the model Ur like ϋ save that its domain is {u(n):n is a term}
is such that Sαt|ŝ (W). By Lemma 2, Sαtjf(W), and so W is satisfiable on a
model with a denumerable domain, and the language cannot express super-
denumerable infinity. For the proof in the other direction, suppose that a
standard language with semantics S cannot express super denumerable
infinity. Suppose that W is satisfiable in S*. Then there is a model U such
that Sαtss(W) and by Lemma 1 the model like U with {u(n):n is a term} as its
domain satisfies W. By Lemma 2, W is satisfiable in S. Now suppose that
W is satisfiable in S. We know that W has a model with denumerable
domain F. Form an extension of the language by adding a new rank of
terms tl9 . . ., tj, . . .. We order the members of F, and we extend the
model U so that w(^) = /,-, and call it ϋ'. Clearly Saiξ(W). But by
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Lemma 2, Sαt^(W) in this new language. Since we are using the definition
of satisfaction appropriate for the substitution interpretation, it follows that
W is satisfiable in Ss. It follows that the language is sίi, and the Theorem
is proved.

This theorem is useful in showing that an intensional semantics lacks
the property of the Lowenheim-Skolem Theorem, i.e., for showing it can
express superdenumerability. Ordinarily this would be done by finding a
formula which is true on a superdenumerable model, which is false on all
smaller models. By our theorem, it is enough to find any formula which is
valid on S but not on its Ss, for then the language is not sii. It won't matter
to the proof whether this formula is true on superdenumerable models and
not on smaller models, and so it will be much easier to locate a formula
that proves what we want. For example, it is easy to see that BxΠΞyy = x
is not valid on Q2s but valid on Q2, hence the Lowenheim-Skolem Theorem
fails for Q2, even though BxΠΞyy = x is true on denumerable models.

APPENDIX

We will show that Q2S is complete with respect to the following system (soundness is easily
shown):

(Prop) Axioms and rules for propositional logic
(K) Axiom and rule for K
(VI) VxA D (En D Anjx), where Έ Λ ' abbreviates '3xx = rC

( V B D (En D An/x)^ w h e r e n UQ^ n Q t ^^^ ^
B D VxA

(=) n = n
(AS) n = ri D (A D An'//n), where An'//n is the result of replacing n' properly for one or more

occurrences of n in A, each of which is not in the scope of D.

Definition 1: Ng is the set of terms that appear in the set of formulas G.

Definition 2: Wff(ΛΓ)̂  is the set of formulas of a syntax like £ save that TV is its set of terms.
(We omit X when the meaning is clear without it.)

Definition 3: A set G of formulas of -C is a Q2s-model setj iff for each A e Wff(Λfc), G l/ l, if
A£G then G U {>4}ihl, and if ~V*i4 e G, then for some term n e NG, (En & ~An/x) e G.

The next lemma shows that Q2S-model sets obey the standard properties for maximally consistent
omega complete sets, when attention is restricted to the appropriate set of formulas.

Lemma 3 If A, B e \Nff(Nc) and c is a Q2S-model set, then

PK c ϊ-A iff A e c
P~. ~Aec iff A t c
PD. (ADB)eciffA^coτBec
PV. VxA eciff(EnD An/x) e c for all terms n of £

Definition 4: The canonical model U C a n for Q2S in language £ is defined so that U C a n =
<C, R,F,I, φ, u) and c e C iff c is a Q2S-model set and there is an infinite set of terms of <£ foreign
to c, (R) Rdc iff for all formulas Aof J£, if ΠAed then Aec. Now let nd be the least term t of J?
such that n-ted. The existence of nd is guaranteed by (=). Now / ~{nc :c e C}, uc(ή) is nc, uc(P})
is {δ:P7δ e c}, when P} is a /-ary predicate and δ is a string of terms, and

(φ) i e φc iff for some term ί, tc is i and Etc e c.

Lemma 4 If A e Wff(7Vc), then Aec / / / U ? a n U ) is 1.
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The proof makes use of the following sublemmas:

Sublemma a If En e \Nff(Nc), then Enec iffnc e ψc.

Proof: By (ψ) and (AS).

Sublemma b IfVxA e Wff(7Vc), then VxA e c iffU$™(VxA) is 1.

Proof: By PV., (ψ), Sublemma a, and the hypothesis of the induction.

Sublemma c // DA e Wff(7Vc), then UAec iff \X^\UA) is 1.

Proof: If ΏA e c then Ui£an(Q^4) is 1 by (R) and the hypothesis of the induction. Now suppose
lt|?an(DΛ) is 1, and suppose for reductio that cD={β:ΠB e c} [/A. Then c U {~^}|bΊ. Since c eC
there is an infinite set N of terms foreign to c, and since members of cQ U {~vl} are all in Wf f(iVc),
no member of N appears in cπ U {~A}. Form two infinite disjoint sets Nu N2 from N. By reason-
ing similar to the Lindenbaum Lemma, there is a Q2S-model set d such that cΏ U {~A} C d, and
d <Ξ Wff(7V U JVj). There is an infinite set of terms (namely N2) foreign to Nj, so d e C. So for
some d Red and ~A e d, which, with the hypothesis of the induction, conflicts with our initial
assumption. We conclude that cD u{~vl}|hl, in which case cΏ hA, and by principles of K,
d hUA. Since DA e Wff(7Vc), ΏA e c.

Theorem 2 Q2s is complete.

Proof: We show that every Q2S-consistent set G is satisfϊable. Add an infinite set Λf of terms new
to WffC/Vc), and divide it into two infinite disjoint sets, Nu N2. Construct a Q2s-model set M
which is an extension of G, using set Nv Now consider Upan for the language enlarged with N.
There is an infinite set of terms (namely 7V2) foreign to M, so M e C, and by Lemma 4, A e M iff
U£an04) is 1, and so G is satisfiable.

Notice that the definition (R) of R in the canonical model is standard. This means that
standard results about how axioms of modal logic correspond to conditions on R carry through
this proof. Completeness of a wide variety of modal logics which use condition (Q2S) can be
carried out in the same format.

NOTE

1. We have adjusted the notation, and some aspects of the formal definition of Q2 to make its
parallels with the situation with topologΐcal logic clearer, and to square with the notation of
the rest of this paper. No crucial changes have been made, however.
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