685

Notre Dame Journal of Formal Logic
Volume XX, Number 3, July 1979
NDJFAM

NORMAL IMPLICATIONS, BOUNDED POSETS, AND
THE EXISTENCE OF MEETS

J. JAY ZEMAN

The interpretation of certain lattices as logics has long been recog-
nized as a very fruitful exercise; it has aided the gaining of insight into
‘‘standard’’ logics such as the classical and the intuitionist, and has helped
open up vistas in the study of ‘‘newer’’ logics such as quantum logic and
orthomodular logic in general ([2, 3,4,5,6, 7, 10] are a few examples).
As has been argued elsewhere [10], interpretation of a lattice as a logic
virtually necessitates the definition of an ‘‘implication function’ on the
lattice. Implication functions so defined can have deep effects on the
algebra on which they are defined. Probably the best-known of these
effects is expressed in Skolem’s proof (see [1], p. 144) that a lattice upon
which positive implication (and so a fortiori classical implication) is defined
is ipso facto distributive. This effect has beena prime motivation in a fairly
extensive body of recent research into the employment of various non-
classical implications (notably modal implications—see [2, 3, 4, 10], for
example) in connection with orthomodular logic, which in the general case,
of course, must avoid being distributive. The present paper will discuss
an effect which a certain large family of implications has on a broad class
of partially ordered sets. This will be the class of posets with universal
upper and lower bounds (which we shall simply refer to as universally
bounded posets, understanding that both bounds are required)—this class
includes the orthomodular posets. If we interpret the elements of such a
poset as propositions, the universal bounds interpret as universally true
and false statements respectively; this class of posets is then of importance
in the study of logics.

By ‘‘K’’ we will mean the system so designated by Segerberg [8]. This
is the modal logic characterized by the entire class of normal relational
frames; it is the most general normal modal system, and was discussed in
Zeman [9] under the name ‘“T°”’. For reference, we note that K may be
formulated by adding to the classical PC (expressed lattice-theoretically)
the axiom scheme (with L for necessity):
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L1: L(pDq) <sLp>D Lg
and the rule of inference
RL: p=1liffLp=1

As is the case for many modal systems, the pure strict implicational part
of K is axiomatizable [11]. The basic result of the present paper will be
the following:

The definition of K-strict implication on any poset with universal upper
and lowey bounds is sufficient to make that poset a meet semilattice.

This will also apply, of course, to all strict implications of systems
containing K; we will call such implications ‘““normal implications.”” This
includes the positive and classical implications, viewed as ‘‘degenerate’’
modal implications. This result has significance in the study of ortho-
modular logics, since a number of authors have suggested that the more
general orthomodular poset rather than the orthomodular lattice be taken
as the model of quantum and other orthomodular logics (see, for example,
[2, 5, 7T]). (I tend to disagree with that approach, since I have great
difficulty in coming up with an intuitive interpretation for pairs of
propositions for which conjunction (or disjunction) is not defined; such
conjunctions may be nonsense in certain cases, but they ought to be able to
be written down anyway. Once we leave the realm of lattices, of course, we
lose the guarantee of meets and joins for all such pairs, and with it the
universal definition of conjunction and disjunction respectively.) Ortho-
modular posets have universal upper and lower bounds; the definition of any
normal implication on an orthomodular poset, then, will force it to be a
meet semilattice, and so—since orthomodular posets are also orthocom-
plemented—a lattice, specifically, an orthomodular lattice. These consid-
erations will provide, I think, a fair amount of input to the ¢‘philosophical’’
dialogue on these systems.

Leaving that dialogue aside for the purposes of this paper, we turn to
the strict-implicational part of K. [11] shows that the following two
assertions define K-strict implication on a lattice; here D is K-strict:

20: p2q=1ifp<gq

D2k:  If the following n + 1 assevtions hold:
(Take leftmost a in each formula as strongest for grouping)

asb,
ang, <b,

ANZ A . .Agn_lsbn
AN A, . AEp<d

Then so too does:

(b, 2g)a. .. A(bpDg)<a>dd
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Rule D 2k will be recognized simply as a rule inserting implication signs on
both sides of the sign of deduction, analogous to the rule for L in
Gentzenized versions of K (see [10], p. 110 ff.). K implication, by the way,
may be extended to the system for T’s strict implication by adding

Ol palpD g <gq

which is an assertion we would very naturally associate with an implication
operator. This makes Lp < p provable (Lp = 1 O p by definition).

Suppose now that P = (P, € is a poset with universal upper and lower
bounds; consider a function A:P x P — P. At this point we specify that pagq
for p, qe P is to be chosen from among the loweyr bounds of p and q; since
the poset has a universal lower bound, the function will be defined for all
pairs of elements. We have some freedom in selecting which of the lower
bounds of p and g pag will be; the key is to specify p a g in such a manner
that it will always exist in a universally bounded poset. We would nof be
free at this point, therefore, to call p A g the greatest lower bound of p and
g, since such may not exist. We may, however (and it shall be convenient
to do so) say that p A ¢ is one of the maximal lower bounds of p and q. From
this will follow the idempotency of A and the fact that pal=1ap=p. It
shall also be convenient to use the following in choosing this lower bound:
for each triple p, g, v ¢ P such that p <g¢q, so choose lower bounds that
par<garv andr¥ap <7aq. The lower bounds of p with » will always be a
subset of those of g with #; we select from the maximal lower bounds those
that ‘‘do the job.”” A will then be selected to be isotone on both sides. The
following will hold for all p, g, ¥ € P:

(1) p<p
(2) prgs<p
(3) palgar) <gar

Let us now define K-strict implication on P by adding the axioms 20 and
D2¢. With p=a=b,=0b,,q=g,,7 =g, gar =d, (1)-(3) above become the
first three premises of D2g; the conclusion of this application of the
rule is:

(4 @29apD7)<pD(gar)

Clearly, (4) has the effect of making A a meet function; if p < g and p <7,
then p Dg=p D7 =1 by D0, so again by D0, p <gar, which then is the
greatest lower bound of p and g; P is then a meet semilattice.

So that the result may seem less like a rabbit out of a hat, let us
quickly run through it with a more familiar appearing implication defined
on P; we shall see that for certain formulations of implications we shall
require more ‘‘care’” in the selection of pag than for K; specifically,
we shall make use of the isotone nature of A, which was not necessary
for our formulation of K-strict. Positive implication is defined on P by
the addition of axiom O 1 from above, and also:

D 2p: Ifrap<gq,thenr<p>Dgq
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This is recognized as the familiar deduction theorem. It will hold here as
“iff’’; with » < p O ¢, O 1, and A isotone, we get ¥ A p < ¢ immediately. Now,
we have:

(5) gar<gar

With D1 in the forms pa(p D q) < q and pa(p D ¥) < ¥ and A isotone, (5)
becomes

8) ((pa(dD> A (DA(PD 7)) <qnr

If p<gq and p < 7, the left member of this assertion reduces (with
idempotency) to p; once again, then, we have p < ga7, which is then the
meet of ¢ and 7.

We note in passing that the above deduction goes through for weaker
normal implications formulated in the manner of positive implication;
typical is that for S4, which is given by 21 plus:

D2,: Ifrap<gq, thenr < p D q, provided v is a meet of implications.
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