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TWO BASIC PURE-IMPLICATIONAL SYSTEMS

J. JAY ZEMAN

In this paper we shall study two very basic systems of pure implica-
tion, and shall show that they are equivalent to the pure-implicational parts
of certain key modal calculi, namely the systems T° and S4°. These
systems are referred to as ‘“key’’ because of their extreme semantic and
syntactic simplicity. T° (equivalent to Segerberg’s K’’ [12]) is the system
which is defined by the entire class of normal Kripke or relational frames;
that is, it is the system for which no specific assumptions are made about
properties of the accessibility relation [9], p. 129 ff. S4° is defined by the
set of such frames in which that relation is transitive. The syntactic
simplicity is best seen in the fact that Gentzen sequent logics for PC can be
extended to either of these systems by the addition of a single appropriate
simple rule (see [9], p. 125, p. 198). The basic nature of these implications
gives promise of their profitable employment in the study of orthomodular
logic, including the so-called quantum logic (a few general examples of the
literature in the area of this kind of logic are [1, 3, 4, 5], ch. 5, 7, 10); this
is a field of potential importance both philosophically and mathematically.
As discussed in [10], classical (and even positive) implication will not do
for the general orthomodular logic, since definition of positive implication
on an orthomodular lattice automatically renders it distributive and so
Boolean. However, as noted in [10], certain non-classical implications can
be defined on an orthomodular lattice without rendering it Boolean. Notable
among these are certain modal implications; the pinning down of these
basic modal implications may then be considered a potential advance in the
theory of orthomodular logic. In addition to their potential applicability in
the area of orthomodular logic, these systems have received philosophical
application in the study of the theory of inquiry of C. S. Peirce [8].

In what follows, we shall use the standard implication sign ‘C’ as the
sign of T° or S4° strict implication. When it is necessary to distinguish the
modal implications from classical or positive implication, we shall use the
sign ‘F’ for the latter two. The letters p, ¢, 7, etc. will be used mechani-
cally as they are when dealing with systems with a postulated rule of
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substitution (as with those of [9]); formally, however, we shall think of them
as schema letters, and so avoid the use of a postulated rule of substitution;
axioms, then will be stated by means of axiom-schemata.

A key feature in these systems will be a rule of C-introduction, or CI.
This rule governs the generation of certain sequents, or ¢‘deducibility
claims’’; it permits us to infer from the set of # + 1 sequents:

arpB
a, vy }_Bz
Ay Y15 « « 5 Vn-1) b_Bn
Qy Y1y + + o Yu O
to the sequent:
CBl?’ly ey CBn')’n —Cab.

We note that the (¢ + 1)th sequent in the above set (¢ <) differs from the ith
in having y; added to its antecedent and in having B(;+:) as its succedent.

The proof-theoretic systems of this paper will make use of this rule.

A “Hilbert-style’’ axiomatization of pure-implicational T° will be
called IT® and will consist of CI plus the axiom schema:

Cl. CpCqq
plus the following recursive definition of ‘~’:

We write ' and say ‘¢ is deducible from the set (possibly empty) of
formulas I’ iff there is a list of formulas (the deduction) ending with 6 and
each member of which is either:

(a) One of the T, or

(b) An axiom, or

(c) Of form B when —Cap and a is a previous line of the deduction, or
(d) T'+6 is derived by rule CI.

Note that in (c) above, detachment is restricted. As we shall see later,
permitting CaB to be any previous formula in the deduction, rather than a
theorem only, extends the system to the pure strict implicational part of T°.

We may extend IT® to the system I4°, which we will show to be the pure
strict implicational part of S4°, by adding to it the axiom schemata:

C2. CCpqCCqrCpr
C3. CCqrCCpqCpr

These systems may also be stated as Gentzen-style sequent-logics.
Here we would have rule CI (replacing ‘-’ by ‘—’ to distinguish the
formulations), and instead of axiom schema C1 and the above definition of
deduction, we would have the sequent axiom schema @ — a and the rules of
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weakening and contraction. This system may be called LIT®; LI4° may be
formulated by adding the rule

a, ' =3

T — CaB — C provided all members of I" are strict

to LIT®.

Kripke-style semantics for these systems are very easily set down;
The rules employed are as follows (techniques are patterned after [9]):

C-r: If CaB occurs on the 7ight side of a semantic tableau ¢, begin a new
tableau auxiliary to £ and having @ on its left and 8 on its right.

C-1: (a) If CaB occurs on the left of a tableau { and there are tableaux
auxiliary to ¢, split each of those auxiliary tableaux (auxtabs) writing @ on
the right of one of the tableaux resulting from the split and 8 on the left of
the other.

(b) If CaB occurs on the left of a tableau ¢, write CapB on the left of every
tableau auxiliary to £.

Semantics for IT® is given by C-r and C-1(a); for I4°, clause (b) of C-1is
included as well. We note that S4° is the system defined by the class of
Kripke frames in which the accesibility relation is transitive; carrying
strict implications into auxtabs (in addition to splitting as in C-1(a)) will
effectively reflect this transitivity.

The above formulations all have primitive C-strict as their only
connective. We shall require also standard formulations of T° and S4° with
L (necessity) and material implication primitive; these will be used as
tools in the study of the strict implicational systems. As we have noted, we
shall use F as the sign of material implication. Since we are interested in
strict implication, we shall be concerned with the F-L fragments of,
specifically, Gentzen-style sequent-logics for T° and S4°, which will be
called, respectively, LT® and LS4°. By methods which must be considered
well-known, cut elimination is provable for both systems as they will be
stated, so to get the complete F-L fragments of T° and S4°, we need only
the structural rules plus the rules for F and L. We are, in fact, not
interested in the entire F-L fragments of these systems, but in the subsets
of these fragments in which F and L always occur only in the combination
LF; this is the strict implicational part with defined strict implication; we
may call it the “LF-pure’’ part of LT® and LS4° respectively.

It will be noted in the rules as we shall state then that the F rules as
well as those for L are given with singular succedent. This means, of
course, that the F part of this system is positive rather than classical
implication. There is no problem here, however, for F’s will be placed in
sequents of this system only where strict implications can be placed in
sequents of LT® and LS4°. The strict implicational parts of all modal
systems contained in S4 are contained in positive implication, so having
positive implication rules for F will be enough. The rules then are:
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I'—a B, ' — ¢ a, I'— B
F— —F2- _F
FC(B,P—-'@ F"’FQ'B
I'—a LT — a
Ir —za ™ L Ir " 1a

LT”s F-L fragment is given by the structural and implication rules plus
LI; LS4° has —L in addition. Notation and terminology are those of [9]; the
formulation of LS4° given here differs slightly from that of [9], but is
clearly equivalent.

A lemma concerning positive implication As a part of our study of IT®
and I4°, we will wish to establish a lemma about positive implicational
sequent logic; the rules will be the structural rules and the above rules for
F. Suppose that we have a sequent whose antecedent is » > 0 implications,
and whose succedent is also an implication. Suppose further that this
sequent is provable given sequent logic for positive implication, and that at
some point in the proof each of the #» + 1 F’s has been introduced by a
logical rule (rather than being introduced entirely by weakening). What we

wish to establish is that this all is the case iff indices 1, . . ., n are
assignable to the sequent’s antecedent formulas making it
(1) Fﬁl'yl, ey FB,,'}/,,-—' Fad
and such that the following set X of sequents are all provable:
a— B,
a, y,— ﬁz
Ay Vi) o v ooy Vin-1) Bn
Ay Y1y o v oy Yp— 0

The relationship of this lemma to rule CI of IT° should be clear.

The ¢if’’ portion of this proof is elementary; given the » + 1 sequents
above and the two rules for F, it is a simple matter to prove (1), and so the
sequent in question. The proof in the other direction is a bit more involved.

Since the normal form theorem holds for this system, we see that by
—F, with (1) holding, then also

(2) a, FBI')/U LS ] FBn’)’n—' !

must be provable. This sequent, in turn, must be able to result from at
least n applications of F— beginning from an appropriate number of
premises; each of these premises is formed by 0 or more weakenings on a
provable sequent each of whose formulas is drawn only from a, 6, and the »
each B and . As an example, we offer the following derivation of the
sequent Fpq, Fqv — Fpr:

q9—q Y=
— WK —— WK
b—r o q9,p—4q "GP =7
b, Fqr — p 4 b, Fqr—v o |
b, Fpg, Fqr —7v o
Fpq, Fqr — Fpr
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In the above endsequent take the occurrences of p, g, and » as follows,
reading from left to right: p=8,,g=y,9=8,, 7=y, p=a,7v =5. It will
be seen that the initial premises are indeed as suggested, and that the
provable sequents p — p; q, p — ¢q; ¥, g, p — ¥ are the set of # + 1 (here
three) sequents which this lemma holds to be provable iff the endsequent is.

We turn now to the lemma in general. Suppose, first of all, that in
sequent (2) #» =0. (2) then is @ — &, which is itself the sole member of set
X for this case. Now suppose that whenever » = k, the lemma holds for
sequents in form (2). Consider the case in which # = & + 1. By the
invertibility of F— with itself [9], p. 52 the proof of (2) may be arranged to
conclude as follows:

I a, FBI'}’U .. .,FBk‘yk'—) Bn Vs a, FB]_'}’]_, ‘e ey FBk'}’k'—’é
a, FBL')’I; LIRS} FBk'}’k; FBn‘)’n'_’ o
The left premise of this application of F— is of form (2) with # implica-

tions in its antecedent; it then falls under the scope of the induction
hypothesis, and so the set of sequents:

a— B,
a’ '}’1'_)32

Ay Yy oo oy Yo Bx

is provable. But this is precisely the first # members of the set X for a
sequent in form (2) with n =% + 1. Now look at the right premise of this
rule application; it has y, replacing the FB,y, of the endsequent. It should
be clear that if we climb higher and higher in the tree proof keeping always
as far right as possible (always climbing via the right premise) we shall
successively replace implications F8;y; with y;. Climbing n such steps will
give us the sequent a, y,, . . ., y,— &, which is the (#» + 1)th member of the
set X for this case. The lemma then stands proven.

We note that in the proof there may be cases in which a, y,,..., y; = Bj
for i < j - 1 (an example is the premise ¢ — ¢ in the earlier set-down
derivation). Clearly, this causes no difficulty, as the premise may be
converted by weakening into exactly the jth member of X.

The completeness of IT° We shall now establish that I'+ ¢ holds for IT®
iff ' — § is an LT° theorem. It is understood, of course, that the formulas
in these sequents are C-pure, with C in LT® defined as LF. The ‘“‘only if”’
direction of this metatheorem is quite easy to establish; — LFpLFqq is
easily established in LT°, as is the form of detachment for IT° (as usual,
with the aid of cut, which is itself eliminable in LT°). A little inspection
and reflection on the previous section will show that given the n + 1
sequents which count as premises for IT”s rule CI, one can easily prove in
LT® a sequent in the form of the conclusion of CI; all IT° provable sequents
are then provable in LT®.
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We now will show that all LF-pure sequents which are LT° provable
are also IT® provable, taking C instead of LF everywhere. We do this by
induction on the number of applications of rule LI in relevant LT® proofs.
Suppose that there have been no applications of this rule in the proof of
I — §. Then there could have been no applications of the rules for F either,
since the sequent is to be LF-pure. The proof then cannot have involved
the logical rules, and § must be among the I". But then I' - g holds for IT®.

Suppose now that whenever the number of applications of LI is <k ina
relevant LT® proof, this metatheorem holds. Consider a proof with % + 1
such applications. This proof will end as follows:

FByyyy .+« FByyn — Fab LI
LFByy1, . « «y LFByyn— LFab

(3

All the B; and v; as well as @ and 6 must be LF-pure for the endsequent to
be so. We may ignore cases in which some of the F§;y; are inserted solely
by weakenings, for as we shall see, there is an analog of weakening
provable for IT’, and so weakenings may be duplicated there. But this
makes the premise of (3) a sequent in the form of (1) of the previous
section, which means that by the lemma of that section, the indices

1,...,7n may be assigned to the formulas of that premise so that the
sequents

a— B

a, y1— B,

Ay Y1y o ooy Yin-1) Bn

Ay Y1y o0 oy Yp— 0

are all LT° provable. But these sequents are all provable in % or fewer
applications of LI, and are LF-pure; by the induction hypothesis, then, with
‘-’ replacing ‘—’ they are all provable for IT°. But they are precisely the
premise sequents for rule CI, and so

(4) CBiyi, « « s CBuyn— Cabd
is provable for IT’, as required.

We earlier indicated that we must show that an analog of weakening
holds for IT® this is not completely trivial; it might be expected that
whenever a deduction I' ¢ holds in IT® then n, I' -6 also must hold; the
cases in which 9 is generated by clause (a), (b), or (c) of the definition of
deducibility clearly cause no problem; when I'6 holds by clause (d),
however—that is to say when it is the result of an application of rule CI—we
must show the proof explicitly.

Suppose I' -9 is a result of CI; it then is in form (4), with ¢+’ for ‘—’.
Consider the set of the n + 1 premises of the CI application; extend this set
by adding a -a as an additional premise, and reiterate a in the antecedents
of each of the members of the original set of premises (induction here is on
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length of deduction; the premises of the CI will fall in the scope of the
induction hypothesis, and so may be weakened in this manner). If CI is
applied to the new set of premises, we get:

(5) Caa, CBl'Yl’ . e ey CBn'}’nl_cab

By axiom C1, we have CnCaa; given 7 as a step in a deduction, then, we can
get Caa there, and so if (5) holds, so too does

(6) m, CBI’)’I; L) CBn')’n'_CQG
We then have our analog of weakening for this case, as required.

We have noted that removing the restriction on clause (c) of the
definition of deduction in IT® is sufficient to extend this system to T’s pure
strict-implicational part; without the restriction, the sequent

(7) p, Chgrq

is immediately provable (compare Lewis and Langford’s axiom B7 of 6],
p. 493, which is deductively equivalent there to CLpp). Using () and p+p
as premises for CI, we get

(8) CpCpq +~Cpq

One more application of CI gives us CCpCpqCpq, Hilbert’s law, which is
one of the axioms of the formulation of [11], p. 67 for T’s pure strict
implicational part. The other axioms and rules of that formulation are
provable in elementary fashion (the infinite set of rules of Hacking’s III is
provable making use of the fact that all pure strict implicational sequents
of T are provable in proofs with the subformula property; axiom (3) of that
formulation is provable by CI, using Cqv, Cpq+Cpr, and Cqr +Cqr as
premises).

Pure-implicational S4° The system I4° results from the addition of
axiom schemata

C2. CCpqCCqrCpv
C3. CCqrCCpqCpr

to IT°. As we earlier noted, the addition of the rule —L of S4 sequent logic
to the system LT° results effectively in LS4°, the sequent logic for S4°. As
with LT, cut elimination is provable, so all provable sequents are provable
in proofs with the subformula property, and so all provable LF-pure LS4°
sequents will be provable with the F and L rules as the only logical rules.
To show, then, that I4° is the pure strict implicational part of $4°, we must
prove for 14° an analog of LS4%s rule —L. For the LF-pure part of LS4°,
this rule will always be used immediately after an application of —F; the
14° analog, then, will be the S4 version of the deduction theorem, with the
definition of deduction as earlier stated in this paper. We must show, then,
that given I4° we can establish:

(DT) If a, T+ B, then T +CaB, provided all the T ave stvict.
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Induction is on the length of the deduction of 8 from a, I'; cases are as
indicated in the definition of deduction:

(a)-i: B may be the same as a; DT then holds by provability of CAB.
(a)-ii: B may be one of the I". Take axiom C1l with g for #; this then is

(9) CCpqCCqqCpq

Semisubstitutivity of implication holds in IT® (and indeed, in the stronger
form in I4°, with C2, C3, and Cpp provable, see [9], pp. 98, 162-3). With
axiom schema C1, then, we may replace the Cqq in (9) by 7, getting

(10) CCpqCrCphq

Since B is one of the I', it is strict, and so can enter into a detachment with
(10); from I +pB, then, we get I' =C#»B; with v as a, we have DT for this
case.

(b) B may be an axiom. All axioms, of course, are strict, and so we use
(10) as above to get I (or any set of formulas) yielding Cap.

(c) B may result from a detachment involving a theorem Cy8 and a previous
line y of the deduction. ~C98 and axiom schema C3 give us:

(11) FCCpyCPB

By the induction hypothesis, I' ~Cay. This with the theorem (11) gives us
(within the restriction on detachment) I" - Cag.

(d) @, T+ may result from an application of rule CI. In this case, it is
(12) CBiyi, « « 5 CBiviy « « «; CBpyn HCED
1< i< n, with CB;y; the a of DT, and C{6 the 8. The set of sequents

CBiyi FCBiyi
CBiyi, CByy, +CBiyi

CBi')’i; CBI')’U L) CB(n-l)'}’(n-l) '_'CBi'}’i

all hold for 14°. This set plus sequent (11) is a set of premises for another
application of CI; the result of this will be:

(13) CCB;y;CByyys « + +, CCBiyiCByynt+ CCBiyiCLE

Qur intention in the above set of sequents is that each antecedent contain
CB;yi only in the displayed position; the CB;y; of (12) the set’s antecedents
is the a of CI; the antecedent of (13) then lacks CCB;y;CB;y;. By (10), the
formula CBjy; will give us, in each case, CCB;y;CBjy;j. We can then get
from the antecedent of (12) less CpB;y; whatever we can get from the
antecedent of (13); we then have

(14) CBl'}’l; coe ey CIBn')’n "CCnyzccb
(less CBiyi)
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But (14) is ' -CaB for this case, as required; DT then holds. Proof of
axioms. C2 and C3 given IT® and DT is elementary; we then have 14° as the
pure strict implicational part of $4°.

Semantics for 1T® and 14° As earlier mentioned, Kripke-style semantics
for IT® are given by the rules C-r and C-l(a) for semantic tableaux.
Semantics of this kind are available for the whole system T°[9], p. 129 ff.
Rules for T° in addition to those for the PC are:

L-r: Where La occurs right in a tableau, begin a new auxtab having a on
its right.

L-1: Where La occurs left in a tableau, write a on the left of every tableau
auxiliary to that one.

We will again be interested in the LF-pure part of T°; the PC tableau rules
for F are:

F-r: Where Faf occurs right in a tableau, write a left and B right in that
tableau.

F-1: Where FoafB occurs left in a tableau, split that tableau writing a on the
right of one of the resulting tableaux and B on the left of the other.

We wish to show that a tableau construction begun with C-pure formulas
closes given the IT° rules iff the construction begun with the same
formulas, taking C as LF, closes given the T° rules.

The induction is on the number of C-r applied, in the ‘‘only-if’’
direction; and is on the number of L-r applied, in the ¢‘if’’ direction of the
proof. Suppose the number of C-r (L-r) applied in getting a closing tableau
is zero; then no C-1 can have been applied because application of C-r is the
only way to get an auxtab (no L-1 can have been applied because application
of L-r is the only way to get an auxtab, and no F rules could have been
applied for the initial formulas in the tableau are LF-pure). Thus, if no
C-r (L-r) has been applied and the tableau construction closes, some
initial formula on the right of the IT° (T°) tableau must be the same as
some on the left; this condition will also cause the analogous T° (IT°)
tableau to close.

Suppose that when (with C = LF) a tableau construction for IT° (T°)
closes employing no more than % applications of C-r (L-r) the T° (IT°)
tableau construction begun with the same formulas also closes. The IT®
and T° constructions then begin:

r | <)
CBiyyy « « 5 CBuyn \L Cabd
a | 5

etc.
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r|oe
LFByyy, - - .y LFByyn LFab
FByyi, - -+, FBuyn \l/ Fab
X X
a o
etc.

The constructions are clearly the same below ‘‘etc.’’ Suppose the IT®
construction closes. Then its auxtab closes. By the induction hypothesis, a
T° tableau beginning with a left and § right then must also close, and so the
T° auxtab and so the whole construction closes, establishing the ‘‘only if’’
part of the proof.

Suppose now that the T° construction closes. Since an application of
L-1 is required for this, none of the formulas on the left is the same as any
on the right of the main tableau, and so Fab differs from each of the =
implications shown on the left of the auxtab. Further, since the @ and 6 as
well as each of the 8; and y;, 1 <i <n, are all LF-pure, none of the impli-
cations beginning with an F can enter into a ‘‘closing’’ with any of the
formulas below line X-X. Since the construction closes, then, a T° tableau
beginning with the formulas which will be below X-X of the F-1 are
done must close. But then so must, by the induction hypothesis, an IT®
tableau beginning with the same formulas; such a tableau is precisely the
auxtab of the corresponding IT® construction. That construction then
closes, completing the proof.

An argument from a set of formulas T to a formula a is valid iff the
tableau construction begun with I" left and a right closes, for either system.
Given what has proceded in this paper, then, it is easy to see that if such an
argument is IT° valid, then I'+a holds for the proof-theoretic IT®, giving
us a semantic completeness result.

The result is easily extended to I4° if we note that [9])’s rule for L-left
in S4° reflects the transitivity of the accessibility relation precisely in the
manner that clause (b) of our C-1does, by iterating necessary statements
on the left side of tableaux into the left side of auxtabs.
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