Notre Dame Journal of Formal Logic
Volume XX, Number 3, July 1979
NDJFAM

GENERALIZED RESTRICTED GENERALITY

M. W. BUNDER

Introduction When we write $(\forall u) . X(u) \supset Y(u)$ in predicate calculus, we require that $X(u) \supset Y(u)$ makes sense for all u in the range of quantification. This requirement for every pair of unary predicates X and Y in the calculus may impose a strong restriction on the range of quantification of the system. Hence there may well be X s, and Y s in the system for which $X(u) \supset Y(u)$ holds or at least makes sense for one or more u s not in the range of quantification.

This problem, for unary predicates, is overcome by the use of Curry's restricted generality Ξ (see [1]) which has the rule:

Rule Ξ

$$
\Xi X Y, X U \vdash Y U,
$$

This rule does not restrict the U s we use to any particular range. (Note that we write $X U$ instead of $X(U)$, also we will usually write $X u \supset_{u} Y u$ for $\Xi X Y$.)

If, however, X and Y are binary predicates we find that the problem arises again. If we want to represent "Whenever XUV holds, YUV holds" using Ξ, the best we can do is what is suggested in [2], i.e., to write:

$$
X_{1} u \supset_{u}\left(X_{2} u v \supset_{v} Y u v\right),
$$

where X_{1} is a range of quantification. Taking A for X_{1} as a common range of quantification for all such X s and Y s may well be as inappropriate as it was above and finding an X_{1} and X_{2} may not be possible for each X, so it seems reasonable to introduce a generalized version of Ξ. If we introduce a Ξ^{2} such that

$$
\Xi^{2} X Y, X U_{1} U_{2} \vdash Y U_{1} U_{2}
$$

and similarly Ξ^{3}, . . Ξ^{n}. . all such problems are solved. If we now want to represent whenever $X U V$ and $Y U V$ hold, $Z U V$ holds we can use

$$
X u v \wedge Y u v \supset_{u, v} Z u v
$$

provided we have the conjunction \wedge. If, however, we want to leave open the
possibility of defining \wedge in terms of Ξ and other notions (as in [4]) we have to have some other way of representing this.

We therefore introduce a version ${ }^{k} \Xi \Xi^{n}$ of Ξ that generalizes it in two ways. These are brought out in the following rule:
Rule ${ }^{k} \Xi^{n} \quad{ }^{k} \Xi^{n} X_{1} \ldots X_{k} Y, X_{1} U_{1} \ldots U_{n}, \ldots, X_{k} U_{1} \ldots U_{n} \vdash Y U_{1} \ldots U_{n}$. where k and n are non-negative integers.

We show below that with axioms similar to those given for Ξ in [3], we can prove a Deduction Theorem for ${ }^{k}{ }^{k}{ }^{n}$ similar to that proved for Ξ in [3].
Rule ${ }^{k} \Xi^{n}$ and the Deduction Theorem for ${ }^{k} \Xi^{n}$ We should note that as it stands we have not only generalized Rule Ξ (which is Rule ${ }^{k} \Xi^{n}$ with $k=n=1$) to cases where $k \geqslant 1$ and $n \geqslant 1$, but also to ${ }^{0} \Xi^{n}$, a generalized universal generality (${ }^{0} \Xi^{1}$ corresponds to Π in [1]) and to ${ }^{k} \Xi^{0}$, a generalized implication (${ }^{1} \Xi^{0}$ corresponds to \mathbf{P} in [1]). In most systems we will not need a Rule ${ }^{k} \Xi^{n}$ for each $k, n \in N$. If we have Rule ${ }^{k} \Xi^{n}$ for k and n sufficiently large we can define:

$$
{ }^{i_{\Xi} \exists^{j-1}}=\lambda x_{1} \ldots \lambda x_{i} \lambda y{ }^{i_{\Xi} \Xi^{j}\left(\mathbf{K} x_{1}\right) \ldots\left(\mathbf{K} x_{i}\right)(\mathbf{K} y)^{1} .}
$$

and

$$
{ }^{i-1} \Xi^{j}=\lambda x_{1} \ldots \lambda x_{i-1} \lambda y^{i} \Xi^{j} x_{1} \ldots x_{i-1}(\mathbf{K}(\ldots(\mathbf{K} T) \ldots)) y
$$

where there are $j \mathbf{K}_{\mathrm{s}}$ in ($\mathbf{K}\left(\ldots\left(\mathrm{K}_{\mathrm{T}}\right) \ldots ..\right)$) and where T is any theorem.
These with Rule ${ }^{k} \Xi^{n}$ will give us Rule ${ }^{i} \Xi^{j}$ for $i \leqslant k$ and $j \leqslant n$.
Given a small number of axioms for Ξ, and either \mathbf{H} (' $\mathrm{H} X$ ', represents " X is a proposition") or L (" $\mathrm{L} X$ " represents " X is a first order predicate'"), Rule Ξ can be reversed as follows, (see [3] and [5]):
The Deduction Theorem for Ξ. If $\Delta, X U \vdash Y U$ where Δ is any sequence of obs and U is an indeterminate not free in Δ, X, or Y, then $\Delta, L X \vdash$ ト ΞY.

If we write " $\mathrm{L}_{n} X$ " for " X is an n-ary predicate", we can set up similar axioms to prove the following Deduction Theorem for ${ }^{k} \Xi^{n}$:
The Deduction Theorem for ${ }^{-k} \Xi^{n}$. If $\Delta, X_{1} U_{1} \ldots U_{n}, \ldots, X_{k} U_{1} \ldots U_{n} \vdash Y U_{1}$ $\ldots U_{n}$ where U_{1}, \ldots, U_{n} are indeterminates not free in $\Delta, X_{1}, \ldots, X_{k}$ or Y and $\Delta \vdash \mathbf{L}_{n} X_{i}$ for $1 \leqslant i \leqslant k$, then $\Delta \vdash^{k} \Xi^{n} X_{1} \ldots X_{k} Y$.

The axioms required for the proof of this (numbered as in [3]) are:
Axiom $2 \vdash \mathbf{L}_{n} x_{1} \supset_{x_{1}} \ldots \mathbf{L}_{n} x_{k} \supset_{x_{k}} x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n}$ $\supset_{u_{1}, \ldots, u_{n}} x_{i} u_{1} \ldots u_{n}{ }^{2}$

1. K is a combinator with the property $\mathrm{K} X Y=X$ for all X and Y.
2. For expressions involving $\supset, \supset_{x_{l}}, \supset_{u_{1}}, \ldots u_{n}$ etc. we assume association to the right.

Axiom $3 \vdash \mathrm{~L}_{n} x_{1} \supset_{x_{1}} \ldots \mathrm{~L} x_{k} \supset_{x_{k}} \mathrm{H} y \supset_{y} y \supset x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n}$ $\supset_{u_{1} \ldots u_{n}} y$
Axiom $4 \vdash \mathrm{~L}_{n} x_{1} \supset_{x_{1}} \ldots \mathrm{~L}_{n} x_{k} \supset_{x_{k}}\left(x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}}\right.$ $\left.w_{1} u_{1} \ldots u_{n} v_{1} \ldots v_{q}, \ldots, w_{t} u_{1} \ldots u_{n} v_{1} \ldots v_{q} \supset_{v_{1}, \ldots, v q} y u_{1} \ldots u_{n} v_{1} \ldots v_{q}\right)$ $\supset_{w_{1}, \ldots, w_{t}, y}\left[\left\{x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}} w_{1} u_{1} \ldots u_{n}\left(t_{1} u_{1} \ldots u_{n}\right)\right.\right.$ $\left.\ldots\left(t_{q} u_{1} \ldots u_{n}\right)\right\}, \ldots,\left\{x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}} w_{t} u_{1} \ldots u_{n}\right.$ $\left.\left(t_{1} u_{1} \ldots u_{n}\right) \ldots\left(t_{q} u_{1} \ldots u_{n}\right)\right\} \supset_{t_{1}, \ldots, t_{q}}\left(x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n}\right.$ $\left.\supset_{u_{1}, \ldots, u_{n}} y u_{1} \ldots u_{n}\left(t_{1} u_{1} \ldots u_{n}\right) \ldots\left(t_{q} u_{1} \ldots u_{n}\right)\right]$
Axiom $6 \vdash x \supset_{x} \mathbf{H} x$.
In [3] and [5] we also needed a universal class E to express these axioms, here this is not necessary and so \mathbf{E} and \mathbf{Q} for equality (in [3] we defined \mathbf{E} to be WQ) become optional extras. If \mathbf{Q} were included we could add the following axioms to the above:

$$
\vdash \text { WQK, }- \text { WQS, } \vdash \mathbf{W Q}^{k} \Xi^{n}, \vdash \text { WQQ, } \vdash \text { WQL }_{n}
$$

Axiom $1 \vdash \mathbf{W} \mathbf{Q} x \supset_{x} \mathbf{W} \mathbf{Q} y \partial_{y} \mathbf{W} \mathbf{Q}(x y)$.
Axiom $5 \vdash \mathrm{~L}_{n} x_{1} \supset_{x_{1}} \ldots \mathrm{~L}_{n} x_{k} \supset_{x_{k}} x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n}$ $\supset_{u_{1}, \ldots, u_{n}} \mathbf{W O} u_{i}$, for $1 \leqslant i \leqslant k$.

The following theorems follow from Axioms 2, 3, and 4:
Theorem $1 \mathrm{~L}_{n} x_{1}, \ldots, \mathrm{~L}_{n} x_{k} \vdash x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n}$

$$
\supset_{u_{1}, \ldots, u_{n}} x_{i} u_{1} \ldots u_{n}, \text { for } 1 \leqslant i \leqslant k
$$

Theorem $2 \mathrm{~L}_{n} x_{1}, \ldots, \mathrm{~L}_{n} x_{k}, Y \vdash x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}} Y$.
Theorem $3 \mathrm{~L}_{n} x_{1}, \ldots, \mathrm{~L}_{n} x_{k},\left(x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}}\right.$
$w_{1} u_{1} \ldots u_{n}\left(t_{1} u_{1} \ldots u_{n}\right) \ldots\left(t_{q} u_{1} \ldots u_{n}\right), \ldots,\left(x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots\right.$
$\left.u_{n} \supset_{u_{1}, \ldots, u_{n}} w_{t} u_{1} \ldots u_{n}\left(t_{1} u_{1} \ldots u_{n}\right) \ldots\left(t_{q} u_{1} \ldots u_{n}\right)\right),\left[x_{1} u_{1} \ldots u_{n}, \ldots\right.$,
$x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}}\left\{w_{1} u_{1} \ldots u_{n} v_{1} \ldots v_{q}, \ldots, w_{t} u_{1} \ldots u_{n} v_{1} \ldots v_{q}\right.$
$\left.\left.\supset_{v_{1}, \ldots, v_{q}} y u_{1} \ldots u_{n} v_{1} \ldots v_{q}\right\}\right]$
$\vdash x_{1} u_{1} \ldots u_{n}, \ldots, x_{k} u_{1} \ldots u_{n} \supset_{u_{1}, \ldots, u_{n}} y u_{1} \ldots u_{n}\left(t_{1} u_{1} \ldots u_{n}\right) \ldots$
$\left(t_{q} u_{1} \ldots u_{n}\right)$.
(With $n=k=1$ these are identical to Theorems 1, 2, and 3 of [3]).
To prove Theorem 1 from Axiom 2 we require only Rule ${ }^{1} \Xi^{1}$, to prove Theorem 2 we need Rule ${ }^{1} \Xi^{1}$, Rule ${ }^{1} \Xi^{0}$ (i.e., Rule P) and Axiom 6, but to prove Theorem 3 we need Rules ${ }^{1} \Xi^{1},{ }^{1} \Xi^{t+1}$, and ${ }^{t} \Xi^{q}$.

Proof of the Deduction Theorem for ${ }^{k}{ }^{k}{ }^{n}$: Let there be p steps $Y_{1} U_{1} \ldots$ $U_{n}, \ldots, Y_{p} U_{1} \ldots U_{n}=Y U_{1} \ldots U_{n}$ in the proof of $Y U_{1} \ldots U_{n}$ from Δ and $X_{1} U_{1} \ldots U_{n}, \ldots, X_{k} U_{1} \ldots U_{n}$. We show by induction on m that provided

$$
\begin{gather*}
\Delta \vdash \mathbf{L}_{n} X_{i}, \text { for } 1 \leqslant i \leqslant k, \\
\Delta \vdash^{k} \Xi^{n} X_{i} \ldots X_{k} Y_{m}, \text { for } 1 \leqslant m \leqslant p . \tag{1}
\end{gather*}
$$

There are five cases to consider (assuming $\vdash \mathbf{W} Q U$ is included):

1. Y_{m} is X_{i} for some $1 \leqslant i \leqslant k$,
2. $Y_{m} U_{1} \ldots U_{n}$ is a constant (wrt U_{1}, \ldots, U_{n}), i.e., an axiom or a part of Δ,
3. $Y_{m} U_{1} \ldots U_{n}$ is $\mathbf{W Q} U_{i}$,
4. $Y_{m} U_{1} \ldots U_{n}$ is obtained from $Y_{i} U_{1} \ldots U_{n}$ by Rule Eq.,
5. $Y_{m} U_{1} \ldots U_{n}$ is obtained from $Y_{i_{1}} U_{1} . . . U_{n}, . ., Y_{i_{t}} U_{1} . . . U_{n}$ and $Y_{j} U_{1} \ldots U_{n}$ by Rule ${ }^{t}{ }_{\Xi}{ }^{n}$ where $i_{1} \ldots i_{t}, j<m$.

Cases 1, 2, and 3 involve no inductive hypotheses and so take care of the $m=1$ step, but they are also applicable when $m>1$. In the inductive step the theorem is assumed for Y_{t} with $t<m$. Cases 1 and 2 are given directly by Theorems 1 and 2 and Case 3 follows from Axiom 5 by applying Rule ${ }^{1} \Xi^{1} k$ times.

Case 4: If $\Delta \vdash Y_{m} U_{1} \ldots U_{n}$ follows from $\Delta \vdash Y_{l} U_{1} \ldots U_{n}$ and

$$
Y_{m} U_{1} \ldots U_{r}=Y_{l} U_{1} \ldots U_{r}(0 \leqslant r \leqslant n)
$$

then it follows that $Y_{m}=Y_{l}$ so that:
$X_{1} u_{1} \ldots u_{n}, \ldots, X_{k} u_{1} \ldots u_{n} \supset_{u_{1} \ldots u_{n}} Y_{l} u_{1} \ldots u_{n}=X_{1} u_{1} \ldots u_{n}, \ldots$, $X_{k} u_{1} \ldots u_{n} \supset_{u_{1} \ldots u_{n}} Y_{m} u_{1} \ldots u_{n} ;$
the result follows.
Case 5: Let $Y_{m} U_{1} \ldots U_{n}$ be obtained from $Y_{i_{1}} U_{1} \ldots U_{n}, \ldots, Y_{i_{t}} U_{1} \ldots U_{n}$ and $Y_{j} U_{1} \ldots U_{n}$ by Rule ${ }^{t}{ }_{-}^{q 3}$ (with $i_{1}, \ldots, i_{t}, j<m, t \leqslant k$, and $g \leqslant n$). Then $Y_{j} U_{1} \ldots U_{n}$ must have the form
$W_{1} U_{1} \ldots U_{n} v_{1} \ldots v_{q}, \ldots, W_{t} U_{1} \ldots U_{n} v_{1} \ldots v_{q} \supset_{v_{1} \ldots v_{q}} Z U_{1} \ldots U_{n} v_{1} \ldots v_{q}$ where

$$
\begin{aligned}
& W_{p} U_{1} \ldots U_{n} V_{1} \ldots V_{q}=Y_{i p} U_{1} \ldots U_{n} \text { for some } \\
& V_{1}, \ldots, V_{q} \text { and all } p, 1 \leqslant p \leqslant t
\end{aligned}
$$

(N.B. each V_{r} may involve $U_{1} \ldots U_{n}$) and

$$
Z U_{1} \ldots U_{n} V_{1} \ldots V_{q}=Y_{m} U_{1} \ldots U_{n}
$$

By the inductive hypothesis we have:

$$
\begin{aligned}
& \Delta \vdash X_{1} u_{1} \ldots u_{n}, \ldots, X_{k} u_{1} \ldots u_{n} \supset_{u_{1} \ldots u_{n}} W_{p} u_{1} \ldots u_{n} V_{1} \ldots V_{q} \\
& \quad \text { for } 1 \leqslant p \leqslant t
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{0} \vdash & X_{1} u_{1} \ldots u_{n}, \ldots, X_{k} u_{1} \ldots u_{n} \supset_{u_{1} \ldots u_{n}} \\
& \left(W_{1} u_{1} \ldots u_{n} v_{1} \ldots v_{q}, \ldots, W_{l} u_{1} \ldots u_{n} v_{1} \ldots v_{q}\right. \\
& \left.\supset_{v_{1} \ldots v_{q}} Z u_{1} \ldots u_{n} v_{1} \ldots v_{q}\right)
\end{aligned}
$$

[^0]Thus taking Theorem 3 with V_{r} for $t_{r} u_{1} \ldots u_{n}(1 \leqslant r \leqslant q)$ and Z for Y we obtain (1).

Note that in proving this deduction theorem we have used Rule ${ }^{i} \xi^{j}$ only for $i \leqslant k$ and $j \leqslant n$ except perhaps in the proof of Theorem 3 where we used ${ }^{1} \Xi^{t+1}$ where $t \leqslant k$. If we have Rule ${ }^{k} \Xi^{n}$ for all non-negative integers k and n we clearly also have the Deduction Theorem for ${ }^{k} \Xi^{n}$ for all k and n. If we have Rule ${ }^{i} \Xi j$ only for $i \leqslant k$ and $j \leqslant n$ where $k<n$ we can prove the Deduction Theorem for ${ }^{i} \Xi^{j}$ for all $i \leqslant k$ and $j \leqslant n$. If, however, $k \geqslant n$ we can only prove the Deduction Theorem for ${ }^{i} \Xi^{\xi}$ for $i \leqslant n-1$ and $j \leqslant n$ because of our need of Rule ${ }^{1} \Xi^{t+1}$ for $t \leqslant i$.

Also note that L_{n} has been left completely unspecified in the axioms. It could represent the class of n-ary predicates ranging over individuals, i.e., $\mathbf{L}_{n}=F_{n} \mathbf{A} \ldots \mathbf{A H}$, over other predicates, e.g., $\mathbf{L}_{n}=F_{n}(\mathbf{F A H})\left(\mathbf{F}_{2} \mathbf{A A H}\right) \ldots \mathbf{H}$, over propositions, i.e., $L_{n}=F_{n} \mathbf{H} \ldots \mathbf{H}$, over functions, e.g., $L_{n}=$ $F_{n}(\mathbf{F A A})\left(\mathbf{F}_{2} \mathbf{A A A}\right) \ldots \mathrm{H}$ or over any combination of these, e.g., $\mathbf{L}_{n}=$ $F_{n} H(F A A)\left(F_{2} A A H\right) \ldots H$.

Thus as soon as we decide on a definition of L_{n} in Axioms 2, 3, 4 (and 5) we have a deduction theorem for ${ }^{k} \Xi^{n}$ in terms of that \mathbf{L}_{n}. Of course certain choices of L_{n} will lead to an inconsistency (such as Curry's paradox for $\mathbf{L}_{n}=\mathbf{W Q}$-see [1]). It is also possible, as it was in [3], to do without Axiom 2, but this would be at the cost of complicating Axiom 3 somewhat.

REFERENCES

[1] Curry, H. B. and R. Feys, Combinatory Logic, Vol. I, North Holland Co., Amsterdam (1958).
[2] Curry, H. B., J. R. Hindley, and J. P. Seldin, Combinatory Logic, Vol. II, North Holland Co., Amsterdam (1972).
[3] Bunder, M. W., "A deduction theorem for restricted generality," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 341-346.
[4] Bunder, M. W., "Propositional and predicate calculuses based on combinatory logic," Notre Dame Journal of Formal Logic, vol. XV (1974), pp. 25-34.
[5] Bunder, M. W., "Some notes on 'A deduction theorem for restricted generality'," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 153-154.

[^0]: 3. If ${ }^{t} \Xi^{q}$ for $t \leqslant k$ and $q \leqslant n$ is defined in terms of ${ }^{k} \Xi^{n}$ in the way suggested above, we need only consider uses of Rule ${ }^{k} \Xi^{n}$ itself.
