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LOCAL AND GLOBAL OPERATORS AND
MANY-VALUED MODAL LOGICS

CHARLES G. MORGAN

1 Motivation In formal contexts, we may distinguish between two types
of conditional operators.* The truth value of a local conditional is defined
in terms of the truth values of its antecedent and consequent. The truth
value of a global conditional is defined in terms of the possible truth-values
of its antecedent and consequent. Global conditionals are usually formed by
applying a modal operator to a local conditional. For example, strict
implication is defined by applying the necessity operator to material
implication. That is, "p-$q" is defined as "L(p CO # ) " , where CO is the
standard two-valued material implication and the properties of the neces-
sity operator " L " are determined by the particular modal logic being
employed.

There has been some move to formally treat ordinary language
counterfactual conditionals as global conditionals of a certain sort. (See for
example [1] and [3]). Viewed from this perspective, the local conditional
involved is not the standard two-valued material implication, but is rather
a three-valued operator.

We may use Γ, F, and / for " t r u e " , " fa lse", and "indeterminate",
respectively. We may then define the conditional Cl as follows (contrasting
it with material implication CO):

CO I T F C l I T I F

T T F T T I F

F T T I I I I

F i l l

Some possible examples of conditional statements which may perhaps be
appropriately translated by Cl are: "If you trespass, you will be

*This research was supported by a grant from the Killam Foundation, administered by the Canada
Council.

Received May 25, 1974



402 CHARLES G. MORGAN

prosecuted." "If you attack me, I will kill you." In cases in which the
antecedent of these conditionals is not fulfilled, it may plausibly be argued
that we cannot determine that the statements are either true or false; they
remain indeterminate.

Now, consider a counterfactual statement: "If we were on the moon,
we would see a grey, barren landscape." We know that the antecedent is
false, and yet we do not want to say the truth value of the statement is
indeterminate—we would instead claim it to be true. One possible way of
formally treating such expressions would be to render them as global
conditionals, perhaps compounded from Cl. Letting V be the semantic
valuation function, and employing the standard "possible worlds" interpre-
tation of modal operators, a possible semantic definition would be:

V (if p then q, w{) = ( T ' i f f o r a 1 1 w* s u c h t h a t wtRwh v& C1 «> wi) φ F

\F, otherwise

In other words, we could semantically define the monadic operator L as
follows:

( ( . . IT, if for all Wj such that w{RWj V(p, w ) Φ F

[F, otherwise

Then the global conditional could simply be defined as L(p Cl q).
In a many-valued system, there are a variety of possible definitions

for the operator L and for the local conditional. Each pair of definitions
will yield in general another possible global conditional. It would be useful
if there were a systematic method for investigating the formal properties
of such global conditionals.

In this paper we present a scheme for treating a large class of global
conditionals via many-valued modal logics. We will deal with the class of
many-valued logics treated in [4]. We will make use of only one modal
logic, namely T (see [2]). Our purpose in treating only one modal logic is
pedagogical—most any modal system could be used. In addition, although
we will for the sake of clarity restrict our treatment to the propositional
case, these results may be extended to the predicate calculus.

Our procedure for constructing a many-valued modal logic is quite
simple—we begin with a many-valued system, add a standard modal
system, and then add a few axioms for completeness.

We will use \- with and without subscripts in the usual manner to
indicate provability in specific systems. In particular, we will use ^ to
indicate provability in a standard complete two-valued system; the two-
valued system is assumed to use the same sentence letters and the same
connectives 3, &, v, and ~, as the multi-valued and modal systems,
although of course the semantics for these syntactical symbols will not be
the same for two-valued logic as for many-valued or modal logic. Thus,
for our purposes, the same syntactical expression may occur in the
two-valued system, in the n-valued system, n > 2, and in the modal system,
but of course the interpretation of the expression will differ from system to
system.
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2 A many-valued system The many-valued system we will employ is
treated in detail in [4]. For the semantics, we assume integer values
1 , 2 , . . ., My where 2 ̂  M. A certain value S, 1 < S ̂  M, is assumed to be
" c r i t i c a l " . The values greater than S are said to be undesignated (false)
and those less than or equal to S are said to be designated (true). We
assume that a certain number of "truth-functional" connectives JF; are
given. We use P, Q, andi? as meta-expressions, with or without subscripts
and superscripts. If F{ is a truth function of n components then if Pl9.. .,Pn

are expressions, the truth value of the expression F{(PU . . ., Pn) is
denoted by fi(pu . . .,£„), where each pj is the truth value of Pj. The
specific object language symbols we shall employ include the monadic
sentence operators Jky l^k^M. The expression J&(P) intuitively means
"P takes value k". We assume that Fl9 . . ., FM refer to J19 . . .,JM,
respectively. We use 3 , &, v, and ~ as conditional, conjunction, disjunc-
tion, and negation, respectively. We will use F M + 1 , . . ., F M + 4 to refer to
these specific connectives. We assume the following "standard conditions"
for these operators:

(1) The value of P & Q is designated iff both P and Q are designated.
(2) The value of P v Q is undesignated iff both P and Q are undesignated.
(3) The value of P ^ Q is undesignated iff P is designated and Q is un-
designated.
(4) The value of ~ P is designated iff P is undesignated.
(5) The value of Jk(P) is designated iff the value of P is k.

Any matrix may be assigned to these operators as long as conditions (l)-(5)
are satisfied. Any other operators may be introduced via the axioms to be
given below. Additional operators will be referred to by Fj, for j > M + 4.
We will also use the following notational conveniences:

s

Σ)P, = P rv. . .vP s

s

Π Pi = pr & . . . & PS

i = r

s (Q if r < s

ι~r [ps Ώ[ P{Q if r > s
i-r

The axiom schemes for our multi-valued logic may then be given as
follows:

(Aί) Q^)(PΏQ)

(A2) (PΏ(QZ) R))D(QΏ(PZ)R))

(A3) (P 3 Q) D ((Q => # ) D ( P 3 R))

(A4) (Jk(P) D (Jk(P) D Q)) D (Jk(P) D Q) for 1 ̂  k < M
Λί

(A5) JΓ (J, (P)=>Q)Q

(A6) Ji(P) D P , f o r l ^ i ^ s
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n

(A7) [^Jp^Pk) Jfi{Pl,...,pn)(Fi(Pu >Pn))> f ° r each rc-place operator Fiy

1 ^i.

The only rule of proof is modus ponens (nip): from P and P 3 Q, infer Q.
If an expression P is provable in the system we will write [mvP. A word of
clarification may be in order concerning axiom schema (A7). Suppose for
example that M = 3, and consider the following dyadic operator:

* 1 2 3

1 1 2 3
2 1 2 3
3 2 3 1

Then (A7) would yield nine axiom schemes, one for each entry in the
matrix. For example, the following 3 axioms correspond to the first
column:

Ji(Pi) =3 (Ji(P2)
 D Jι(Pι * PJ)

J2(Pi) ^ (Jι(P2) => Ji(Pι * P2))

J 3 (Λ) ^ (Jι(Pΰ D JJiPi * P2))

By means of (A7), any truth functional operator desired may be introduced
into the system.

Each choice of M and S will yield in general a different system.
However, for each system it is possible to prove the following:

Theorem 1 For any expression P, \mP iff P always takes a designated
value. (See [4], Chapter III.)

Theorem 2 Consider an expression P using only the operators 3 , &, v, and
~. Then v-2P iff (mvP.

Proof: If we replace ''designated'' and "undesignated" in the standard
conditions by " t r u e " and " fa l se" , we obtain the normal two-valued
semantics for the operators. The result then follows from the complete-
ness of the two-valued system and Theorem 1. Q.E.D.

3 The addition of the modal system For the sake of simplicity, we will
here discuss only the system T; we will presuppose the treatment given in
[2]. Any modal system formed by adding special axioms and rules of proof
to a complete two-valued base could have been used. The addition of the
modal portion is a device to introduce the desired "possible world"
semantics into our system. We will now begin to be a bit more formal. We
will initially assume that only one monadic modal operator L is to be
introduced. We add the following axiom schemes to (A1)-(A7):

(A8) L(P) 3 p
(A9) L(P 3 Q) D (L(P) 3 L(Q))

In addition, we have the rule of necessitation (nee): From P infer L(P). We
assume then that the syntax consists of &, v, D, ~, Jl9 . . ., JM, and L. In
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addition we assume that we are given a set A of atomic sentence letters

For the semantics, an interpretation /consists of a non-empty set W of
worlds wl9 w2, . . ., a subordination relation R on the worlds, and a mapping
V from Ax W into the integers {l, . . .,M}. For T, the only requirement
on R is that it be reflexive. The valuation function F i s extended to more
complex expressions in two different ways. For the truth-functional opera-
tors Fiy discussed in the last section, we define:

V(Fi(Pl9 . . ., Pn), Wj)=fi(V(Pu wj), . . ., V{Pn, Wj))

where F( is an rc-ary operator. Thus each of the truth-functional operators
is a local operator, in the sense that in each world the value of an expres-
sion whose major operator is local can be determined from the values of
its constituents in that same world.

The operator L is a global rather than a local operator. That is, in
world W{ the determination of the value of an expression L(P) depends on
the values that P takes in worlds other than W{\ in particular, it depends on
the values that P takes in the worlds subordinate to W{. That is, V{L{P),Wi)
will be a function of all values V(P, Wj) such that WIRWJ. We will be more
specific at this point.

Intuitively, L(P) means that P is necessary, or ' ' t r u e " in all possible
worlds. Therefore, we will require that the definition of L must meet the
following standard condition:

(6) The value of L(P) in any world W{ is designated iff in every world Wj
such that WiRWj the value of P is designated.

Further, each of the standard conditions (l)-(5) are to be applied to each
world. That is, each condition should be preceded by the phrase "In each
world . . . " and followed by the phrase " . . . i n that world". The operator
L could be defined in many different ways, depending on the values of M and
S. To say that P never takes the value k in any world (subordinate to the
world in which the statement is made, say Wι) can be expressed by
L(~Jk(P))> That is, ~Jk(P) is designated in every world subordinate to Wi\
which means that Jk(P) is undesignated in every world subordinate to Wi\
which means that P does not take the value k in any world subordinate
to W{. Thus, to say that P takes the value k in some world subordinate to
the world in which the statement is made can be expressed by ~L(~J&(P)).
We can then express all possible such situations by combinations of these
expressions. For example, suppose M= 3, and consider the following set
of expressions:

(SD1) ~L(~J1(P)) & ~L(~J2(P)) & ~L(~J3(P))
(SD2) Li-J^P)) & ~L(~J2(P)) & ~L{~J3(P))
(SD3) -Li-J^P)) & L(~J2(P)) & ~L(~J3(P))
(SD4) L(~JilP)) & L(-J 2 (P)) & ~L(~J3(P))
(SD5) ^L(~Jχ(P)) & ~L(~J 2 (P)) & L(~J3(P))
(SD6) Li-J^P)) & ~L(~J2(P)) & L(~J3(P))
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(SD7) ~L(~JX(P)) & L(~J2(P)) & L(~J3(P))

(SD8) Li-J^P)) & L(~J2(P)) & L(~J3(P))

Each of the expression schemes (SD1)-(SD8) will be called a possible

world state description (pwsd). The first one, (SD1), says intuitively: there

is a subordinate world in which P takes value 1, and a subordinate world in

which P takes value 2, and a subordinate world in which P takes value 3.

Note that (SD8) is actually contradictory, since it says that P takes no value

at all.

We assume that the value of L(P) in a given world W{ depends only on

the value that P takes in worlds subordinate to Wi. Thus the specific

semantic definition of L can be expressed by using the pwsd's. To

elaborate the example above, suppose S = 2, and suppose we want L to be

defined in the following way:

τrίτ(τλ \ _ ί 1 i f f f 0 Γ a 1 1 Wi S U C h t h a t WiRWj9 V(P, Wj) Φ 3
v{UP),Wi)= | 3 o t h e r w i s e

Such a definition satisfies standard condition (6). We may express this

definition by a series of expression schemes of the language as follows:

(SD1) => UUP))

(SD2) 3 J3(L(P))

(SD3) D J3(L(P))

(SD4) D J3(L(P))

(SD5) D J,(L(P))

(SD6) D J,(L(P))

(SD7) Z) J,(L(P))

(SD8) D J,(L(P))

It is easy to generalize from this example. The total number of pwsd's

depends on M. There will be 2M pwsd's. If we let f(SDi) represent the value

that L(P) takes under the conditions described by pwsd (SDi), then we can

express the semantics for L by a set of axiom schemes:

(A10) (SDi) 3 JfiSDi) (L(P)) for 1 < i < 2M

Alternatively, to lessen the number of axioms, we could use a method

closer to the partial normal forms of [4]. This procedure amounts to

considering each k, l^k*zM, and selecting all and only those (SDi) for

which the expression takes value k. We would then have M axiom schemes

of the form

Έ(SDi) Ώjk(L(P)).

But the results are equivalent. The addition of axiom scheme (A10) is

necessary to guarantee the completeness of the system. We will write h

with no subscript to indicate provability in the combined system.

The standard system T is formed by adding axioms (A8) and (A9) and

the rule nee to a complete system of standard propositional calculus. We

will use \γ to indicate provability in standard two-valued T. Formed in
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this way, the system T can be shown to be complete with respect to the
usual two-valued possible world semantics in which R is required only to
be reflexive. We obtain useful relations between T, the mv-system, and the
combined system by the following theorems:

Theorem 3 For any expression P, if \-P then in every world in every
interpretation, P takes a designated value.

Proof: The proof is the familiar one. It is an easy matter to verify that
the theorem is true of any instance of any of the axioms and that the
inference rules preserve the desired property. Both of these facts depend
on our assumption that the connectives satisfy standard conditions. Q.E.D.

Theorem 4 If P is any expression which contains no occurrence of L; then
hΰϊPiffhP.

Proof: First suppose \myP. Since the axioms and rules of proof for the
multi-valued system are contained in the combined system, the mv proof of
P also serves to show HP. On the other hand, suppose hP. Then by
Theorem 3, P takes a designated value in every world in every interpreta-
tion. But that means P always takes a designated value in the mv
semantics. Then by Theorem 1, tmvP. Q.E.D.

Theorem 5 Let P be any expression whose only connectives are 3, &, v, ~,
and L. Then HP iff \γP.

Proof: First, suppose HP. Then by Theorem 3, in every world in every
interpretation, P takes a designated value. If we replace the terms
"designated" and "undesignated" in standard conditions (l)-(6) by the
terms " t rue" and "false", respectively, we obtain the statement of the
semantics for these connectives in T. Thus P is designated in every world
in every interpretation in the combined system iff P is true in every world
in every interpretation in the system T. But T is complete, so \γP. On the
other hand, suppose \γP. Then by Theorems 2 and 4 and the fact that all
the axioms and rules of proof of T are in the combined system, we have \-P,

Q.E.D.

Theorem 6 Let Px and P2 be any two expressions and A{ be any sentence
letter. Let P[ be the result of uniformly substituting P2 for Aj in P x . If
\-Plf then \-p[.

Proof: We transform the proof of Px by substituting P2 for A; everywhere.
Since we are using axiom schemes, the property of being an instance of an
axiom scheme is preserved. Then for any step in the proof of P l 5 the rules
used to justify that step may also be used to justify the corresponding step
in the transformed proof. Q.E.D.

4 Completeness of the combined system We will construct a Henkin
style completeness proof. Thus we will first discuss consistent sets and
maximally consistent sets. A finite set of expressions {Pl9 . . ., Pn} is said
to be consistent iff not H~(-F\ & . . . & Pn)', an infinite set of expressions is
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consistent iff every finite subset is consistent. A set of expressions is said
to be maximally consistent iff (a) it is consistent, and (b) if any expression
not in the set is added to it, the resulting set is inconsistent. The proofs of
the following theorems are-directly parallel to the proofs in [2], Chapter 9.

Theorem 7 If Jb is a maximally consistent set then there is no expression
P such that both P and ~ P are members of Jb.

Theorem 8 If & is a maximally consistent set then for every expression P}

either P or ~ P is in Jb.

Theorem 9 If Jb is a maximally consistent set then for any expressions, P
and Q, if P D Q is in Jb and P is in Jb then Q is in Jb.

Theorem 10 Any consistent set of expressions Jb may be extended to a
maximally consistent set Jb1 such that Jb c Jb1.

Theorem 11 For any expressions P, Pl9 . . ., Pn, if {L{PJ), . . ., L(Pn),
~ L(~ P)} is a consistent set then so is {Pιy . . ., Pw, P}.

For the completeness proof, we will also need the following theorem:

Theorem 12 If Jb is a maximally consistent set then for every expression P
there is exactly one k such that Jk(P) is a member of Jb.

Proof: Let P and Jb be given. We first show that there is such a k. By
Theorem 8, for each k such that 1 < k < M, either Jk(P) is in Jb or ~Jk(P) is
in Jb. But ~Jι(Ai) & . . . & ~JM{Aι) is an mv-contradiction. Hence by
Theorem 1, lmv~(~JiCAf ) & . . . & ~JM(A, )). But then by Theorem 4 and
Theorem 6, i—(~JΊ(P) & . . . & ~JM(P)). Thus, since Jb is consistent, it
cannot be the case that for every k, 1 ̂  k ^ M, ~Jk(P) is in Jb. Hence for
some k, Jk(P) is a member of &. To show that k is unique, suppose for
fci * k2, JkSp) is in Jb and Jk2(P) is in Jb'. Note that JkfAi) & Jk2(Ai) i s a n m v
contradiction, and hence \πR~(JkjAi) & J&2C4*)) Thus i—(J k l (

p ) &Jk2(
p^-

But this contradicts the assumption that Jb is consistent. Hence k must
be unique. Q.E.D.

Theorem 13 Let Jb be a maximally consistent set and let P be any expres-
sion. Then P is in Jb iff for some k, 1 ̂  k ^ S, Jk(P) is in Jb.

Proof: First, suppose P is in Jb. By Theorem 12, we know there is some k
such that Jk(P) is in Jb. Suppose k > S. Then A{ & Jk(Λi) is a n rnv con-
tradiction. Hence \-~(P & Jk(P))- But this contradicts the consistency of
Jb, and thus 1 ̂  k ^ S. On the other hand, suppose for some k, 1 ̂  k ^ S,
Jk(P) is in Jb but that P is not in Jb. Then - P is in Jb. But then ~Ai & JjjAi)
is an mv contradiction, and thus h-~(~P & Jk(P)). But this contradicts the
consistency of Jb, and hence P must be in Jb. Q.E.D.

Theorem 14 If Jb is any maximally consistent set and P is any expression

such that h P, then P is in Jb.

Proof: It is not difficult to show that if v-P then I P. Hence if - P were
in Jb, Jb could not be consistent. But then by Theorem 8, P is in Jb. Q.E.D.
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We now proceed to our main result, the completeness theorem for the
combined system.

Theorem 15 For any expression P, if P takes a designated value in every
world in every interpretation, then HP.

Proof: By the standard Henkin style argument, it is sufficient to show that
for any consistent set of formulas, there is an interpretation which assigns
a designated value to each formula of the set. Suppose 3^ is our consistent
set. By Theorem 10, we extend ^ to a maximally consistent set JbQ.
Consider an arbitrary expression of the form ~ L(~ P) in ^ 0 , and consider
the set W' = {p}u {Q: L(Q) is i n ^ 0 } . It follows from Theorem 11 that W is
consistent. Hence we can extend %£' to a maximally consistent set Jbx. In
this fashion, we construct a family of maximally consistent sets Jbi such
that (a) M Q Jb Q9 and (b) for any z > 0 , there is some j such that Jbi is
formed on the basis of Jbj by extending a set of the form W above, and
(c) for every Jb{ and every expression of the form ~ L(~P) in Jbi, there is a
Jbj formed by extending a set of the form W\ above. To each set Jbi we
associate a world W{. We set WIRWJ, and for i Φ j , we set WiRwj iff Jbj was
formed on the basis of Jb-i. In each W{, we assign every sentence letter Aj
the value k for which J&(A; ) is in Jb{\ Theorem 12 guarantees the possibility
of making such an assignment. We now show that in every world W{, for any
expression P, V(P, w{) = k iff Jk(P) is in Jb{. The proof is by induction on
the complexity of P.

Case 1: Suppose P is a sentence letter, Aj. Then the theorem is true by
construction of the interpretation.

Case 2: Suppose P is of the form Fk(Plf . . ., Pn) where Fk is a local rc-ary
syntactical operator. We know that for any W{9 for each Py, there is a kj
such that Jk(Pj) is in w{. By induction, V(Pj, w{) = kj. Further, by
Theorems 9 and 14 and axiom scheme (A7), we know Jfk{kv...,kn)(P) is in Jb{.
But by definition of Fk, V(Fk(Pu . . ., Pw), wt) = fk(k19 . . ., kn).

Case 3: Suppose P is of the form L(Q). Consider an arbitrary world W{.
For each k, l^k^M, consider the expression L(~Jj,(Q)); either it or its
negation must be in W{. Form the pwsd (SDi) by conjoining the expressions
L(~Jk(Q)) which are in Jbi and the expressions ~L{~Jk{Q)) which are in Jb{.
It is not difficult to show that for any expressions

Hence by Theorems 14 and 9, (SDi) is in Jbi, But then by Theorems 14 and
9 and axiom scheme (A10), Jf(sDi) (L(Q)) is in Jbi. We must show that L(Q)
takes value f(SDί) in Wi. Consider each conjunct in (SDi). (a) If it is of the
form L(~Jk(Q)), then by construction, ~Jk(Q) is in every set Jbj constructed
from Jbi) then Jk(Q) is in no set Jbj constructed from Jb^; further, by axiom
scheme (A8), Jk(Q) is not i n ^ ; thus by induction Q never takes value k in
any world Wj such that WiRwj. (b) If it is of the form ~ L ( ~ J^(Q)), then by
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construction, some set M\ was constructed from Jfi9 and Jb^ contains Jk(Q);
hence by induction, Q takes value k in WJ, and since Jb^ was constructed
from jbi, we know W{RWJ. Thus each of the conditions specified in (SDi) is
satisfied. Hence by definition, V(L(Q), w{) = f(SDi).

Thus we know that in every world Wi, for any expression P, V(P,Wi) = k
iff Jk{P) is in JbiΛ In particular then, V(P, w0) = k iff Jk(P) is in &0. But then
by Theorem 13, every expression in Jb0 is assigned a designated value.
Thus in particular, every formula of the original consistent set ty is
assigned a designated value. Q.E.D.

5 Applications Using the techniques presented here, it is possible to
investigate the properties of a wide variety of global conditionals and to
investigate their interrelationships. The first step is to decide what
structure one wishes to impose on the possible worlds. (In the case
sketched above, we placed no restrictions on the number of worlds and
required only that the relation R be reflexive.) We then attach the axioms
required to impose that structure to the many-valued logic of our choice.
There are at least three ways then of obtaining different global operators
within the same system.

The first way of obtaining different global operators is to introduce a
multiplicity of local operators. For example, consider the conditionals
defined by the following matrices:

C2 I T I F C3 \ T I F

T T F F T T F F
I I I I I I I F
F i l l F i l l

Varied global operators may then be expressed by applying the operator L
to the local operators. For example, we may wish to compare L(P Cl Q),
L(PC2Q), and L(PC3Q).

A more direct route requires the introduction of another axiom
scheme. Suppose we wish to introduce several global operators K^, where
Km is the mth n-ary operator. We need to slightly generalize the notion of
a pwsd. Consider an expression of the form Jk^Pd & . . . & Jkn(Pn); there
are Mwsuch expressions—we will call them local state descriptions (Isd's).
A possible world state description consists of a statement of which of the
Isd's are realized and which are not. Thus there are 2M" pwsd's. The
following axiom scheme must then be added to our system:

(All) (SDi) D Jfn{SDi) (K£(PU . . ., Pn)) for 1 « i < 2M"

In this way, any global operator may be introduced into the system, as long
as its semantics may be defined in terms of pwsd's. The completeness
proof remains much the same as before, with an additional step in the
induction for K^; such a step would closely parallel the step for the L
operator. In fact, axiom (A10) is just a special case of axiom (All).

The problem with the above two methods is that they presuppose the
same possible world structure for all global operators. We may wish to
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introduce one global operator with the possible world structure of T and
another with the possible world structure of S4, for example. Our third
approach is then to add separate modal axioms for each operator to be
introduced. However, the completeness of a system so constructed is an
open question.

In conclusion, it has been demonstrated for the propositional case that
once a number M of truth values, a critical value S, and a possible worlds
structure have been selected, it is possible to construct a many-valued
modal logic with the desired semantics. There seems to be no barrier to
extending these results to the predicate calculus as well.
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