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Incompactness in Regular Cardinals

SAHARON SHELAH*

Annotated Contents

Introduction: We review the old axioms, the theorems on A singular and
two examples.

Section 1 A general theorem on lifting incompactness: Continuing [6], we
give additional axioms axiomatizing “free amalgamation”, and prove with them
transfer theorems of the form: “if there is a A-free not \*-free pair A/B,
|A| = N then there is a u-free not u*-free pair A’/B’, |A’| = p”.

Section 2 Particular incompactness theorems: We apply Section 1 for some
examples, and show an almost equivalence between a colouring number problem
of graphs and a combinatorial problem IC()\, &) [existence of pairwise disjoint
end segments of branches of a tree].

Section 3 Canonical counterexamples for PT(\, k*): We define a \-set
for A\ an uncountable regular cardinal, which is a kind of (<w)-dimensional
stationary set. Using this we analyze counterexamples to PT(\, «*). As a
consequence we prove:

If PT(\, ®,) fails, then there are countable A4;(i < A\) such that {4;:
i < A} has no transversal but for every o < N we can find 8;(i < i(*)) o = {8;:
i< i(*)} and Ag, — | 4, is infinite.

J<i

Section 4 Some investigation of PT: We prove PT(\, k*) = PT(\, «*%)

and characterize the A for which PT(\, N\).
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Section 5 \-freeness of Abelian groups: We prove that, if enough axioms
are satisfied, then incompactness in A implies PT(\, «*) fails. We then prove
that PT(\, X,) is equivalent to “every A\-free Abelian group is A*-free” and to
“every strongly N-free Abelian group is A*-free”.

We finish with some concluding remarks on further research.

Introduction

Context: U is a fixed set (we shall deal with subsets of it) and F a family of pairs
of subsets of it. We write A/B € F or say “A/B is free” or “A is free over B”
when (A4, B) € F, x will be a fixed cardinal.

Axiom II A/B s free if AU B/B is free; A/A is free.

Axiom III If A/B, B/C are free then A/C is free.

Axiom IV If A;(i < \) is increasing, for i < \ A,/U A;U B is free then
j<i

\J A/B is free.

i<N\

Definition 0.1 We say “for the x-majority of X € 4, P(X)?” if there is an

algebra ¥ with universe 4 and x functions such that any X € A closed under

those functions satisfies P. We can replace X € A by X € ®(A4) or X €
®\(A); alternatively we say {X S A: ®(A)} is a x-majority.

Axiom VI If A is free over BU C then for the x-majority of X< AU BU
C,ANX/(BNX) U C is free.

Axiom VII If A is free over B, then for the x-majority of X € A U B,
A/(ANX)U B s free.

Definition 0.2 A/B is k-free if for the x-majority of X C A U B, if | X| <
k then A N X/B is free.

Definition 0.3  EX(A) is the filter on ®<,(A) generated by the sets G,(F) =4
{UAi: Ai cC A, 'A,I < k, F((Aj j < 1)) c Ai+l} where Fi: K>[G)‘<K(A)] N
(PIZ;((A) (we use « regular >R).

Theorem 0.4 (Shelah) Suppose |A| = \, \ is singular, N\ = Y, N\, \;
i<cf\
increasing continuous. Then A/B is free iff A/B is \-free iff for every i {X €

<)\+(A) X/B free} + ¢ modEX+ (A).

Remark: The theorem was proved with more axioms (/*, V) in [6]. The author
then eliminated I* and this is presented in [1]. Later (see [7]) the author found
a simpler proof; and both new parts avoid Axiom V. In Hodges [3] this is
presented (and more is proved) in a different, but equivalent axiomatic
treatment.

Here we wonder what occurs for regular \. The following examples show
that there may be very different behaviors, hence it is reasonable to demand
more in proving equivalence.
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Example 0.5 Let U be the disjoint union of PU Q, R< P X Q, and call A/B
free if there is a one-to-one function g Dom g = Q N (A — B), (gx)Rx and
Rang(g) € A — B. This easily satisfies the axioms (but note A’ € 4 and A/¢
free # A’/¢ is free). Let x = K.

Let A be any cardinal, and suppose UA = {a;: i < N} q; € P & i <,
a; R a; when i <\ < j < \". Then A/¢ is not free. Is it A*-free? Yes, iff
the Chang conjecture fails for (A, A*), i.e. if for the Ro-majority of X €
®n(A)| XN {a;:i<N}| =|X|. Wecanlet SS A" — \ be stationary, 4; = {a;:
i< )\+}, PNA= {a,~+1: i< )\+} U {ao} aiR ajé (_[llmlt, inOt, l<j,j€ S)
Then the Chang conjecture has to be strengthened by reflecting that S is
stationary in an appropriate sense.

You may prefer examples which are varieties.

Example 0.6 We define a variety; with function F, G, H (1-place, 1-place,
2-place respectively) and the equation

(i) F(H((x, y)) = F(x)
(i) G(H(x, y)) =y
(i) H(H(y, x), z) = H(y, 2).

For P, Q, R, A, \ as in the previous example let M be the free algebra
generated freely by {x;: i < A*} U {y;;: i <X <j < \*} subject only to the
(equation of the variety and) relations:

*) F(yi;) = x5, GOij) = xj, yi,j = H(yi,, X;).

Let AN+ A< a< A, {Bii i< N} = (N, a), M, the subalgebra, generated by
{xiri<a} U{y:i<N=j<a}. M,is free: it is freely generated by
Y = {y;5,: i <\}. Clearly Y generates M, as y;,5 = H(Y;p,, X3), Xi = F(ig,)
xg; = G(»;,). By the automorphism we can construct, we should consider only
the equations between elements of M. Then translating the equation in (*) to
the members of Y we get

F(yij) =xi= F(H(Yig; X;)) = xi= F(yip) = Xi

(the second arrow is by the axiom (i). The result is the definition of x; in terms
of y.)

G(yij)) =x;= GH(yig;, G(¥g,j))) = G(ygj) = G(ye,j) = G(yg, )
Yij=H(ig, x;) = H(yig,, G(¥g;)) = HH(yig;, G(Vey))s G(1e,j))

which holds by equation (ii), (iii) resp.
Similarly, if the Chang Conjecture for A* holds, M is A\ *-free.
But for every 8, A < 8 < \*, M/M,, is not free.

Conclusion Compactness for Abelian groups is not equivalent to compact-
ness for any variety (even x = ).

Historical remark: Sections 1 and 2 were written up together with [6] (in the
Spring of 1975) for dealing with the spectrum {X: there is a A-free not A *-free
A}. The aim was to prove that for a wide class, few spectrums are possible. In
1981 we returned to the subject, and wrote a proof that the transversals for
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families of countable sets and the variety of Abelian groups have the same
spectrum, (as claimed in [6], although we have had to withdraw the similar claim
on the variety of groups). There was a gap in the proof (essentially, indistinc-
tion between (B) and (D) in 3.8) which was corrected later.

We are grateful to Alan Mekler for industriously refereeing the paper and
for providing the followed specific aid: (A) Originally the dichotomy in 2.8 was
carried later, so the nodes of A\-sets were of two kinds; this harms the readability
of the proof, and after his suggestion was removed. (B) The proof of 5.2 was
marred by jumps and misprints, and Mekler wrote a proof which adds the
assumption that freeness is witnessed by bases (and the exchange principle
holds). This differs from the author’s proof in its proof of Fact C (also, Fact
B was replaced by a simpler construction). The proof is included in an appen-
dix by his kind permission. (C) He also suggested writing the equations in the
proof of 5.3(1) so as to apply also to groups.

For consistency results (on compactness in regular cardinals (e.g., in
R,241)) see [4] where alsa, e.g., “G.C.H. = = PT(R8,,, 8;)” hold.

wy?

1 A general theorem on lifting incompactness Continuing [6] we shall in this
section give additional axioms axiomatizing “free amalgamation” and prove
with, and then transfer, theorems of the form “if there is a A-free not A*-free
pair A/B, |A| = \, then there is a u-free not u-free pair A’/B’, |A’| = pu”.

We shall work in the context of [6], Section 1, but here F will contain not
only pairs but also triples (A4, B, C), and we shall say “A is free over B/C”
rather than (A4, B, C) € F. The meaning for e.g. groups is that the equations
holding among elements of A U C and of B U C generate the equations holding
among elements of 4 U BU C. (Reading [6], Section 1, pp. 324-326, is recom-
mended.) The axioms for {4, B, C) € F are motivated by “the group generated
by AU A U BU C is the free product of the groups generated by A U C and
B U C over C” or the properties of nonforking.

We shall have also a fixed cardinal x3, x; < x3 < x2, and assume the
following axioms as well as the axioms (conventions and assumptions) of [6],
Section 1 (mostly listed in Section 0 for x = x; U an algebra on U with x,
operations):

Axiom I** If A/B is free, A* € A, then A*/B is free.

Axiom VIII A is free over B/C iff AU C is free over BU C/C.

Axiom VIIIa A is free over B/B.

Axiom IX Commutativity: If A is free over B/C, then B is free over A/C.

Axiom X Transitivity: If A, is free over B/C and A, is free over B/A; U
C, then A; U A, is free over B/C.

Axiom XI Monotonicity: If A is free over B/C, A’ € A, B’ € B, then A’
is free over B/B' U C.

Axiom XII Continuity: If Bi(i < «) is increasing, A free over B;/C for
every i < a, then A is free over U B,/ C.

i<a
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Axiom XIII Existence: If |A| + |B| + |C| < x3, then for some partial
isomorphism f of U, Dom f = cl(A U C) and f is the identity over C and f(A)
is free over B/C (partial isomorphism means it preserves the operators and
relations of U).

Axiom XIIIa If fis a partial isomorphism, |Dom f| < x and |B| < x, then
for some partial isomorphism g, f < g B < Dom f.

Axiom XIV Let A be free over B/C then:
(1) A is free over C iff A is free over BU C.
(2) If AU B/C is free, then A/C is also free.

Axiom XV Invariance: Partial isomorphism preserves freeness of pairs and
triples.

Axiom XVI Hereditarity: If A, B, CE N, (A, B, C) € F then (AN N,
BNN,CNN)€EF.

Remark: (1) The only properties of partial isomorphism we need are their use,
in Axiom XIII and Axiom XV, the fact that an increasing union of partial
isomorphism is a partial isomorphism, and their closeness under compositions.
(2) Some times in the text, Axiom I* should be replaced by Axiom I**.

Lemma 1.1 Suppose (T, <) is a tree (i.e., foreachxe T {y € T: y < x}
is well ordered, of order-type h(x), the height of x in T). Assume that for x,

yET,x<y=>C<SB,SB,, |C|+ Y, |B,| <x3. Then:
xET
(1) For any well ordering <* of T extending < we can find partial isomor-

phisms g.(x € T), Dom g, = B, such that A, = g.(By) satisfy
(*) A, is free over |J Ay/UAy UC, and [x<y =g, S gl

y<*x y<x

(2) If (1)(*) is satisfied then A, is free over UAy/ U4,uc.
XLy y<x

(3) If (1)(*) is satisfied, T; < T and (Vx)(Vy)(x € T)ny <x—->y € T)) (for
1=1,2), then \J A, is free over \J A,/ U A,UC.

xeT) x€T x€TINTy

4) If B,/ U B,U Cis free then A,/ \J A, U C is free.
y<x y<x

(5) If (1) (*) is satisfied andAx/UAy U C is free (for every x) then UAX/C

is free. y<x xET

(6) If (1)(*) is satisfied Ay < A, and for any y < x, A} is free over UAx/
z<)y

UA U, then:

Z<y

(A) for any x, A} is free over |J A4,/ AU C.

Xty y<x

(B) For any x, A, is free over |J Ay/A,}* uly 4,uc

X£y y<x

Proof: (1) Just defined g, by induction on x in the order <*, using Axioms XIII
and XIIIa.
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(2) Prove by induction on z € T(x <* z), in the order <* that A4, is free

over
U{d,:xzy,y<*z3/U 4,UC .
y<x

For z = x it follows by (1)(*) above. For z limit by Axiom XII. So let z
be the successor (by <*) of z;. If x < z; there is nothing to prove, so assume
x % 25, and let A° = U{A,: x £ », y < 3}, so by the induction hypothesis
<Ax, A% U 4,V c> € F. By assumption A, is free over |J 4,/ 4,U

y<x y<*z y<z]

C, hence over A°U Ax/ U A, U C (by Axiom XI) and clearly U A, S Ay
y<zy y<zy

(as y <z > x%y). So by Axiom XI, A4,, is free over A°U A4,/A°U C, hence

over A,/A°U C. So by Axiom IX A, is free over A, /A°U C. So by Axiom X

(Ax, U 4,UC, Ay, A4, stand for B, C, A,, A4,, respectively> A, is free over
y<zi
AOUAZI/U A,UcC.
y<x
Adding to <* a last element oo, we finish.

(3) Easy using (2) and repeating the argument. We prove by induction on
z€TU {} that Ty, (T) N Ty) U {t € T,: t <* 2} satisfy the conclusion (for
limit z use Axiom XII, for successor z use part 2) and Axioms IX, X, and XI.

(4) By Axiom XYV it is immediate.

(5) It suffices to prove that Ax/ U A4, U C is free by Axiom IV. By
y<*x
part (3) 4, is free over |J Ay/ U A4, U C, so by Axiom XIV(1) we get our
y<*x y<x
conclusion.
(6) (A) For any x € T by part (2) A, is free over JA4,/JA4, U C,

x£y y<x

hence by Axiom XI also A4} is free over | J4,/|J 4, U C. By Axioms IX and

yEX y<x
X A} is free over |JA,/JA4; U C. So by Axiom X A is free over UA,/
y<x y<x Xy

UA4; U C (using Axiom IX).

y<x

(B) Easy by (6)(A), (2), and Axiom XII.

Definition 1.2 Let 7 C(\, 6) hold if there is a set S of elements of a tree T,
each of height 6, such that

(1) S| =\,

(2) there is no f: S — T such that f(s) < s (foreachs&€ S) and fornos#¢t€ S
does f(¢) = f(s) <t (such an fis called a pressing-down function).

(3) But for every S’ € S, |S’| <\, there is a pressing down function f: S’ — 7.

Remark: It is easy to check that by [6], Section 2, § < A\, I C(\, §) implies \ is
regular.
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Remark 1: W.l.o.g. each € T — S has height < §, and for some s € S, t < s.

Remark 2: The properties Q,(\) are defined for two purposes: first, to help to
prove incompactness cases; second in the hope of proving that when enough
axioms are satisfied, {n: Q,(X,) holds} determines the incompactness spectrum.

Definition 1.3 B satisfies Qp(\) if there is an A, |A| = \ such that A/B is
A\-free but is not free (in the sense of [6], Definition 1.1(1)!).

Definition 1.4!

(1) B satisfies Q,(8, N\) (0 < n < w) if there are A; (i = 6) and C,(2 </ < n)
exemplifying it. They exemplify it if:

(i) A; is increasing, Ay = &, C; € A; and for limit j < 6, A; = U A;,
i<j
and for some X € 4,, | X| = )\ As; S cl(BU X).
(i) A, is not free over |J 4, U U C,UB.

J<é

(iii) for0 = i< j <6, qu—{k ,n},2<k=n+1.
(@) A4; N () Cis free over <A,~ﬂ N C,) U B (for empty set v

leu lew

(N C=U,andfork=n+1,{k,...,n} =0
lev

®B)A4,N N c,/<A,n N c,) U (A,-n N c,) U B is free.

leu lew leu
Giv)forucw=1ik,...,n},2<k=<n:

(a) A5 N n C, is free over <U A,N N C,) U B.

a<d lew

®B) 4N N C,/(Abﬂ N c,)u(U A, N N C,)UBisfree.

leu lew a<é leu

WMIf0=<i<sj=sd,ucwc{2,...,n,2<k=n+l,w=uU{l k=

! < n} then:
(@) A;N0 () Cyis free over 4;N n c/<A,n N c,) U B and, if

leu iew
w#
(B) AsN () Cis free over |J 4, N n C/(U AN N C,) UB.
leu a<é a<d lew

(2) If 6 = N = xo we write Q,(N\) instead of Q,(\, N).
Claim 1.5

(1) If B satisfies Q,(6, N\), 0 < m < n, then B satisfies Q,,(6, \). In fact the
same A;’s and C;'s exemplify it.
(2) If ¢f 6 = ¢f &’ then B satisfies Q,(6, N) iff B satisfies Q,(6’, N\).

Proof: Easy.

Theorem 1.6 Suppose B satisfies Q,.1(8, k), and u > 6 + k + x;, x3 >
w+ |B| and p is regular. If I C(u, 8) then B satisfies Q,(p).

Proof: Let {A;: i < 6), (C;: 2 <1< n + 1) exemplify the satisfaction of
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Qn+1(8, k) by B. Let S = {t;: i < u} S T exemplify the holding of I C(u, ), and
assume s € T — S implies that for some ¢ € S, s < ¢, hence A(s) < 6; so
|T| = p. For each t € T of height h(t) = o let B, = Ay(,; so we can apply
Lemma 1.1 and get partial isomorphisms g,(¢ € T') satisfying the condition (*)
there (for any extension of < to a well-ordering). In particular

() t < s implies g; extend g
(8) Dom gg = Aps
() 8/(A;) is free over U{gy(A;): t £s,s€ T}/ U g(Anw)) U B.

s<t

Let us define:

LA, = US 8:(As)
te
2. forj<pAf =U{g(As N Cpyy): t =1, i<j}if n>0; and A] = J if
n=20
3.for2=1l=n, Ci= 24,0 C).

We shall prove that {(A/: j < u), (Cj: 2 <! =< n) exemplify Q,(n) for B (if
n =0, A, only is used). Let us check the conditions when n > 0.

Condition (i): Trivial.

Condition (ii): Suppose A, / U AU U C/ U B is free, and we shall get a
<p

contradiction. Checking the defmmons of Aj, C/ we see that our hypothesis
n+1

means that |J g,(4,) is free over |J g,<A5 ny C,) UB. As u>|8| + «,
(€S (€8 =

clearly p > |A4;|, and so as p > x; we get by [6], Lemma 1.2, that for some
closed unbounded subset W of u, for any i < j &€ W (or i €W, j = 9),

n+1
U &:,(Ajs) is free over U &, (A)) U U g,(Aa N U C,) U B.

a<j
Let T, ={¢teT: t< s for some « < i}; then clearly for some i, je W

there is o, { < o < j such that r < t, — t € T; (otherwise S, T will not exemplify
IC(p,8)). By Lemma 1.1(3) g, (A5) is free over U 2:5(As) / U &,(45) UB.
B<i

aFB<p

By using Axiom XI twice, g, (A;) is free over U g,ﬁ(Aa)/[g,a(Ab N

a#B<p

n+1 n+1
I_UZ c,)] U [ U g,ﬁ<A5 N [_Uz c,)] U U g4(A45) U B, that is, over

a#Ef<p B<i
n+1
U g,ﬂ(Ax)/ U g,ﬁ(Am U Ca) U U g4(45) U B.
a#f<p B<i

As g, (A;), U 8:5(A;) generate together 4, necessarily by Axiom

a#p<pu

n+1
XIV(Q2) g, (A;5) is free over |J g,ﬁ<A5 nyY c,) U U g,(45) U B. But by
B<p =2 B<i

(v) &,(As) is free over U g:(As) U &:(Apnn) U B, hence by Axiom XI

a#EB<p 1<ty
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n+1
8:,(As) is free over U 815(A45) U &i(Anp) U g,a<A5 N U C,) U B, hence

a#Efp<p t<ty

n+1
by Axiom XI g, (A;) is free over |J g,ﬁ<A5 N U c,) U U g,B(Aﬁ)/

a#l<p
n+1

U fi(Aniy) U g,a(Aa N U c,> U B. So by Axiom XIV(2) g, (A;) is free

<ty

n+1
over U &i(Anp) U g,a<A5 N U C,) U B, a contradiction by Axiom XV.

1<ty

Condition (iii): Assume u S w=1{k,...,n},2<k<n+1,0=si<j<éand
we should prove that 47 N n C, is free over (A{ N ﬂ C/ | U B. This means,

leu lew

when j < 6, that U g, (Aaﬂ N C,) is free over |J g, (A(;ﬂ N C,) U B,

a<j l€u(*) a<i lew(*)

where u(*) = u U {n + 1} and w(*) = wU {n + 1}.
By Definition 1.4 (v)(«), for every ¢t € T (letting u(*), w(*), n + 1 stand for

u, w, k respectively) gt<Ah(,) N ﬂ C,) is free over g,(A,,(,))/U gs<Ah(5) N

leu(*) s<t
N c,) U B.

leu(*
‘ )A similar result holds for w(*). Hence by Lemma 1.1(6), (3), and Defini-
tion 1.2(iii) the conclusion follows.
We are left with the case j = 6, but we can prove it similarly, this time
u(*) = u, w*) = w U{n + 1}, and we use (v)(«) from Definition 1.2 again.

Condition (iv): The proof is similar to the previous one.

Condition (v): Let us concentrate on the case (v)(o), j =pu; solet u € wc
{2,...,n},2<k=n+1,w=uU{l: k<I]<n} and i< pu; we should prove

m
that A, N () C/ is free over A/ U ) C,’/A,-’ N () C/. This means that

leu I=k lew

n+1
U g,B<Aaﬂ N C,> is free over |J g,ﬁ<Asﬂ N C1> BU' g;3<Aaﬂ IQ an
<i w

B<p B<i

C,,+1> U B. By Lemma 1.1(6) U g,ﬁ<A5 N ﬂ c N C,,+1> is free over
B<p

leu

n+1
[EJ. gtg(Aé N ﬂ CI) U ng<Aa n ﬂ an Cn+1> UB.
<i =

B<i

By 1.1(6) also |J g,B(Aa NN c,> is free over Ug,B(Aa)/ U g,B(A,; N
B<pu leu B<i B<u

N cn c,,H) U B.
leu
n+1

Hence it is free over U g,B<A5 N ﬂ C,)/U g,B<A5 N ﬂ cn C,,+1) U B.
B<i I=k

By Axiom X our conclusion follows.



204 SAHARON SHELAH

The other cases are similar.

So we are left with the case n = 0. The nonfreeness of 4,/B was proved,
in fact, when we proved Condition (ii). Let us prove that 4/B is u-free, where
A=A;;s0let {A, B} S N, |N| <, and so u = |A| € N, hence we can assume
that (A4;: i<$é), T, S, (g: t € T) all belong to N. We can also assume that
N N § is an unbounded subset of & (otherwise the proof is trivial). Let T* =
TNN, S*=SNN, Af = A; NN (for i € N), and A* = A N N. Clearly

A* = U, &(43), and gi(A}) is free over U gi4i)/ U a(4iw) U B
s€$ tsef?t* tre<ss"

(by Axiom XVI.) As S, T exemplify I C(\, ) we can find f: $* — T so that for

nos #t € 8* does f(s) < f(t) <s, and as NN § is unbounded in 6, we can

assume f: S* > T*. Let Tt ={t€T*: fornos€ Sis f(s) <t<s}cT*-S*

and A (1€ T™) be g,(Ay) if t = f(s) and g,(An(,)) otherwise. It is not hard to

check that for each t € T*, A/ is free over U{4S: t £ s € T*}/U {4}:

seT, s<t} UBandAf“/U {Af:se T, s<t} UBis free. Hence A* =
U Af is free.

teTt

Definition 1.7 Let S hold if \ is regular cardinals, and for some R € \,

R is stationary but for no 6 < A, is R N § stationary. Let S} hold if the above

condition holds for some R € {a < \: ¢f o = «}.

Lemma 1.8

(1) If \ is a successor cardinal (or even not Mahlo), then S» holds iff S} holds
Sfor some «.

(2) If S) holds then I C(\, «) holds provided that (Vu < \) p<* < \.

(3) If N is regular, S}* holds.

Proof: (1) Because if R C A is stationary, then R = U R, where R, = {a ER:

k<N
¢f a = «}, and as X is successor, this is a union of <\ sets, so at least one R,

is stationary. As the demands in Definition 1.7 are satisfied by any stationary
subset of R, we finish. In general ¢f(d) is a regressive function on R, hence is
constant on a stationary subset of R.

(2) Let the tree T consist of all sequences of length <« of ordinals <A\;
ordered by “being an initial segment”. For each o € R (R exemplifying )
let ¢, be an increasing sequence of ordinals of length « whose limit is «, and
S = {t,: a € R}. The proof that S, TU S exemplify I C(\, «) appears in [6].

B)Let R={a<A":c¢fa=N\}.

Theorem 1.9 Let x3 > N\ > x, x3 > |B|, \ is strongly inaccessible, and R
exemplify S*, and a € R implies that B satisfy Q. (cf a, p) for some p < a.
Then B satisfies Q,,(\).

Proof: We leave this to the reader.

Remark: For many particular cases, we can demand only “\ is inaccessible”
(e.g., Abelian groups).
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2 Particular incompactness theorems Each part is a continuation of the
corresponding part in [6], Section 2.

Transversals This time we expand U by two one-place relations V, S, and
one-place functions f;(i < x;) sothat x € V> fi(x) = x, and x € S = x =
{fi(x): i< x}. Let {4, B, CY) € Fif cl(AU C) Ncl(BU C) = cl C. Clearly
Axioms VIII through XVI hold; more exactly, we can extend (u, V, S) so that
they hold (this is needed for Axiom XIV, and is done as in the construction of
universal homogeneous models).

Lemma 2.1

(1) The satisfaction of Q,(\) by B does not depend on B
(2) Qo(N) implies Q1 (N)

(3) 0:1(8, xo) holds for 6 < x™*, and Qy(xg") holds

(4) Theorem 1.8 holds for any inaccessible \.

Proof: Left to the reader.

Conclusion 2.2 If xo = R, then Qo(Ro.p) holds. If Qo(N) A SK then Qy(w),
and Qy(\*); and if N > xo, S C \ exemplify S», and for each o € S, Qy(cf «a,
cf o + xo) holds, then Qog(N) holds.

Proof: By Lemmas 1.6 and 2.1(2).

Colouring Numbers Let (A,B,CY e Fifnoa€A—-C,beB—C are
connected. Clearly, extending our graph, Axioms VIII-XVI hold (using a ‘uni-
versal homogeneous graph’).

Lemma 2.3

(1) The satisfaction of Q,(\) by B does not depend on B.

(2) Qo(xa")s Qi(xo) holds.
(3) If Slg» N> X0, then Qg(N).

Proof: Easy.

Free Algebras For a fixed set I' of identities, by a suitable choice of U,
clearly (where (4, B, C) € F iff ¢c/(A U B U C) is the I'-free product
of ¢/(A U C) and cl/(B U C) over cl(C), xo = Ro + |T|):

Lemma 2.4

(1) Axioms VIII, I1X, X, XII, XV, XVI hold and also XIV(1).

(2) If the variety (= the class of algebras satisfying I') has the amalgamation
property, then Axioms XI and XIII hold.

(3) Axiom I* implies Axiom XIV(2), but seemingly not vice versa.

(4) If Axioms I*, XI, XIII hold then Qy(\) implies Q\(N\), for N > |T| + R,
any B provided that

(*) if h is a homorphism from A, onto Ay, By S Ay, B, = h~'(B,) then:
A,/B, is free iff Ay/By is free.

(5) For Abelian groups, Q{(Rq) holds, and also (*) of (4).
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(6) When the hypothesis of (4) holds, incompactness in \(>|P| + k) implies
incompactness in N\ (this is due to Eklof [2] for Abelian groups).

Remark: Mekler [5] showed that Q;(N\) and Sy implies Q;(«), Qo(x) for the
variety of groups.

Proof: (1), (2), (3) The reader should be able to check them.

(4) Looking at Definition 1.4, clearly Q;(\) means:
(*) there are A;(i < \), increasing, continuous for 6 < A\, Ay = & such that
A;/A; is free for i < j < \ but A)\/U A; is not free; and |4,| = \.

J<A

Let B be given and A exemplifies “B satisfies Qg(N), i.e., A/B is N-free
but not free, |4A| = \”. Let the set of elements of 4 be {a;: i < \}. Let B* be
the algebra generated I'-freely by B U {x;: i < A} with the equations holding
in B.

Let A be that following homorphism from B* onto ¢/(A U B): h(b) = b
for b € B and h(x;) = a; for i < A (it is well known that there is a unique such
homorphism). Let

Al ={y:y€cl(BU {x,: a <i}), h(y) € B}
Al = c(BU {x,: a <i}) .

By [6] there is a closed unbounded subset C of A, such that for i € C, {a,:
a < i} = cl{a,: a < i} is free over B, so by (*) for i € C, A} /A is free. By the
definition A;//B and A}/A} are free for i < j < \.

By Axiom III clearly A\/AP U B is free for i < \; hence, by Axiom I*,
AP/AP U B is free for i < j < \. Now let A; be @& for i =0, A? for 0 < i< A,
A} for i = \. By the above clearly A;/A; U B is free for i < j < \. (For
i = 0 use Axiom II and freeness of A\/B.) Also A; is increasing, continuous

for § < A\, and Ag = &. Also A)/U A; U B = A)/A is not free by (*). The
i<\
last point is that there is X € A,, |X| =\, Ay € c(BU X), i.e. X = {x;:
i<\
(5) For Abelian groups: Let G,, be generated freely by BU {x;: i < w} and

(xa, -y p’x,) / p"*1, and let G, be the subgroup generated by BU {x;: i < n}
1=0

(where p is any prime natural number).
The proof of (*) is just the classical theory of kernels, normal subgroups,
and homorphisms.

Conclusion 2.5 If (*) of 2.4(4) holds B satisfies Qo(N\) and if I C(u, N)
holds then B satisfies Qo(p).

Proof: By Lemma 2.4(4), and Theorem 1.6.

Theorem 2.6 The following properties of the pair of regular cardinals
N\ > « listed below satisfy:

(A) & (B) = (C) & (D) and if (*) then (B) ¢ (D)

where: (*) for every p < \ and x < «, the inequality p* < \ holds.
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The properties are:

(A) I C(\, «)

(B) One of the following holds:

(a) there is a ( partial) ordering of N\, such that (\, <*) is a tree of
height k + 1, <* © <, W € \ is stationary, and o € W implies
a=U {B: 8 <*a} and for every o < \, W\ \ has a pressing
down function.

(B) There is an order <* of A = u*, u singular, cf p = «, such that
N\, <™)isatree of height k + 1, <* < <, u < a < u™ implies the
height of a is k, and for every oo < N\, o N (u, u*) has a pressing-
down function and (V6 € W) [cf. § = «].

(C) There is a graph G with N\ nodes, which has colouring number >k,
but every G’ < G, |G’| < N, has colouring number < « (see, e.g., [6],
Definition 3.2, p. 336).

(D) One of the following holds:

() there is a stationary set W € {a < \: ¢f a = «}, and sets S, € a,
U S, = «, of order type « for each oo € W, such that (¥v8) [B €
S, implies 8 odd], and for each v < \ the graph {(8, «): BE S,
o € W, a <y} (this is the set of edges) has colouring number <k;

(B) N=upt; of w=«, and there are sets S, < p (a < \) of order-type
Kk such that for each y < \ the graph G, = {(8, a): B < pu <
a <y, B ES,} has colouring number <«.

Proof:

(A) = (B): Let the tree T and S T exemplify IC(\, «) (see Definition
1.2). W.lo.g. (vx€ T)(3y € S) x <y hence |T| = |S| + k= \.

Let T= {a;: i <A} and w.l.o.g. Tk a; < a; implies i < j. Let R = {i < \:
L+ 2} where Li={j: j=i, (W)[TEx<a=x€ {a,: a <i}]}.
Case i. For some i <\, |L;| =\
First note that \ = |i|*—otherwise there is L < L;, |i| < |L| <\, so there is a
pressing down function fon {a;: j € L}, and {{x: f(a)) <x<a}:jEL}isa
family of |L| pairwise disjoint nonempty subsets of {a,: o < i}. So |i| = «,
hence w.l.0.g. i a cardinal, which we call u. Now replacing S by {a;: p<i <
ut =N} we can easily get (8) of (B) by identifying i and a;.
Case ii. Not (i) but R is stationary.
W.lo.g. i€ R=i€ L;. Asnot case (i) C = {6 < \: 6 limit and /i < § = Sup
L; < 8} is a closed unbounded subset of . If i € R N C, choose ¥ € L;, then
{a: T k a, < a,} is necessarily a subset of i (as y € L;) and is unbounded
below i (by C’s definition) hence ¢f i = k. Now we can easily get («) of (B).
Case jii. Not (i) and not (ii).
We can show that S has a pressing down function (let C < N be closed un-
bounded disjoint from R, CU {0} = {«;: i < N}, «; increasing and define f | [,
a;+1] for each i). (B) = (A) is left to the reader.

(A) = (C): Let T = (T, <), S exemplify IC(\, «), and w.l.o.g. |T| = A
We define a graph G: its set of vertices is 7, and E(G) = {(b, ¢): Tk b < c}.

Fact G has colouring number >«.

If not there is a well ordering <* of T such that [{b: b <* ¢, (b, ¢) €
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E(G)}| < « for every c. As « is regular, for some b,, T k b, < a and
(ve)(TEb,<c<a=a<*c). Now for every b |{a € S: b, = b}| < « (other-
wise |{c: (¢, b) € E(G), ¢ <* b} 2 {a € S: b, = b} has power =k).

We define on S a graph: a,, a, are connected if {c: b,y < c < a;} N {c:
by, = c < a} # &, and {S,: t € I} are the components. Clearly in this graph
each node has valency =<k, hence |S;| < «. Let S, = {a/: i < i; < k} and we define
a pressing down f on S, by defining f(af) by induction on i, such that by <r
fal) <ral, {c: fla}) < c < af} for j < i are pairwise disjoint. This f contradicts
the choice of T, S.

Fact Foreach L T, |L| <\, G1L has colouring number <.

W.lo.g. x<yAny€e L=x€&L (true as k < \).

We know that there is a pressing down function f: L NS — T as in
Definition 1.2(3). Let fora € LN S, K, = {c € T: f(a) < ¢ < a}, for i <k,
K;={beT: bisof level i} — U{K,: a € L N S}. We define <* on L such that:

fori<j<k, (WxEK)(VYEK)(x<"y),
for i <k, (Vx € K))(Vy € UK,) (x <* »),
forae LN S, (K,, <*) has order type «.

This is possible and is enough.
(C) & (D): Similar to the proof of (4) ¢ (B).

(D) = (B) if (*) holds: We can prove that (D) («) = (B) («), and (D)
(B) = (B) (B). (For the latter we can weaken (*).) As the proofs are similar, let
us prove the first. Let 7= {: 5 a sequence of ordinal <\ of length <«} U {1;:
8 € W} where n; is a sequence of length « enumerating S;. The order is an
initial segment and S = {n;: n € W}.

By (*) for a < \, TN (*=«) has power <\. The rest is easy.

3 Canonical counterexamples for PT(\, k) It is clear that the IC(\, w)
(and the related notions, see Theorem 2.6) are in a sense a degenerate case, €.g.
(see [1]), it is consistent for them that “X,-free implies free”. PT(\, ;) seems
more complicated and may be a representative case of a class of problems.
We analyze a possible counterexample of PT(\, ®;) and get a kind of n-
dimensional IC(\, 8,) example. We can fix the » and get intermediate notions.
If we agree in 3.8 to weaken (B),,; by replacing condition (i) by (i)’ “for
n # v € Sy, u,, Uy, are equal or disjoint and {v: u, = u,} is countable for every
n” the proof becomes much shorter, but does not seem sufficient to construct
a \- free non-\*-free Abelian group for example.

Our main tools are N-sets which are in a sense (<&,)-dimensional station-
ary sets. This analysis makes explicit the feeling that there is an intimate
connection between \-free non-A*-free A (for transversals and specific sets).
What about PT(\, «*) « > 8,? By 3.6 we can get a canonical counterexample
but cannot prove 3.8 and the parallel to 3.7 is problematic. Even if we assume
G.C.H., in the case \(y, S) = p*, u singular of cofinality <k, we cannot get
a tree. We can get reasonable canonical form if in the definition of free for
PT(\, k) we replace “having a one-to-one choice function” by “having a «-to-
one choice function” (which has the same spectrum of incompactness).
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With G.C.H. (and/or no Mahlo cardinals) we can demand more on the
canonical counterexamples.

Definition 3.1

(1) For a regular uncountable cardinal A\(>X,) we call S a A-set if:

(a) S is a set of strictly decreasing sequences of ordinals <A.

(b) S is closed under initial segments and is nonempty.

() For n € Sif W(n, S) =4r {i: n ™ (i) € S} is nonempty then it is a
stationary subset of N(n, S) =4 Sup W(n, S) and \(», S) is a regular
uncountable cardinal. Also A\({), S) = A.

(2) For a A-set S, let Sy (= set of final elements of §) be {n € S: (Vi) 4 ™
(i) & S} and §; (= set of initial elements of S) be S — S, s0 (Sy= {n € S: \(y,
S) =0}).

We sometimes allow A = 0. Then the only A-set is {{)}.

(3) For \-sets S', 5% we say S' < S? (S! a sub-A-set of S2) if S! c S? and
A(n, S') =N(n, §%) for every n € S' (so S! = S' N S?). Clearly < is transitive.

Notation: In this section S will be used to denote A-sets.

Claim 3.2
(1) If S is a \-set, N(n, S) > « for every n € S; (holds always for k = R,) and
G is a function from Sy to « then for some S' < 8 G is constant on Sf‘.
(2) If S is a N\-set, n € S;, then S = {v: y ~ v € S} is a N(n, S)-set, and
Ao, Sy =\ "o, S).
(3) If S is a N-set, k a regular cardinal (Vn € S) (M(n, S) # «) and G is a
function from S to « then for some S' < S and v < « for every n € S',
G(n) <.
(4) If A > R is regular, W < \ stationary, for 8 € W S°® is a \s-set for some
Ns<8o0rS°=1{()} then S={()} U {8) ~n: n € S°6 € W}, is a \-set,
N8 "1, S) = N(n, S°).
(5) If S is a \-set, F a function with domain S — {{)}, F(n ™ {(a)) <1 + o then
F is essentially constant for some S' < S which means F!{n € s": I(n) = m} is
constant for each m.
(6) For any \-set S there is a \-set S' < S such that
(a) all n € S; has the same length k
(b) for each I < k either
(i) every n(l1) (n € Sy) is an inaccessible cardinal, or
(ii) every n(I) (n € Sy) is a singular limit ordinal,
(c) for each | < k, either
@ Nt +1),S8) =n(l) for every n € Sy or
(i) N(n 1 (I + 1), S) = N5t for every n € S/ (for a fixed N§*").
(d) The truth value of “cf n(l) = N(ntm, S)” is the same for all n € Sy
(for constant I, m).

Proof: (2), (4) Easy.

(1) By induction on \: for each (a) € S there is (by the induction
hypothesis) S* < §¢®! such that G Sf is constant and let its value be y(a).
As W({), S) is a stationary subset of A = \({), S) and by a hypothesis \ > «,
there is y* < « such that W = {a € W({), S): y(a) = y*} is a stationary subset
of \. Now



210 SAHARON SHELAH

SI={MU ) ~v:a€E W, vE S
is as required.
(3), (5) A similar proof.
(6) Use (1), (5).

Claim 3.3 Suppose P is a family of sets which exemplify the failure of
PT(\, k%) (where N > «). Then there is a set \-set S and function F with
domain Sy such that

(a) For each m € Sy, F(n) is a subfamily of P of power <k.

(b) For n € S;, N(, S) > «.

(c) Let forn € “>(A+ 1), F(n) = U {F(7):7 <4 0, 7 € Sy}, where <, is the
lexicographic order, F'(n) = U{F°(1): n < 7 € Sy} and F*(n) = U{4: A €
Fo(n ™~ ()} — U {4: A € F(n)}.

Note that for n € S, FO(n ™~ (\Y) = F°(y) U F'(n).
(d) For n € Sy, F'(n)/F°(n) is not free.

For 1 € S;, F'(n)/F°(n) is N(n, S)-free not free (see the Introduction) and
|F'(n)| = N(n, S) (this follows as |{r: n < 7 € S}|) = \(n, S)).
() If n ™ (o) € S then o is a limit ordinal, cf a <\ (n ™ {a), S) + k < |a| and
if B8 < N(n, S) is an inaccessible cardinal (>8,) then 3 N\ W(y, S), is not a
stationary subset of 3.
) If n ™ {a) <VE Sy, ¢f a > « then for some k n ™ {a) < vlk and N(v 1k,
S) =c¢f a.

Proof: This is proved by induction on A\ for a somewhat wider context: P/Q is
N-free not free, |P — Q| = N > « and the only change in (a)~(f) is that Q is
included in Fy(n). As N > k, N\ is uncountable and A is regular by the main

theorem of [6]. Let P = UPQ, P, increasing, continuous and |P,| < . We
a<\

know that W = {a < \: P/P, U Q is not \-free} is stationary (otherwise P/Q
is free, a contradiction). If Wy = {u < A: u an inaccessible cardinal, W N yu is
stationary} is a stationary subset of A, then for some u € Wy P,/Q is not free,
a contradiction. So by renaming the P,’s, w.l.o.g. Wy = &. W.l.o.g. for
a € W; P, /P, U Q is not free, and P/P, U Q is |P,,, — P,|-free. Now
|Pyi1| < |Py| + ; otherwise |P,| + k < |Pyy1| < \ so by [6], 1.3 for some
P, P, P'CP, P/P'U Q is Nfree, |P’| < |P,| + «, hence P/P, is \-free, a
contradiction. Hence w.l.o.g. for some closed unbounded set C of o < A\,
|Pyit] < |Py| < |a|. If W) ={a€ W: P, — P, has power <k} is stationary
welet S={(M} U {a); a € Wy}, Fa)) = Pyyy — P, for a« € Wy, and it is
easy to see that we have got (a)-(d). We shall prove later that Wi =, {6 € W;:
¢f 6 > «} is not stationary, thus finishing. Then we shall use ¢ = #; = ¢, S} =
{O}S2(()) = Poyy — P, for 6 € WY,

Let A* = |P,,1 — P,|, so N\ is a regular cardinal or is <«. If W is not
stationary W, = {a € WN C: a & W;, « a limit ordinal} is stationary. Apply
the induction hypothesis with A®, P, — P,, P, U QO standing for A\, P, Q and
get S, F°. If we then let:

S={O}V o) " a€ Wy, nE€ S*and a > «}
F({a) ™ n) = F%(n) for n € §f



INCOMPACTNESS IN REGULAR CARDINALS 211

it is easy to check that S, F satisfies (a)-(d).
Now for each 6 € W, we apply Claim 3.2(1) so that for some S*' < §°, for all
nE S}" {, 1y: 1< 1(n),i<2and [N(n'], S®) =c¢f §iff i = 0]} U {(, I(n)):
i<?2, [i=0iff ¢f 6 < «]} is the same ¢; (notice that there are <&, possible #’s).
Also for some ¢t W3 = {6 € W,: t; = t} is stationary.

If (3/)[€0, [) € t] necessarily A\® = ¢f 6 for 6 € W, and so

S'={()} Uy ~n:neE S, 6 Wy}
F'=F1S!

satisfy all the requirements of Claim 3.3. So suppose (v/) [0, /) & t]. Now if
W is stationary we will let S®! = {()}, W, = W7, otherwise let W, = W3, §>!,
S, F as above. Clearly for every 6 € Wy, 1 € Sp! the set UF®(7) has power
<k, but ¢f 6 > « (as (0, /(n)) & t; = t). Hence, letting 6 = U{j(y, 6):
y < ¢f 8}(j(8,7) < 8) for some y5(n) < ¢f 6 [UF(1)] N UP; S UPi(.ny)- By
Claim 3.2(3) for some §%? < §%!, and some v; < ¢f 8, (V1 € S§?) v5(n) < vs-
By Fodor’s lemma for some v* < A

Ws={6€ W, j(vs, 8) =77}
is stationary.
Let g be a one-to-one function from Ws onto {6 < \: ¢f & = Ky}, and
define Py = P, U U{Ps,: 6 € W5, g(8) < a}. We could have used the P}’s
instead of the P, to get the result.

Definition 3.4
(1) A N\-system is {B,: n € S.) where:

(@) Sisa N-set, and we let S, =47 {n ~(D:n € S;, i <N, S)}

(b) Bﬂ’\<i> = B”/\<j> when y € S;, i < jare <\(n, S)

(¢) If 6 is a limit ordinal <\(n, S) then B,~(sy = U{B,~¢;y: i < 6}

(d) [By~ciy] < Mm, S) for i < \(x, 8).
(2) The N-system (B,: n € S.) is called disjoint if the sets {B,~\(;,5)y: 7 € Si}
(see (3) below) are pairwise disjoint.
(3) We let Sm =8 - {( >}, Bn/\()\(n,s» =df B; =df U{Bn/\“)l i< )\(T}, S)} for
n S S,'.

Claim 3.5 Suppose N is a regular uncountable cardinal, {(B,: n € S.) a
\-system, and for 1 € S;s, = \J Byis1y. Then {s,: 1 € S;} has no trans-
versal. I<i(m)

Proof: Suppose g is a one-to-one function Dom g = Syand g(n) € s,. We prove
by induction on 5 € S that (3v € Sy) (77 K vAagl) € U B 41y (the
I<l(n)

induction means: prove for 5 if we know it for every ', n < v’ € S). In the
induction step we use Fodor’s Lemma.

Claim 3.6 Suppose PT(\, k*) fail. Then there is a disjoint \-system {B,:
n € S.y and sets si(n € Sy, 1 < 1(n)), and C5(5 < X limit) such that

(a) S satisfies the conclusion of Claims 3.2(6), 3.3(e), and 3.3(f).
(b) S,g c B.,,[(/.H), 0< IS.,[,l =< K.

(c) For every I < Sy, |I| <\, Us,ﬁ: nE I} has a transversal. Moreover, for
7
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everyp € S;, IS {v: p<vE Sy, |I| <N(p, S) the family { U skine I} has
a transversal. 1=l(p)

@ IFsinsy#Dthenl=m,p=g4nti=viiand [+ 1,k)=vl[l+1,k)
where k = I(n) and N(n'i, S) = N(vli, S) when | + 1 < i < k and either
Ny tl+1,8) =9, Nv!!+ 1, S) =v(l) are both inaccessible cardinals or
Aol (I+1),8)=xvl(+1),S).

(€) C,y~(sy is a closed unbounded subset of 6, Cy~esy = {$(n, 6, 1): i < ¢f 8},
¢(n, 6, i) increasing with i and if 6 is an inaccessible cardinal then & =
Coney N W(n, S).

O Ifl<m<k=1In),n€ESs cflnl)] = Nn'tm, S) then s! < Byrus1)y —
By tin¢ey where ¢ = ((ntl, (1), n(m)); i.e., { is the n(m)’s member of C,41)-
Moreover if sl O\sl# @, 1 # v then {(n 1, n(1), n(m)) = ¢(v 11, v(l), v(m)).
@ If I < l(n) n € Sy, cfIn(l)] < « then for no { < y(l) is s,g S B~y

(h) For some well ordering <, of By (n € S;) if n ™ (i) < v € S, then
[ef i = «k = s)™ has order type k] and [cf i < k = s!™ has order type k X
(cf |sf™|)1. (This is not really used.)

Proof: Straightforward and in the most important case see 3.7’s proof.
Claim 3.7 Suppose in Claim 3.6 that xk = Rq. Then we can add

() for n € S;, By has the structure of a tree with w levels (e.g., is a family of
finite sequences, closed under initial segments except that () & B; ), and n<
v € Sy implies s\ is a branch (of order type <w) (a branch is a maximal
linearly ordered subset), and for m < I, and k < w, the k’th element of s.",
together with vl determine the k-th element of s.

Remark: In the proof we get that each s/ has order type w.

Proof: Let, for n € ., C, = the family of nonempty finite sequences from B, .
We assume w.l.o.g. that for n # v € §;, Cy~¢iy N Cyngjy = D for i < Ny, S),
J < N, S). It is clear that (C,: n € S.) is a disjoint A\-system (|C,~¢;y| <
A(n, S) as N(y, S) is uncountable). Let s! = {a(n, /, i): i < w}, and let #! =
{Ca(n, L, i):i<m)y: 0 < m< w}.

Now (C,: 7 € S.), ti(n € Sy, [ < I(n)) are as required in 3.6 (with C,, ¢}
replacing B,, s,ﬁ respectively). The least trivial is (c). Suppose I S S, |I| <\, so

{Us,ﬁ: n € I{ has a transversal, so there is a one-to-one g, Dom g = I,
]
g(n) € Us,’, Let g(n) = a(y, h(n), f(n)). Now we define a function g*:
7

Dom g* = I, g*(q) = {a(n, h(n), i): 0 <i =< f(q)). Clearly g* is one-to-one,
g*(n) € LIJt,i.

For (h) use lexicographic order. It is also obvious that (i) holds, except
possibly the last phrase; but the correction needed is small so we finish.

Claim 3.8 Suppose (B,: n € S.), s,g(n € Sy, [ < I(n)) are as in Claims 3.6,
3.7; we can omit 3.6(h)).

Then for any p € S;, m = l(p), and I < {n € S;: p < 0} the following are
equivalent:
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(A),.;- The family {U S,i M E I} has a transversal.
(B),.1- There are a well ordering <* of I and {u,: n € I} such that

@) for g <*v (both in I), u, N (Us,,) =

I=m
(ii) For every n € I for some I, m < [ < (y), u, is an end-segment
of s! Sy
(iii) If 5 < Min{n(m): n € I} is given, we can demand that each
u,(n € 1) is disjoint to B,~;y.
(C),,1- There is no N(p, S)-set S* such thatn € Sf = p ~n €I
(D),,;. Suppose £ < Min{n(m): n € I}, there are u,(n € I') where
(i) the u, are pairwise disjoint
(ii) u, is an end segment of some s,i m=<I<lI(yn)
(ili) u, is disjoint to B,~;y.

We first prove

Claim 3.9 For every N\-set S and p € S;, R, =4r {1 S Sy: for every n € I,
p < n, and (C), ; holds} is an & ,-complete ideal.

Proof: Trivially I € J, J € R, implies I € R,. Suppose I, € R, for n < w but
I= U I,¢R,, and let S* exemphfy I¢€R,; e, letit exempllfy the failure of

n<w
(), Define g: Sf — w by g(n) = Min{n: n € I,}. (By the choice of S’, g is well
defined.) By 3.2(1) g is constant on some A\-set $** < S*, contradicting I, € R,.

Proof of 3.8: The proof is by downward induction on /(p). Arriving at p
(letting /, I be fixed), first note that by Claim 3.5, =(C), ;= —(A4), ; hence
(A), 1= (C),- Also (B), ;= (A), s clear: each u, is not empty, (by (B), ;
(i) let g(n) € u, (for n € I), then by (B), ; (i) g is one-to-one, thus finishing.
We shall prove (C), ;= (D), and (D), ;= (B),,.

PART a: (C), ;= (D), 1. Let Iy = {n € I p ~ (8) < n} for 6 < A(p, S).
Fact 3.8A It suffices to prove that for some J < I the following holds:

(i) for every 6 < N(p, S), (C),~¢sy,15—s holds.
(i) (D)p,s-

Proof: Let {uy:n € J) exemplify (D), ; and let J, = {n € J: uy € B} so for
n € (JN Iy — J)) u, is an end-segment of some s m </ < I(n). Clearly
(uy:meJNly — J,) exemplify (D),~¢s),sn15—1 holds By the induction
hypothesis this implies (C),~sy,sn15—s,- But by 3.8 A@) (C),~¢sy,1;—, holds, so
by 3.9 we conclude that (C),~(sy,j,—s, holds, hence (D),~(sy,1,—s, holds, hence
some (u,f: n € Iy — J;) exemplify this. Now define for n € 1.

ul ifne

u, =
ud ifnel,—J,6€ W(p,S)

(remember =y 15>.
5
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Clearly {u,: n € I) exemplify (B), ; (i), (ii), (iii).

Fact 3.8B Let (D), be defined like (D), ; omitting (iii). Then it is enough
to prove (D), 1; in fact for every I < {n € Sy: p< n}, (D), ;= (D),

Proof: By 3.8A, it is enough to prove for 6 € W(p, S) that (C),~¢sy,, holds
when J = {n: p ™~ {8) < n € 1, 5" has no end segment disjoint to B,~(¢,}. This
holds by conditions (e) (f) of 3.6 and (f) of 3.3.

Let us define W = {6 € W(p, S): the condition (A),~(sy,s, fail} where if
{8y € Sf, (A),~¢sy,1, fails means I5 # . By the induction hypothesis for
6 € Wthereis a N(p ™ (8), S)-set S° such that (vy € Sf) [0 78y ~pe ] If
W is a stationary subset of \(p, S) then by Claim 3.2(4), {{>} U {(8) ™
nE S}, 6 € W} is a N(p, S)-set, contradicting (C),, ;. Hence we conclude that
there is a closed unbounded subset C of N(p, S) disjoint to W. By Fact 3.8A we
can ignore {n € I' n(m) & W}. As w.l.o.g. p ™ (0) & W, we can assume
0 = Min C and clearly it suffices to prove that:

*) If 8, < 8; are successive members of C, then we can choose {u,: n € I"}
as required, such that u, N By~ = & where I* = {n € I: 8y < n(m) < &}.

By Fact 3.8B we can forget the requirement u,, N By~gsyy = .
So we have reduced our task to proving (D), ; when |[I| <\ (p, S), let
o6 = Sup n(m). By condition (c) (of Claim 3.6) there is a one-to-one function g,

Dom g =1, g(n) € Us For each 6 < 8, let J; = {n el gy € Us,,,

n(m) = 6}. So, condition (A4),~¢sy,s, holds (as g J; exemplify), hence by the

induction hypothesis (C),~(sy,s, holds. Let J =1 — U {J5: o < 6 < &;}. By
Fact 3.8A it suffices to prove (D), ;.

Case I: I(n) = m + 1 for every n € §.

In this case U{s m < [<I(n)} =s,", and necessarily ¢cf 6 = R, for 6 €
W(p, S) (essentially as s;sy is unbounded below §; more exactly, for { < 4,
Sp¢sy N Byngsy s finite) [see (e) of 3.6]. Let uy = {x € B,: x € 57", x = g(n)}
(=-in the tree order of B,). On J we define a graph: 5,, 9, € J are connected
if u,;*l, u,;'z are not disjoint. Clearly the valency of every 5 is <R, (as for every
n, connected to n g(ny) € s,, and s, is countable). Now we look at each
component; we can shrink somewhat the u, to make them pairwise disjoint (by
ordering them in length w and shrinking by induction) provided that n # v =
sy # 5", but as s,k s, is “unbounded below §” this holds.

Case II: Not Case I and all 6 € W(p, S) are singular ordinals.

In this case for some «, (V6 € W(p, S)) (¢f 6 = x) and hence (see (3.6(a)
and through it 3.3(f), 3.2(6)) for some n > m for every 5 € Sy, NM(n ' n, §) =«.
We define on J a graph:

N1, N2 € J are connected if n; 'n =y Inorif uy, Nuy, # S
(u, is defined as in Case I).

As in Case I the valency of every 7 € Jis <k. So let (K,: o < o*) be a list
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of the components of the graph. For each « let {n®{: ¢ < {(a) < «} list
{ntn:yeK,}.
Now by conditions (e), (f) of 3.6 clearly,

Fact For every a < o*, { < {(«), the following set is bounded (below «):

{i < «: there are vy, n** ™ (i) < v; € Jand vy, \| 7P < v, € K, such
B<{

that uy, N uy, # 0}.

We can conclude:

Fact For every &, (C), sy, hold when L = {n € J: p ™~ (6) <, and for
some a, §, £, v K E Ky, n** SVEK,, uyNuy #Dand £ < ).

By Fact 3.8A it suffices to prove (D), j—., however {u,: n € J — L) are as
required:

Case III: Not I nor II.

So every 6 € W(p, S) is necessarily an inaccessible cardinal so for
6 < Np, S) which is not inaccessible, 6 N W(p, S) is not stationary and by
condition 3.3(e) (and 3.6(a)) also for no inaccessible 6 < A(p, S) is 6 N W(p, S)
a stationary subset of 6. However (really we can get disjoint end segments in our
case):

Fact 3.8C

(1) Observation: If W is a set of ordinals, each of cofinality >R, and for no
8 is 8 N W a stationary subset of 6 then we can find {c5: 6 € W) such that: each
cs is a closed unbounded subset of 6 (for 6 € W) and the cs’s are pairwise
disjoint.

(2) Moreover if for 6 € W c; is a closed unbounded subset of é disjoint to W,
then we can find pairwise disjoint end-segments (and even omit the demand
o€ W=>cf5>§<0)

[This can be proved by induction on sup W].

Applying this to W’ = {n(m): n € J}* we let, for s € W', J; = {n € S:
n€J, p " (8) <nand n(m+ 1) & cs}. Clearly (C),~sy,s, holds, hence by
3.8A it suffices to prove (C), » where J* = J — U{J;: 6 € W’}. But {u,:
n € J*} are as required: u,, N u,y, = @ if ny(m) # (M) as ¢y my N Crym) = D
by condition (e) of 3.6, and u,, N u,, = & if ,(m) = n,(m) by condition (d)
of 3.6.

PART 8: (D), = (B), ;. For notational simplicity we omit condition (iii) of
(B),,1- The proof is by cases.

Case I: p ™~ (i) € Sy for i € W(p, S). Easy.

Case II: Every 6 € W(p, S) is a singular ordinal.

In this case for some regular «, [6 € W(p, S) = ¢f 6 =«] and [y € S,
¢fIn(n)] = «]. (Note that if n ™ (8) € Sy then ¢f 6 = Ky). Let (u,: g € I)
exemplify (D), ;, u an end-segment of s/, For a < «, i € W(p, S) let
Jiow = {0 h(n) £ 1(p), n €L, p ™~y <0} U {n: p ™ ) <9, n(n) < a}.
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By Claim 3.9 (apply to p ™ {i)) and the induction hypothesis (B)y~<i,J;
holds, and let u(n € J;,) <y (a well ordering of J;,) exemplify it. Let
J.= U Ji.and <2 be the well ordering of J,, defined by:
i€ W(p,S)
N <gviff Q)N E g AVE JigAn <lq VIV (@i<j)InEJiunVE Jj,] .

(Note that the J;, are pairwise disjoint for distinct i’s and a fixed «, this also
explains the notation u;* instead u,;*.) Clearly <y, u;(n € J,) exemplify
(B),,s,- We now define by induction on £, a subset L; of I such that:

(a) L; is increasing continuous, UL; = I.
() Lo =9, [Lgw1 — L < «k.

©@ifn€ Ly — L, veE ] and u) ﬂ<Usf,> #Jthen v € Lgy,.
T

difn€Lyyy—L;,vel,ptn=vinthen v € Lyy,.
@©if n € Leyy — L, a <k, vV E Jy, 1 € J, and uy N (Us,ﬁ) E %)
then v € Lyy,. {

We give now a partial information on the u,, <* we shall construct:
u€E{uia=xkora<k,n€J,yandif nE€ Ly, v Ly (soveE Ly — Ly for
some { > ¢) then n <™ v. This guarantees (ii) of (B), ; and also (i) of (B,,1)
except possibly when for some £, 9, v € Ly, — L;. So we can restrict ourselves
to a fixed L$+1 - LE'

Now the set {n(m): n € Ly, — L;} has power =<k, so let it be {i;: { <
¢(*) < «}. We can define by induction on { < {(*) an ordinal a; < «, such that
(remembering the second phrase in 3.6(f)):

™*) ify<§ o) xnESH n(n) =ag, p ™ (y) SVES), then S,g(”) is
disjoint to s/,

Now we define u,: if n(m) = i, n(n) 2 agAh(n) = m then u, = u, and if
n(m) =i, [n(n) < agvh(n) # m] then u, = u¥. As for the order if n # v €
Liyy — Ly, iy =n(m), iy, = n(m), then

[fo<$i=n<"v]
o=Sinu, S8 nu, &5 > v <* ]
[So=8iAuy Es " Auy E sy > <" v=1 < 0]
[fo=51nuy S A, S 87> < v=q <4,v].
We leave the checking to the reader.

Case I1I: Every 6 € W(p, S) is an inaccessible cardinal. Easy.

Now we have got:
Theorem 3.10 For every N\ > R the following are equivalent.
(A) PT(\, %) fail.
(B) There is a family of countable sets {s;: i < N}, which does not have a

transversal but for every I = \ of power <\ there is a well ordering <*, such
that foriel

s ¢U{siijel j<*i} .
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[In fact s, = \UJs/, |s/| = Ro, and for every I there is <* (as above) such that
I<n

(vien@l <n)s/NU{s:jeT j<*i})is finite]

4 Some investigation of PT

Lemma 4.1 For \ > «, PT(\, k) is equivalent to PT(\, «*) provided that
PT(k, «) fail.

Remark: On PT(k, ) see next lemmas.

Proof: Any counterexample to PT(), «) is a counterexample to PT(\, k). So
assume PT(\, «*) fail. So there are S, (B,: 1 € S, s,{ as in 3.6. Let s,; =
{a(n, I, i): i < «} (as |s]| = « by 3.6(h)).

Define ¢!; = {<a(n, I, i), a(n, I, j)): j < i}. B, = B, X B, (for n € S,
[<I(n), i<«kand for » € S.). It is easy to check that (B;: n € S) is a disjoint
A-system.

As PT(«, «) fail let {A4;: i < «} be a family of subsets of « which has no
transversal, |A4;| < k, but for each a < k {4;: i < o} has a transversal, and let
G, be such a transversal.

Now we define a family which is a counterexample to PT(\, k). Itis E =
{D,,i: n € Sy, i < k} where

D= U t,U({n} xA4)
I<i(n)

(we assume w.l.o.g. that every t,;',,», {v} X A; are disjoint). Let us check.

First requirement: E is a family of \ sets each of power <«.
This is obvious (note that |#] ;| < |i] < k).

Second requirement: E has no transversal.

Suppose g is a one-to-one function, Dom g = §; X «, g({n, i)) € D, ne)
where h(n) < /(n). For each 5 for some i =i, g({n, i)) & {n} X A; [otherwise
letting g({n, iY) = (n, £, £, is a transversal of {A4;: i < k}]. Hence f(n) =4
g((n, i,>) belong to U t,{,,. However, as noted above (B;: n € S.) is a

I<l(n)
A-system and t,ﬁ,, S B, t(+1). Clearly fis a transversal of {U t,i),,(n): nE Sf}
14

contradicting 3.5.

Third requirement: If I S S; X «, [I| < \ then {D, ;: (9, i) € I} has a
transversal.
W.lo.g. I =J x k, JS S By the choice of the (B,: n € S.), si(n € S,
! < I(n)) there is a one-to-one function g, Dom g = J, g() € Us,g, and let
]

g(n) = a(n, m(n), j(n)). We now define a function f, Dom f =1, f({n, i)) is:
a(n, m(n), i), a(n, m(n), j(n)) if j(n) <iand (n, Gj,(A;)) otherwise.
The checking is straightforward.

Lemma 4.2 PT(«, k) iff k = Rq or « is an uncountable inaccessible cardinal
such that
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(*), for every stationary subset W of «k for some inaccessible cardinal
w <k W uis a stationary subset of u (so k is a Mahlo (inaccessible) cardinal).

Proof: PT(Ry, Ry) is well known. Let « > Ry, (*), hold, and suppose A4; € «,
|A;| < k satisfies: |{4;: i < «} has no transversal but every {A4,: i < a} has
transversal for « < k. Clearly {8 < «: (Vi < §) A; € &} is closed unbounded.
Then W = {6 < «: for some 3; 6 < 8 < k and {4;: 6 < i < B} has no transversal,
with range disjoint to 8} has to be stationary. Clearly C = {6 < «: for i < &
A; S 6 and for 8, € 6 N W there is 8, 6; < 8 < & such that {A;: §; <j < B} has
no transversal with range disjoint to §;} is closed unbounded in p. (¥), provides
us with a u € C such that {4;: i < u}, has no transversal, contradiction.

If « is singular or a successor cardinal PT(k, k) easily fails. [For x = p* use
{a: p < a <k}, and for k = Y k;, k> p = cf k, k; < K, K; increasing, continuous

<u
ko =0use {{a}: a <k, a & {): i< u}} U {a: 6, = o < ki 1}: i < p):
U{k;: i < p}l.
If « is inaccessible but (*), fails, let W exemplify this, and w.l.0.g. W be
a set of limit cardinals, and E = {u: p € W} exemplify PT(x, «). [As W is
stationary it has no transversal. Now prove by induction on / < « that for
J<i, {u: j < =i} has a transversal with range disjoint to j.]

Lemma 4.3 Suppose « is an uncountable inaccessible cardinal such that (*),
(from 4.2) holds. Then for N > k PT(\, «) iff (vu < k) PT(\, u).

Proof: A counterexample to PT(\, p), (1 < k) is a counterexample to PT (A, «).
If we have a counterexample P to PT(\, ), use 3.3. By 4.2 |F°(y)| < « for
n € Srand A(y, S) # « for n € S;. Now by 3.2 (and 3.5) get a counterexample
to PT(\, u) for some u < «.

5 Abelian groups
Let M be (H(x), ¢, U) for some large enough regular x.
Axiom XVII

@ If N<M, A, BE N then AN N is free over B/B N N. (By Axiom XI,
w.lo.g. BS A.)

(b) If BEA,N<M,A,BENA—B< N then AN N is free over B/BN N.
()IfBS A, N<M, A, BE N and A/B is 8,-free then A N N is free over
B/BN N.

Axiom XVIII IfN<M,A,BEN, AS N then A/B is free iff A/BN N
is free iff A/B’ is free for any B’y BN N< B’ < B.

Claim 5.1

(1) For Abelian group Axiom XVII (a) is satisfied.

(2) Any variety satisfies Axiom XVII (c).

(3) Axiom XVII (a) implies Axiom XVII (c), also Axiom XVII (a) implies
Axiom XVII (b).

Theorem 5.2 Assume Axiom I**, XVII (a) (and II-XVI). If there is a
A\-free not \*-free pair and xo, x; < «, then PT(\, k) holds.
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Notation: For a sequence 5 = {ay,..., &,_1y of ordinals, m > 0 let n* =
<Olo, ey Oy Oy + 1)‘

Proof: So let A/B be \-free not free, |4| =\, w.l.o.g. N > k. By [6] \ is regular.
Now like 3.3:

A. Fact There is a \-set S and sets B, A, for n € S, v € S, such that

(a) (B,: n € S.) is a N\-system.

(b) For 1 € S; N(n, S) > «.

(c) We let By = B, A¢, = A, we stipulate B(,+ = AU B; now B,, A, A
(forve S, n€S8), NMn, S) +«=|A,| +«, A, = B+ — B, = B,~(\(s.,5)) JOr
n € S).

(d) Forn e S§;, A, U B, 1, is N(n, S)-free not free and for n € S; A, U B,

1=l(n) 1=1(n)
is not free.

) If n ~ (o) € S then « is a limit ordinal.

Notation: For n € S B, = U B,
I=<I(

By Axiom XVII (a), XI\}”(I) w.l.o.g. |B| = \.

Let n € S;, D, be a subset of B, of power <« such that A4, is free over
B; /D, (exists by Axiom XVII (a)). Let Dy = D, N A. We shall prove that
E = {D; x k: 1 € S;} exemplifies the failure of PT(X\, ™) thus finishing the
proof.

Clearly it is a family of N\ sets each of power <«. By 3.5 E has no

transversal (as (B, X k: n € S;) is a N-system, Dy X k U B, x K). So it
I=I(n)
suffices to prove that if o < A then E, = {Dy X k: n € SN “a} has a

transversal.

B. Fact For any cardinals p. and set V of power <k and cardinal x such that
u, VE H(x). Let R = {n: n a decreasing sequence of ordinals <u such that
n(m) <k=m+1=1(n)}. We can define M,(n € R, n(I(n) — 1) > 0) such that

(1) M, < (H(x), €), VEM,and (Vi< |M,|)[i€ M,],n € M,.

(2) Let p, = |M,|, then n is final in R iff n, < k; and p, = Min{|n(l)| + «:

1< i(n)}.

(3) ForneR; — {(Y}, n* €ER and M+ = U{M,~;y: i < p,}; if n ~(8) ER,

6 a limit ordinal, then M~ = UM,,AW and if n i), n T {J) ER, i<,
1<8

then Mn/\<i> < Mn’\U)'

(4) Forl<lI(n),n€ERM,, €M,.

(5) Stlpulatlng M<#> = BLJM«”’ Mv’\<0) = M<> = @, {Mn+ - U Mnr/i

<u

I=l(n)
nE Rf} is a partition of M,;.

(The proof of their existence is by induction on u, and then we define by
induction on 8 < p, Mg, and (M gy ~,: {B) 1 € R) such that « € M, 15.)

We stipulate for nonfinal n € R, M~y = My+, M, = O, M(,+ =
U Mg,

B<p
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We use Fact B for x large enough (and regular) V' = {4, B} U {{4,, B,,
By, D,: n € S¢), S, A,} and p = |A,| and get {M,: n € R) as above.
Notation: R; = {n € R: (38)n ~{B) €ER}, Ry=R —R,.

By Fact B(5) for each n € SN “”« there is a unique v = v, € Ry such that
nE M,+ — U M,;;. So in order to prove that E, has a transversal it is
I1=I(v)
enough to prove for each n € Sy N “Za.
Dy & U{M, 1 1< I(v,)}

or equivalently
*) D, & BUU{M,,i: I<l(v,)}
[because D, € M,+ (as (Dy:vESH €EM,¥), and so the power of

(D,;' X k) N <Mv+ — U M, ;,)
T siwy "

is «, and for such v € Sy there are at most « such »’s].
C. Fact Letn€ SN “Za, v = v, k < I(v).

Then A4, is free over By U < UM,,;; N A) /D,,. We prove this by induction
i=k
on k.

For k = 0: this means that A4, is free over B,/D, (as we have stipulated
M, = J) and this holds by the choice of D,.

For k > 0: Let /(k) be maximal such that 5 [ /(k) € M, and let § be the
minimal ordinal in M, which is =9(/(k)).

As nll(k) € M, 1, and S € V, clearly N\(n I(k), S) € M. So by the
choice of /(k) and &

(@) n(/(k)) <6 =N li(k), S).

It is also clear that (as ¥V C My, < (H(x), €) and 4, B, (B): pE€ S) €
Mi):

(ii) A, B and B, x)~s) belong to M.
By (4) of Fact B
(iii) for p€ R, U (M,; N A) belong to M,.

i=l(p)
By (ii) and (iii) (with v [k standing for p)
(lV) B-:U(k)’\(é) U (.LJka“ N A) belong to Mufk.
<

As A € M, by Axiom XVIla (With B;“(k)z\(a) U (UMin n A),
i<k
A, M, standing for B, A, N respectively)
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(v) the triple <Mvrk N A, B iky~oy Y <L{Mvﬁ N A>, My 0 <B:r/(k)A<a> U
<

(UM,,;,— N A>>> is free.
i<k

By the choice of 6, and as the function A: B, ky~csy = 6 h(D) = Min{i:
b € B,1yky~iy} is definable in M,,:

(V) Bt (y~csy N Myt = Biytiny) ~cncnryy N Motk
But n M(n) ™ {n(l(k))) =91 ((k) + 1), so

(vii) <Mvrk N A, B~y Y (UkMuri N A>, M, N (B;I(l(k)+1) V) (U
<

i<k
M, ﬂA))> is free.

Now by monotonicity Axiom XI (and as B, iy+1) € Bytiky~sy by (1))

(viii) <Mvrk N A, Brixy~csy Y (UkMuri N A>, B ury+1y Y (L{Mm N A>>
< <
is free.

But B ky+1) € By S By U A, S Bt yx)~sy S0 by monotonicity (Axiom
XI)

(ix) <M,,rk NA,BUA,, B} U (E{Mv,i N A)> is free.
4
By Axiom VIII
() Myrx N A is free over A,,/B; U (L{ M0 A).
i<
By the symmetry Axiom IX
(xi) A, is free over My N A/B,;* U (L{Mu” n A>.
<

By the induction hypothesis
(xii) A, is free over By U (U M,; N A) D,.

i<k

By (xi), (xii) and the transitivity axiom (Axiom X) (as D, € B;) (and two
uses of commutativity)

(xiii) A, is free over B, U < UM,:N A) D,.
i<k
So we have carried the induction, thus proving fact C.

D. Fact A,,/(B V] U (M, N A)) is free for any n € Sy N\ “« and
m=<l(v)
vER.

But A, € M1,,, Ao/B is free, M, € M, (m+1) hence we can prove by
induction on m that 4,/BU U (M,1; N A) is free (for m = 0 this means A,/B

l=m
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is free, for m + 1 use Axiom VII (see the Introduction). So A,/B U U
m=i(v)
(M, N A) is free.

Now by Axiom I** as 4, € A,, A,/BU U (M1, N A) is free, so we
have proved Fact D. m=l(v)
Assume now that (*) fails, i.e., n€ SN “>a, v=0v, D, S BU U

m=i(v)

(M,m N A) and we shall get a contradiction, thus finishing the proof of
Theorem 5.2. AsD, S BU |J MymNA)SB/U U My, NA),by

m=<l(v) m=l(v)
Fact C and Axiom XI 4, is free over

BrU U Muy.nA)Y/BU U My,NA) .

m=I(v) m=I(v)
So by Fact D and Axiom XIV (1) 4,/B; U U (M1, N A) is free. By
m=l(v)

Fact C and Axiom XI A, is free over B, U U wm,,.n A)/B; hence by
m=l(v)

Axiom XIV (1) we get A,/B, is free contradicting (d) of Fact A.
Lemma 5.3

(1) If PT(\, R)) fail there is a N-free not free Abelian group of power \.
(2) Moreover we can get a strongly N\-free not free Abelian group and group of
power \.

Proof: (1) By 3.10 there is a A-system (B,:n €S and s, S U B,1; such
I=I(n)
that for I < Sy, [T < \ there is a well ordering < such that s, — U {s,: v <* n}

is infinite. Let s, = {a(y, i): i < w}. We define an Abelian group G: it is

generated freely by {x: re |J Bv} U {»/: n € S;, n < w} subject only to the
relations v

vy = Xa(y,n) + zyﬂnH

In order to prove that G is not free, let, for n € S, G, be the subgroup of
G generated by {x: reU{v € S, v <, n} U{»,": 0 €S, p =i m}. (So G,y is
trivial, Gy, = G.) We now prove by induction on n € S (which is a well-
founded tree) that G,+/G, is not free. No problem arises.

Lastly we have to prove for o < \ that G, is free, so let <™ be a well
ordering of {n € Sy: 7(0) < «}, for each y u, =s, — U{s,: v <* 9} is infinite.
Let A, = {x: r€s,} U {y" n<w}

We prove by induction on n € I that for v <*n, |J A4,/ J A4, is free.

T<*p 7<*v
A trivial case is n an immediate successor of v which is clear.
(2) Similar proofs.

Conclusion 5.4 There is a A\-free not A*-free Abelian group iff PT(\, &)
fail iff there is a strongly A-free not \*-free Abelian group.
Concluding Remarks:

(1) The proofs in Section 3 suggest dealing with IC,(\, w) where
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Definition Let IC,()\, 8) hold if there is a set S of n-tuples § = {so,...,
Sp—1y, S; an element of a tree T of height 4 such that

(@) |S| =X

(b) There are no functions f: S — T and g: S — n such that f({sq,...,S,—1)) <
Sg(<s0, - . -, sa_1y) (for each n-tuple from S) and {x € T: f({Sp,...,$,—1)) <x <
Sg(¢sor . ysne)) (fOT {So, ..., 5,_1) € §) are pairwise disjoint.

(2) For any S* € S, |S*| < A there are such f, g.

Note: (a) We can replace 6 by 6 = (8, ..., 8,_), (so s; has height §,); (b) we
can treat IC,(\, &) in the context of the Introduction and prove compactness
for singular cardinalities. It is natural to conjecture that under the hypothesis
of 5.2, there is an a* < w such that some A (or some A/B) is A-free not A*-free
iff for some n < a*, IC,(\, w) holds. However if we look carefully at the
analysis in Section 3, we see that for some / < w we may demand that the
s,f(n € §y) are pairwise disjoint or equal; so really we can replace s,ﬁ by a point
(e.g., if (Vu < AN(n'll, 8)) [w®e < N(n'!l, S)]). This suggests a finer division
(using 3.6 of course to uniformize) and calls for re-examining Section 1 and
5.2 to make them meet; i.e., we will have few quite simple combinatorial
properties so that the set S = {\: there is a N\-free not N\*-free 4} is deter-
mined by them; i.e., if Ay is in S then for some such property Pr, Pr(\g) A
(YN)(Pr(\) - NES).

(3) What about the variety of groups? If we have a A-free not A*-free group,
we can repeat the analysis in Sections 5 and 3. We can prove PT(\, R,) fail if
for every n ™~ (6) € Si, ¢f 6 = Ny 7™ (6), S).

Appendix (by A. Mekler)
Theorem The following are equivalent:

(A) There is a family A of countable sets so that: |A| = \; A does not have a
transversal; and every subfamily of cardinality <\ has a transversal. (We
abbreviate this property as " PT(\).)

(B) There is a family A exemplifying ~PT(\) such that if BC A and |B| <\
then B has a large transversal. Here B has a large transversal if there exists a
Sfamily of pairwise disjoint infinite sets {b*: b € B} such that b* < b.

(C) There is a \-free abelian group of cardinality \ which is not free.

Proof: By [6] any of (A4), (B), and (C) imply that \ is regular. Before proving
(A) = (B) in general we will consider a special case.

Proposition 1 Suppose A = {a,: o € E} exemplifies PT(\) where E is a
stationary subset of \ and each a, S «. Then (B) holds.

Proof: Note that Fodor’s lemma implies A does not have a transversal without
loss of generality. We can assume |a,| = » for all «. For each a € E let
B, = <“« and let p, be some enumeration of a,. Define ¢, = {p, [ n: n < w}.
Let C = {t,: « € E}. Since for « a limit point of E, B, = |J Bg, Fodor’s

B<a
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lemma again implies C does not have a transversal. It remains to see that if
I'< Nand |I| < \then {f,: o € I} has a large transversal.
Let g be a transversal for {a,: a € I}. We can write I = U I, (continuous)

a<

so that for all a: Iy = 0; |1, ,\I,| < w; and for alli € I, andj% Iif g(aj) € a;
then a; € I,,. Fix o and for each i € I\, choose ¢ so that {¢: i € I, \\1,}
forms a large transversal for {¢;: i € I, |\I,} and if p;t n € ¢ then for some
k < n g(a;) = pi(k). It remains to see if, i # j, ¢ N ¢} = 0. By the construction
we can assume there is « so that i € I, ,\I, and j & A,.,. Since g(a;) & a;,
t/ N <“g; = 0. [Note: we didn’t have to assume that a,’s were pairwise disjoint.
This remark shows the method applies to indexed families.]

The generalization of a stationary subset of A which we will use is a
A-system.

Definition A \-system is labeled subtree (S, B,, \,: 7 € S) of ~“\ satis-
fying:

(1) A= )\( N
(2) for all n € S, A, is regular
(3) n € Sy (the terminal nodes of §) iff A\, = w
(4) suppose 7 is not terminal then
(@) E = {i:n ™ (i) € S} is stationary in \,
(b) forallie E, )\,7/\(,'> = an/\<i>| < )\,7
(C) ifi <j€e E, then Bn/\<i> o Bﬂ’\(.l')
(d) if j € E and j is a limit point of E, then By~¢jy = UB,~(i<j, i€ E).

To simplify notation we let B, denote UB, (I < I(n)).

Proposition 2 Suppose (S, B,, \,: n € S) is a N-system B, =0 and {s,:
n € Sy} is a family of countable sets so that for n € Sys, = B,. Then {s,: n €
Ss} does not have a transversal.

Proof: Assume g is a transversal. We will find an infinite branch through S.
Fodor’s lemma implies {i < \: there is n € S(n(0) = i) and g(s,) € B} is
nonstationary. Pick some (i) € S so that for all y € Sy if #(0) = iy then
g(s,) & B, - Repeating this argument we can find /; so that: <iy, i;) € S; for
all n € Syif 9(0) = ip and n(1) =i, then g(s,) € B¢, UBj,,i;y. Continuing we
get an infinite path through S and hence an infinite descending sequence of
cardinals.

Proposition 3 Suppose S, B,, \,: n € S) and {s,: 1 € S;} are as above.
Further suppose {s,: n € Sy} witnesses =" PT(\). Then there is {t,: n € S}
witnessing (B) and a \-system (S, C,, \,: n € S) such that C , = 0 and for all
n€ St < C,.

Proof: If n € Slet C, = <“B,. Now we can assume for all n € Syand 0 < /=<
I(n) that |S, N B,/| = w. Let p: @ — By, enumerate S, N By, Let £, = {p' I n:
/ < 9 and n < w}. The verification that this definition works is similar to the
proof of Proposition 1.

Remark: If we wished to we could require that there be some kK < w such that
n € Siff l(n) = k.
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Definition Suppose A is a family of countable sets and B is a set. Then A/B
is free if there is a transversal g of A so that for all a € A g(a) & B. Similarly
define \-free.

Note that [6] applies to this concept. So if 4/B is A-free, not free and
|A| =\, then M\ is regular. Also suppose A/B is \-free and |A| = \ and X\ is

regular =w. Let A = |J A4, (continuous) where |4,| < \. Then A/B is not
a<A

free iff {a: A\A,/BU B, is not \-free} is stationary where B, = UA,.

Proposition 4 Suppose = PT(N) holds. There is {S, B,, \,: n € S) and
{s,: n € S} satisfying the hypotheses of Proposition 2.

Proof: Let A exemplify ~PT(N). We will define (S, B,, \,, A,: n € §)
inductively so that: (S, B,, \,: n € §) is a A-system; foralln € S |4,| + 0 =
\,; for all n A,/B, is |A,|-free but not free; if n, n ™ (i), n ™ (j) € S and
i Z#J then A,, 2 An"(i} and Aﬂ/\“) n An/\(j) = 0. Let A() = A, B() = 0 and
A¢y = \. In general suppose B,, 4, and \, have been defined and N\, > w. Write
A, = UA,(i <\,) (continuous) so that for all i, |A;] <\,; A;+\A4,/B, U B; is
always |A4;,\A,|-free and free iff A\A,-/}.’?,7 U B; is \,-free. Here B; = UA;. Let
n (i) € Siff Ai+1\A,-/B,, U B; is not free. In which case let B, ~;, = B; and
A~y = Ajx1\A,. Suppose n € Sy and let 5, = U4, N B,

View {s,: 1 € Sy} as an indexed family (i.e., we view s, as different from
sy, if 7 # n’ even if they are equal as sets). We now show {s,: n € Sy} is N-free.
Suppose I C Syand |I| < \. Let g be a transversal for {J A4,. For each g € §;

el

A,,/B,, is not free. Hence there is a € A4, so that g(a) € "S,,. By the construction
if n#7" (€S) A, N A, =0. So if we let f(s,) = g(a) for some a € A4, so that
g(a) € s,, then fis a transversal for {s,: n I}.

There is one final difficulty. It is possible for s, = s, for some 9 # 5’. We
can assume A > w, since the result is true for w;. By the above paragraph for
any countable set s|{n: s = 5,}| < w. So we can modify B, by adding w new
elements and using them to distinguish equal s,. Here i the least i so that
(i) € S.

(B) = (C). Rather than using (B) we will use the somewhat stronger
conclusion to Proposition 3, which is provable from (B) or (4). So assume
(8, B,, \,: 1 € S) is a \-system, {s,: n € Sy} is such that every subset of cardi-
nality <A has a large transversal; and for all n € S;s, S B,,. Let ¢,: w—s, be
an enumeration of s,. Let 4 be the Abelian group generated by B = UB,7

nES
and {a”: n < w, n € S} subject to the relations 2a,;*! = a) — £,(n) (n < w,

n € Sy). This group can be realized as a free product with amalgamation of the
group freely generated by B and the groups freely generated {a,;: n < w}
(n € Sy) where for all y € Sy the subgroup (#,(n): n < w) is identified with the
subgroup (@] — 2a*!: n < w) via t,(n) - a)' — 2ar*! (cf. ([4] 3.6) for a similar
construction).

To show A is A-free we will use the following simple proposition.

Proposition 5 Suppose {a,: n < w} freely generates a group and b, = a, —
20,41 (n < w). If I € w is infinite, then {b,: n & I} U {a,: n € I} freely
generates {a,: n < w).
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Proof: Suppose m € I. Then ({b,:n&I,n<m}U {a,:n€ I, n<m})=
(ay, . .., a,). By the Hopfian property of Abelian groups if m elements gener-
ate a free Abelian group of rank m, they freely generate it.

Suppose that C € A4 is a subgroup of cardinality <\. Choose I < S; so
that [I| < X and C is contained in the subgroup D generated by B and {a]:
n € I}. Let {s,: n € I} be a large transversal for {s,: n € I}. It is not hard
to show (cf. [4] 3.6) that D is freely generated by U {ay: t,(n) € s;} U

(8\Ys)

Suppose now that A is free. For i < \ define A4; to be the group generated
by UB,(7(0) <i) U {a,: n < w, 7(0) <i}. Since {i: A;y/A;is free} is a cub,
we can choose i so that {iy) € S and i is the hmlt of {i < iy: (i) € S}. Suppose

(ip) =n € §;. Since B,y = U By, € Ajy» a is infinitely divisible by 2 mod
i<ip

Aj,. Since a,‘,) & Ay, this is a contradiction. Continuing we can choose an

infinite path through S. This is a contradiction, so A is not free.

Remark: This construction works equally well to construct a A-free group G of
cardinality A. This group cannot be free, since G/G’ is not free (G’ is the
commutator subgroup).

(C) = (A): Suppose A is a A\-free Abelian group, |4| = \ and A is not
free. We will define a labeled tree ¢S, B,, A,\,: 7 € S) so that: (S, B,, \,:
n € S) is a N\-system; for all y € S, B, and A are subgroups of A; for all 7,
N, = |A,|; for all n, A,/B, is |A,7|-free but not free. (Recall A/B is free if
(A U B)/(B) is free as an Abelian group.) Let A;y, = A, B¢, = (0), and
A¢y = N. In general suppose B,, A, and \, have been defined and A\, > w. Write
A, = UA;(i < \,) (continuous) so that for all it [4;] < \,; A;41/B, U A; is
always |A;,/A;|-free and is free iff 4,/B, U A;is \-free. Let n ™~ (i) € S if
Aiv1/B, U A, is not free. In which case let B, ~¢;, = A; and choose A,~¢iy S Aiy
so that A, ~¢;y/B, U A; is | A,~y|free but not free. We can choose the A4, and
B, to be subgroups. Note: if 7,7 € Syand n < 7 (lexicographically) then (4, U
B,) S (B,). _ ~

For n € Sy choose s, € B, so that A, N (B,) < (s,). Let £, =s, X w. By
Proposition 2 {¢,: n € S} does not have a transversal. We now need to show
for any I < Sy if |I| < \ then {t,: y € I} has a transversal. To simplify
notation for n € Sylet C, = (B,,) and D, = (C, U A4,). By a previous remark
{E, = D,\C,: 1 € Sy} is a pairwise disjoint family of sets. Now pick F a free
subgroup of A so that for all y € I D, S F. Choose X a free basis for F.

Now we introduce some ad hoc terminology and note a few facts. If
Y € X say n depends on Y if E, N {C, U Y) # 0. Otherwise 7 is independent
of Y.

Fact A Suppose for some J < S;and Y < X each 1 € J is independent of
Y. If Y’ < X is countable then |{n € J: n depends on YU Y'}| < w.

Proof: In fact, if a € (Y”) then there is at most one 5 € J such that there exists
e € E,,ci€ C,and b, € (Y) so that e; = a + ¢; + b;. Assume for 7€ J
7 # 1 there exist e, € E,, c; € C, and b, € (Y) so that e, = a + ¢, + by. We
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can suppose 7 < 7. So D, S C,. By subtracting we have e, = (e; + ¢; — ¢;) +
(by — b,). So 7 is not independent of Y.

Fact B Suppose Y, (a < B) is an increasing sequence of subsets of X. If for
all o < B and n € J S Sy 1 is independent of Y,, then for all n € J, 1 is
independent of U Y,.

a<f

Using these two facts we can write X = (J X, so that: X, = 0; for
a<f

all o, | X441\ X,| = w; if y depends on X, then s, S (X,).
Claim If n is independent of X, then s, € {X,).

Proof (of Claim): First A, + (X,)/{X,) S F/{Xy). So A, + (X,)/{X,) is
free. Now 4, N (s,) = A4, NC,=A4,N(C, U X,) 24, N (s, UX,). So
A, + (s, UX)/(s,UXy) =A,/4, N (s,) is not free.

If 5, € (X,) then |,\(X,) X w| = w. Now we pick a transversal for
{t,: n € I} by induction on o < . For each o < 8 choose a transversal g, for
{t,: n depends on X, and is independent of X,} so that for all such 7,
8qa(t)) & (X,) X w. Then U g, is the desired transversal.

a<f3

Corollary If there is a \-free Abelian group of cardinality N\ which is not
free, then there is a \-free group of cardinality N which is not free.

Remark: The proof that (C) = (A) can be given an axiomatic treatment.

Axiom XVII If |A| < w then for all B there is a countable B' < B so that
A is free over B/B’.

Axiom XVIII (Existence of a free basis) If A is free there is X € A and ()
a closure operation on X: i.e., forall Y S X, Y S (Y) = U(Z) (Z a finite
subset Y), such that:

(@ (X)=4

(b) forall Y S X, A/Y is free

(c) suppose B, C < A, Y € X and B is free over Y/C, then B is free over
(Y)/C.

Such an X is called a basis for A.

Theorem (Axioms I**, XVII, XVIII). If there is a \-free nonfree A of cardi-
nality N\, then PT(N).

Proof: The proof follows the proof above that (C) = (A). Define (S, B, A,,
A,: n € S) as above. For n € Sy choose a countable s, < B, so that A4, is free
over B,/s,. As before we let 7, = s, X w and show: if / € Sy and || < \ then
{t,: 1 € I} has a transversal. Pick F < A free so that F2 B, for all 5 € I. Let
X be a basis for F. For n € Sy define 5 depends on Y (for Y < X) if A, is not
free over Y/B,. We now must prove Fact A.

Proof (Fact A): Suppose not. So there is J' S J such that: for all g € J' g
depends on Y U Y’; and the order type of J’ is w;. By Axiom XVII and

monotonicity there is a countable J” < J’ so that U A4,V B,,) U Y is free
neJ’
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over Y'/|J (4, U B,) U Y. Pick 7 so that for all 7 € J”, 7 > 7. Since
— n€s’

B.2A4,UB, foralln€ J”, A,is free over Y'/B, U Y. So A, is free over YU
Y'/B, U Y. But A, is free over B, U Y/B,. So by transitivity A4, is free over

YU Y'/B,.
To finish the proof we need
Claim For alln € Syand Y < X if v is independent of Y then s, & (Y).

Proof: By I** and XVIII 4,/Y is free. Also A, is free over (Y)/Y. Hence
(XIV), A/(Y) is free. As A, is free over B, /s, and A, is free over Y/B,, A, is
free over Y/s, (transitivity). So by XVIII A4, is free over (Y)/s,. By Axiom
X1V A,/B, is free iff A,/s, is free iff A,/(Y) Us, is free. But 4,/B, is not
free. Hence neither is 4,/¢(Y) Us,. So s, € (Y).

NOTES

1. The reader is advised to skip the proof of 1.6 and maybe the content of Defini-
tion 1.4. This certainly will have no effect on reading Sections 3, 4, and 5.

2. Remember |W’| < |J| < Np, S).
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