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An Exposition of Shelαh's 'Main Gap':

Counting Uncountable Models of

ω-Stable and Superstable Theories

L. HARRINGTON and M. MAKKAI*

Introduction Throughout this introduction, we let Γ b e a countable com-
plete theory in (finitary) first-order logic having infinite models.

Two of the outstanding conjectures of model theory concern the number
I(T,κ) of isomorphism types of models of T having a fixed cardinality K.
Morley's conjecture says that I(T, K) is a monotonically increasing function of
K, for uncountable cardinals K: K uncountable, and K < λ imply I(T,κ) <
/(Γ,λ) . The other is Vaught's conjecture: I(T, Ko) < Ko, or /(Γ, Ko) = 2*°.

Saharon Shelah's deep and extensive work in the exploration and classifi-
cation of all possible complete theories can be seen as motivated to a large extent
by Morley's conjecture. The results of this work point toward the possibility that
Morley's conjecture will eventually be proved by giving more or less explicitly
all possible spectrum-functions κ(> KO ~ I(T9 K), with each possibility (hope-
fully) conforming to Morley's requirement.

In [4], Shelah proved that I(T,κ) =2K (K > KO for all unstable T. One
of the main results of [5] is that the same holds for all Γthat are not super-
stable. At the end of [5], some partial results are given for very special totally
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transcendental and superstable theories (so-called nonmultidimensional ones;
see Theorems 2.3 and 2.4 in Chapter IX). Although these results are special, the
tools used in proving them have turned out to be very useful, and in particu-
lar, those tools, orthogonality and regular types (dealt with in Chapter V of
[5]), are the chief ones for the results presented in this paper.

Let us mention that, independently of Shelah, Alistair Lachlan also proved
somewhat related theorems on the spectrum function I{T9κ) for Ttotally tran-
scendental and K > Ki (see [1] and [2]).

The present paper is an exposition of the contents of Shelah's papers [6],
[7]; all results stated and proved in this paper are due to Shelah.

In these papers, Shelah proves the Morley conjecture for totally transcen-
dental theories almost completely. He introduces a key property of the theory
T, which is actually quite simply stated: for T totally transcendental, T has
NDOP (the negation of the "dimensional order property") if over certain sets
A one has a minimal X0-saturated model M (i.e., such that there is no
Ko-saturated N with ACN^M);A here is any set of the form Mλ U M2 with
two K0-saturated models Mχ9 M2, each extending a third one Mo such that M\
and M2 are independent (in the nonforking sense) over Mo. For the benefit of
the reader not well-versed in general stability theory, let us note that this inde-
pendence means that for any finite tuple a of elements of M2, the Morley rank
of the type of a over Mx equals that of the type of a over Mo. Let us note that
the property NDOP is defined for an arbitrary stable theory T (see Definition
1.1 below). NDOP turns out to be a most important dividing line in the realm
of totally transcendental, and more generally, superstable theories. With DOP
signifying the negation of NDOP, Shelah proves that I(T, K) = 2K for T totally
transcendental having DOP (K > Kj). Actually, the same equality is proved for
an arbitrary superstable Thaving DOP for K > 2N° (see Theorem 2.3 below).
On the other hand, for theories having NDOP there is a structure theory devel-
oped that, in many cases, allows a precise determination of I(T, K). In partic-
ular, the depth of T, d(T), is defined; d(T) is an ordinal or oo. If d(T) = oo
and Γis superstable, then again it turns out that I(T, K) = 2K for most K (see 5.2
below). If, however, d(T) is an ordinal, and, say, Γis totally transcendental,
then d(T) is necessarily a countable ordinal, and, e.g., we obtain the upper esti-
mate I(T, Kα) <Λ(Γ)+i(|ω + α|) in case d(T) > ω (see 5.1 below). (Note that
Shelah's Dp(T) in [6] equals our d(T) + 1 if d(T) > ω.)

The phrase "the main gap" refers to the following state of affairs.

Main Gap Theorem Either the spectrum function /(Γ, —) is the maximal
one (/(Γ, Kα) = 2 X α for all α > 1), or, if not, it necessarily has to satisfy the
inequality

7(Γ,Kα)<^ωi(|ω + α|)

for all α > 1.

The fact of the Main Gap for totally transcendental T is a consequence of
the results just mentioned. It clearly holds for any unsuperstable T, by the earlier
result of Shelah mentioned above. Until recently, it remained open for T super-
stable, not totally transcendental. Recently, Shelah has completed, among
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others, the proof of the full Main Gap Theorem for any T and that of the full
Morley conjecture.ι

The results for theories having NDOP are obtained through a structure
theory concerning all models in the case where Γis totally transcendental, and
concerning models that are slightΓy-more-than-K0-saturated (Ke-saturated
models) in case T is only super stable. This structure theory introduces
"representations" of models (Ke-saturated models) in the form of certain trees
of "small" models; in the case where T is totally transcendental, the model
represented by the tree is simply the one that is prime over the union-set of the
models in the tree. Naturally, there is an 'existence' part, and a 'uniqueness' part
of this structure theory. The former asserts the existence of representations. This
turns out to be a fairly easy consequence of NDOP (see Section 4 below).
'Uniqueness' holds only in a suitably weak sense; although it is a general result
not using NDOP or even superstability, its proof is more elaborate (see
Section 3 below).

The aim of the authors of the present paper was to expose the inherent
elegance, power, and even sometimes the simplicity, of the mathematics involved
in Shelah's work on the "main gap". This work should be seen to have two
distinct levels. The first level consists of the "local theory", the fundamental
general truths "in the small" that serve as the framework for all subsequent
concepts and constructions. (Shelah named his Chapter III in [5] "Global
theory"; we would have said "local theory" instead.) The first level itself has
two layers: the first centers around the notion of independence (nonforking),
the second, applicable mainly to super stable, or even, totally transcendental
theories, is based, in addition, on the notions of orthogonality and regular types.
It was found impossible to write a short and informative section of preliminaries
to this paper. Instead, the paper [3] was prepared to serve as such a compen-
dium of preliminaries. It lists the basic definitions and facts of the "first layer"
mentioned above, mainly without proof, and it gives an essentially self-contained
treatment of the "second layer". References of the form A.2, B.3, etc. refer to
[3].

The second level of Shelah's work is the subject matter of this paper; it can
be understood only on the basis of the "local theory".

Let us make a few remarks for the reader interested in comparing this paper
to the originals, [6] and [7]. First of all, some key 'local' facts such as 1.1 in
[6] and 1.1 in [7] were put into [3]. The construction of many models for
theories having DOP given in Section 2 is different from the one outlined in
[6]; it was found by the first author, with a view to applicability to Vaught's
conjecture (see [8]). We should note that Shelah was aware of the possibility
of such a proof as well. The quasi-uniqueness theorem of Section 3 does not as
such appear in Shelah's work, but all the ingredients of its proof appear there;
it was formulated in the form stated by the second author. The existence of
representations is proved in a considerably shorter (in fact, a very short) way
in Section 4; both authors had their shares in arriving at the proof. The fifth
section containing the actual results on the spectrum function is very elemen-
tary. In fact, the possibility of a separation of the structural theory and the
numerical computations was the main impetus for this presentation of the
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material. We should note that Section 5 contains a trick communicated to us by
Shelah, which may not so appear in the corresponding computations in [7].

/ DOP The "dimensional order property" {DOP for short) is a "hidden
order property" in the sense that if Γhas DOP, then it is possible to "code" (or
"define") arbitrary orders in models of T. This will not be obvious from the
definition (although at the beginning of Section 2 in [6] one reads that DOP
'clearly means there is a hidden order property'); rather, it will be shown in
the next section. Actually, referring to 'order' here is not important, since we
will be able to code essentially arbitrary relations. All in all, the expression
"dimensional order property" does not seem to be a particularly happy choice.
Also, its negation is the 'positive' property that makes a theory nice and simple.
The negation of DOP will be written NDOP.

We consider α-models Mo, Mx, M2, Msatisfying

M 0 C M 1 , M 0 C M 2

MXXM2 (1)
Mo

M #-prime over Mx U M 2 .

Definition 1.1 T has DOP if there are tf-models Mo, Mu M2, M satisfying
(1), and a nonalgebraic type p E S(M) such that p ± Mx, p ± M2. Equiva-
lently, Γhas NDOP if whenever we have α-models as in (1), any nonalgebraic
type over Mis nonorthogonal either to Mx or to M 2.

Remark: The definition in [6] (2.1 Definition) is the following: Γhas DOP if
there are α-models as in (1) such that Mis not α-minimal over Mx U M 2, i.e.,
there is an tf-model M' with Mx U M 2 C M' g M. We will show below that
NDOP in the sense of Definition 1.1 implies the α-minimality of M. For the
equivalence (not used in the present paper) of the two definitions, we refer the
reader to Section 2 of [6].

Proposition 1.2 Let T be superstable. T has NDOP iff for a-models as in
(1), and for any type p {over any set)

pXM #p XMxorp XM2 . (2)

Proof: Since p E S(M) being nonalgebraic clearly implies p jL M, condition (2)
implies NDOP. Assume NDOP. In condition (2), the direction <= is automatic.
Supposep X M. By D.ll(v), there is a regular q E S(M) such that/? X q. By
NDOP, qjLMu say. By D.5'(ii), D.8, p X Mx follows.

Proposition 1.3 Let T be t.t. Then T has NDOP iff the following holds:
whenever Mo, Mx, M 2, M are (ordinary) models satisfying

Mo C Mx, Mo C M2

MXXM2 (1)'

M prime over Mx U M 2

then for any nonalgebraic p E S(M), p X Mx or p X M2.

Proof: 'only if: Suppose we have models as in (1)\ Let us find tf-models Λ ô,
NXf N2 such that we have the independent diagram Figure 1 (see after A. 13)
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Figure 1.

(with the arrows being inclusions); this is possible by first adjoining No freely'
to the independent diagram of the M's by A. 12, and then extending Mx U No

to NX,M2U No to N2 'freely' again by A. 12. In particular, we have Ni'JL N2.

By the technical Lemma B. 11, we have Mx U M2 τ<y Nx U N2. Let M be any
prime model over Mx U M2; let <#,: / < α> be a construction of M over Mx U
M2\ write At = {a/, j < /}. We claim that M is atomic over Nx U N2, in fact,
that <#,: i < a) is a construction of Mover Nx U N2. Indeed, by B.12, we have
Mi U M2 U A < NιUN2U At (since M, hence ^/, is atomic over Mx U

Af2); hence, since α, is isolated over Mx U M2 U Λ , by B.13 it is isolated over
Nx U 7V2 U ,4,, as required. It follows (see B.8) that there is an α-prime model
TV over Nx U N2 containing M. Now, suppose p G S(M) is nonalgebraic; con-
sider q = p\N. By NDOP, q XNX, say; hence p X Nx. By the independence of
the diagram, Nx X Λf2, hence by C.12(i), Nx X M; from p E S(M) and /? /

Nx it follows that p X Mx by C.8. This completes the proof.
'if9: we show, using the new version of NDOP that if we have α-models

as in (1), then in fact Mis (ordinary) prime over Mx U M2. This will obviously
make the original version of NDOP a consequence of the new version. In fact,
we show that M is minimal over Mx U M2. Suppose M\ U M2 C M' % M. Let
p be any type over M' realized in M - AT. If p X Mo, then by D. 17 and D. 19'
we would have some a G M - M' with α X AT. Since then a^Mx U M2,

Mo Afo

C.12(ii) (!) implies α l M , a contradiction to a G M - Mo. Thus we have
Mo

p ± Mo. By the new version of NDOP, p X Mx, say. By D.17 there is an SR
type q G S(MX) with p X q; by D.19' ^|M r is realized in M - AT, by £, say;
also, q ±M0 (see D.5'(ii)). Since Mj X M2, we have b X M2; by C.12(ii)

M o Mi

again, 6 X M, a contradiction to 6 G M - Mx.
Mi

P r o p o s i t i o n 1 . 2 ' L e t T be t.t. Then T has NDOP iff for models as in (I)',
and any p , ( 2 ) holds.
Proof: By 1.3, as 1.2.

For the purposes of the next section we 'prepare' DOP; we show that if
there are items witnessing DOP, there must be certain special ones too. We
assume that T is super stable.
Proposition 1.4 Let T be superstable. Assume that T has DOP. Then there
is a system of witnesses for DOP as in 1.1 having the additional property that
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Mi is of the form M0[tf,], i.e., it is a-prime over Mo U {#,}, for some #, regu-
lar over Mo (i.e., such that t(aj/M0) is regular) (/ = 1, 2).

Proof: Temporarily, call M' special over M if M' = M[a] for some a regular
over M. To prove the contrapositive of the assertion, we assume the condition
of NDOP for the situation with the additional condition of M/ being special
over M (i = 1, 2). First we deduce from this the following version: whenever
Mk is special over Mo (all α-models) for 1 <k<n, {Mk)x<k<n is independent
over Mo, and M is the prime model over A =df \J Mk, then p X M implies

\<k<n

p X Mk for some k, 1 < / : < « . The proof is by induction on n; n = 2 is the
assumption. The following is an easy exercise: if Mk is α-prime over Mn U Mk

(1 < k < n), then the α-prime model over A = (J M^ is α-prime over A
\<k<n

(hint: use C.12(ii)). Hence (by the uniqueness of α-prime models, B.8), we
may assume that our Mis α-prime over A. Also, if Mk = M0[ak] with ak regu-
lar over Mo, then Mk = Mn[ak], and we have that (Mk)x<k<n is independent
over Mn. Suppose p jL M; by induction hypothesis, p X Mk for some k, 1 <
k < n. Hence, by the restricted NDOP, p X Mk or p X Mn, as desired.

Secondly, we show NDOP for the case when M/ is finitely generated over
Mo, Mi = M0[aι] (i = 1, 2). By the decomposition Theorem D.10, we may
assume wlog that ai = (al,... ,a[i), with each aj regular over Mo, with both
a1, a2 being independent systems over Mo. Since Mx J- M2, their concatena-
tion is independent over Mo too. °

Let Mj be a copy of M0[aj] (i = 1, 2; j < kι). The α-prime model over
Bi = U Mj is isomorphic to M, over M o U {a*}; hence, by a suitable choice

of the copies A/J, M/ is α-prime over ^ ' . M being α-prime over M! U M2, we see
that it is α-prime over (J Mj U (J M/. Now, if p / M, then by the version

m ι j<k2

of NDOP we already have, p / Mj for some / and j, and p X M' for i = 1 or
i = 2.

Finally, we consider the general case. Suppose p E S(M) is nonalgebraic
and p ± Mi, p ± M2, to derive a contradiction. Let B C M be finite such that
/? is based on B, and let £, C M, be finite (/ = 1, 2) such that st(B/Bx UB2U
Mo) \-J(β/Mx U M 2); let M, = Mo[£/] C M, (/ =1, 2). Since ^ is βr-atomic
over M! U M2> there is an α-prime model M over M\ U M2 such that B C M .
Clearly, p X M, p L Mx, p L M2; also, Mi J- M 2. We have obtained a con-

Mo

tradiction to the form of NDOP we proved above.

Corollary 1.5 Suppose T is superstable and satisfies DOP. Then there are
finite sets A, DXΏ A, D2D A and B D D{ U D2 and we have a regular type
p G S(B) such that Dx/A, D2/A are of weight l,Dx X D2, B is dominated by

A

DXD2/A, by D2/Dx and by Dx/D2 andp _L Dx, p 1 D2. Moreover, we can
arrange that dx s d2(A) or dx/A _L d2/A for di enumerating A .

Proof: By 1.4 we have ^-models as in (1) and in addition, M, = M0[Cj] (i -
1,2), with Cj regular over Mo; and we have p E S(M) nonalgebraic such that
p -L Mi (i = 1, 2). By D.9, C.13"(iii), we may assume/? to be regular. Define
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B C M, Di C Mι(i = 1, 2), A C M o to be finite sets such that the following are
all satisfied:

c, G Dh A C A, A U D 2 C 5 ,
st(B/DxD2) V- t{B/MxM2) ,

/? is based on B,

B1LMi(i=\,2) , (3)
1B ± Mo . (4)

Such choices are clearly possible. B is α-atomic over M o U (Dx U D 2 ) , as well
as over Mx U D2 and M 2 U Z>t; from these facts, and by (4) and (3) respec-
tively, we conclude, using C.ll(ii) and C.12(ii), that B is dominated by
DXD2/A, as well as by D2/Dx and D2/Dx. In case cx/M0 _L c2/Mx, we also have
d\/M0 _L d2/Mx. Otherwise, Mx and M2 are M0-isomorphic, in which case we
can clearly achieve dx Ξ d2(A). C^MQ is of weight 1 by D.8; rf, is dominated by
Cj/M0 by C.12(ii); hence rf//M0 is of weight < 1 by D.2(ix); since c, G A ,
w(di/M0) = 1. For the type/? of the assertion, use/?|i?. It is clear now that all
requirements are met.

We consider some examples of theories.
Let Tx be the theory of the structure M of the similarity type L — {A, B,

fn (n < ω)} (A unary, B ternary relation symbols, fn binary operation symbol)
for which AM is an infinite (countable) set; for a Φ a' in AM, Baa —dj
{b G \M\: M N Bbaa'} equals {/"(a, af): n < ω}, f™(a, af) =f^(a\ a)
fϊ?{a9 a') Φfm{a, a') ϊoxnΦm (and aΦa'), each Baa> (for a Φ a') is disjoint
from AM and all other Baχa>v and B and fn are given as far as they are un-
specified above in some trivial (irrelevant) way. Then an arbitrary model M o f
Tx is like M above, except that AM is not necessarily countable, and Baa> is not
necessarily exhausted by the f^{a, a') (n < ω). It is easy to see that Tx is
ω-stable (t . t .) . Tx has DOP. First of all, note that the prime model M over
Mx U M2 is the definable closure of Mx U M 2 ; one has to add all fn(a, a') for
a eA(Mx), a' <ΞA(M2). Taking M o , Mu M 2 , with Mx ± M2 and A{M0) i

A(MX)9 A(M0) S A(M2), we choose a G A(MX) - A(M0), a' G A(M2) -
A(M0); then for b G Baa>(EJ9 with b Φ fn(a9 a') (n < ω), we have that
t(b/M) _L Mx, t(b/M) J_ M 2 . Note also that now M is minimal over Mx U M 2 ,
hence the version for ordinary models of the alternative definition of DOP
mentioned after 1.1 would not be appropriate.

The isomorphism type of an arbitrary (symmetric, irreflexive) binary rela-
tion R can be coded by the isomorphism type of a model of Tx: take AM to be
the underlying set of R9 and make sure that Baa> contains at least one additional
element besides the/^tf, a') precisely when R(a, a') holds. Clearly, in par-
ticular, if we denote the model so obtained by MR, then MRχ — MRl iff Rx —
R2. Hence, among others, Tx has the maximal number of models in every
infinite power. In the next section, we'll show that, to a large extent, any s.s.
theory having DOP resembles Tx.

Next, let T2 be the theory of the structure M over the similarity type {/}
( / a unary operation symbol) such that M V fn{a) Φ a (n> 1)("there are no
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loops") and M (= V#Ξ infinitely many b such that/(Z?) = a. Again, T2 is t.t.
Now, the prime model over Mi U M2 is the union M\ U M2 itself. It is easy to
see that T2 has NDOP.

Any model of T2 is given up to isomorphism, roughly speaking, by
specifying the cardinality of the set of predecessors of each element in the model
or by a "tree of cardinalities". Theorem 4.3' below asserts a somewhat similar
analysis for models of an arbitrary s.s. theory having NDOP. It is clear that T2

has the maximal number of nonisomorphic models in every uncountable power.
This is related to the fact that T2 is deep, in the sense specified in Section 5; it
is proved there that all deep theories share the mentioned property of T2

(Theorem 5.2).
Finally, we mention a family of examples. For any ordinal α, consider the

language La = {Eβi β < α}, Eβ a binary relation symbol. Tf is the theory whose
models are the /^-structures M in which each Eβ is an equivalence relation with
infinitely many infinite equivalence classes, and for β\< β2< a, each Eβ2-class
is the union of infinitely many /ϊ^-classes. It is not hard to see that Γ3

α is t.t.,
and it has NDOP. A little analysis shows that Γ3

α does not have the maximal
number of nonisomorphic models in suitable uncountable powers. This is in
accordance with the fact that Γ3

α is shallow (opposite of 'deep', see Section 5).
In fact, Theorem 5.1 (among others) asserts that every shallow, NDOP theory
shares the last mentioned property of Tf. Also, the depth of Tf as introduced
in Section 5 turns out to be α ± 6.

2 DOP implies many models Throughout this section T is superstable.
Let λ0 be the least cardinal > |S(^4)| for any set A of cardinality of |Γ |

( = the number of formulas of the language of T). It is easy to see that every
set A of cardinality > λ0 has an #-model extension of the same cardinality as A
itself. If Γis t.t. and countable, λ0 = Ko. If Γis (superstable and) countable,
λ o < 2 * o .

Definition 2.1 A stationary type q is called trivial if every nf extension q'
(over A, say) of q satisfies the following: whenever /is a set of elements realiz-
ing q' such that any two-element subset of / is independent over A, then / is
independent over A.

Remark: Since it is easy to see that the property of q' in the definition is
inherited from q' to any q" such that q' is an nf extension of q\ we have that
triviality is a parallelism invariant.

Lemma 2.2 Let Abe a set, c a type of weight 1 over A, and p a regular type
such that p ±A and D = dom(p) is dominated by c/A9 and cCD. Assume that
c/A is nontrivial. Then for every uncountable λ > λ0, T has 2 λ isomorphism
types of a-models of power λ.

Proof: Suppose/? is a nontrivial stationary type. Let q' be an nf extension of
q, dom q' = B, and / a set of elements realizing q' such that / is not indepen-
dent over B but every two-element subset of it is; moreover, choose / such that
/has the smallest possible (finite) cardinality. Let c0, cΪ9 c2 be three distinct
elements of / , / ' = /— {c0, cu c2}. By the minimality of /, q" — t{cι/BΓ) is an
nf extension of q (/ < 3), {c0, cu c2} is not independent over B U /', but every
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two-element subset of it is. Below, a triangle over a set A will mean a three-
element set J (of tuples) such that /is not independent over A, but every two-
element subset of / is independent over Λ.

Assume the hypotheses of the lemma. By the above argument, we may
assume in addition that there is a triangle of elements realizing ί(c/A) (by
suitably extending A to some A' such that, among others, D X A'\ see also

C.ll(i)). We may also assume in addition that both A and D are finite (for
this, note that if c = {ci, c2, c3} is a triangle over A, and cxc2c^ ΊΆ, then c

remains a triangle over Ao; also use C.ll(ii)). Let d° be a tuple enumerating
D. Since d° is dominated by c/A, d° has weight 1 over A; also, as it is easily
seen, the triangle c gives rise to a triangle d = (d®, rf?, tfp) °f elements realiz-
ing t(d°/A). We may, moreover, assume that A = 0 , since having many
nonisomorphic models with the distinguished finite subset A implies having
many nonisomorphic models in the original language. We may now forget about
c as well. To summarize, we have a weight-1 type p with dom(p) = d° such
that d° has weight 1 (over 0 ) , p ± 0 , and there exists a triangle (over 0 )
(do, du d$) of elements realizing the same type as d°.

Let S be a family of power λ of pairwise nonisomorphic binary relations
(graphs) G satisfying the following: denoting the field of G by |G|, we have
\\G\\ < λ, G is symmetric, irreflexive, and connected; moreover for any a E \G\
there are at least two distinct b E \G\ such that <α, b) E G, and finally, there
are no G-triangles, i.e., (a, b), (b, c>, <c, a) cannot all be in G. Also, assume
that the fields of the relations in 8 are pairwise disjoint. It is easy to construct
such a family S

We construct a system DQ of elements indexed by the set / = \J \G\ U

{{i, j}'- (i, J) Ξ G,GG 8}; the element indexed by / E |G| is denoted by d\ the
element indexed by {/, j} is denoted by dij. We consider on /the partial order-
ing < in which / < {/, j}9j < {/, y}, and no other relations hold. We define the
system DQ to be independent relative to < and to satisfy dιdjdij = dodid®. By
applying A. 12 twice (first, to get the d\ next, to get the dij) such a system DQ
exists. DQ also denotes the corresponding set of elements; DG = {dι: i E \G\} U
{diJ: </, j) E G}, and for X C 8, Dx = (J #σ-

For any J c g , we construct an α-model M = Λ/γ of power λ such that:

(i) For any d E Z)γ, the type pd has dimension < λ in M (pd is the type
over d obtained by "replacing" d° by d in p E S(d°). (See the
beginning of Section A of [ 1 ].)

(ii) For any stationary type q with a finite domain included in M such that
q 1. pd for all ί/ E Aγ> we have dim(q, M) = λ.

We will show that such Mx exists, moreover that Mx — Mx> implies
X = X'\ this will prove the lemma.

Let X C 8, G E X, d E D = DG, p = p d > £>' = U D G . By the
G'GX-{G}

Relative independence' built into Dg, we have £) X D'\ since/? ± 0 , it follows
that p _L Z)VZ). By D. 12//(iii), it follows that for Mo the α-prime model over
Dx = D U £>', we have dim(pd, Mo) < card(D) + Ko < λ. Since λ > λ0, we
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have card(M0) — λ. Applying D.12' to the family {pd\M0: d E Dx] of types,
we conclude that Mx exists as required (see (i) and (ii) above).

We describe now how to "recover" the set X C 8 from M = Mx, proving
the second assertion above.

By a class we mean an equivalence class [d] of the forking relation ^
(over 0 ) among elements d of M realizing the type of d°; by a good class, a
class containing some d such that dim(pd, M) < λ. A triangle (3D0, £>i> 3D2> of
classes is such that for some dj E 30/ (/ < 3), (d0, dlf d2) is a triangle. Since d°
is of weight 1, <3L>0> 3L>I , 3D2> is a triangle implies that (d0, du d2) is a triangle
for any c4 E 3D*.

The construction has built some triangles of good classes (or good
triangles) into M: for all G E X, all the triples <[</'"], [dj], [diJ]) for

<U>e G.
Claim The latter are precisely all the good triangles in M.

Proof of Claim: First of all, the good classes in M are precisely the [d] for
d E Dx\ these latter are good classes by (i); and if 3D = \d'\ is not among
these, then d' X d for all d E Dx, hence by pd> JL 0 , we have pd. ± pd for all
d E Z)γ, hence by (ii), dim(pd>, M) = λ, as required. Secondly, we claim that
if dk E Dx {k < 3), 3D*. = [rf*], and the 3D*, form a triangle, then there is G E
8 and </, j) E G such that {ΰfo> d\> d2] = {d'\ dJ\ dij). It is clear that for a
(unique) G we must have {d0, dx, d2} C D G ; the rest of the proof is an elemen-
tary check using relative independence and the nonexistence of G-triangles. The
details are as follows. Having fixed G, we call any dι E D - DG an element of
the first kind, any dij E D one of the second kind. Every element dij of the
second kind has two roots d\ dj of the first kind. Suppose {d0, d\, d2} CD is
a triangle. If each dk (k < 3) is an element of the second kind, one of the dki

say d0, has a root which is not a root of either of the other elements of the
triangle (otherwise there would be a G-triangle). If neither root of d0 is a root
of dx or d2, 'relative independence' of D yields d0 X dιd2, a contradiction to
{dθ9 dx, d2} being a triangle. Otherwise, by 'relative independence' of D, we
have d0 X dxd2, where d is the other root of do; since d0 X d9 it follows that

d

d0 X dχd2, a contradiction. If two of the dk, say d0 and d{, are of the second
kind, d2 of the first kind, then either d2 is the common root of d0 and rfl5 in
which case we have d0 J- du hence d0 X d{d2 (which is false), or d2 is not a

root of d0 say, and then d0 X dxd2 for C = 0 or C = {d}, with d the common

root of do and rf^ hence d0 X dxd2 again. It is clearly impossible to have all
three of the dk of the first kind. Hence one, say d0, is of the second kind, d0 =
dϋ\ and du d2 are of the first kind; it is easy to conclude that {du d2) =
{dι, dJ} must be the case. This concludes the proof of the Claim.

Now it is quite clear that from the isomorphism type of M — Mx we can
recover X itself. Namely, using that each G is connected, we see that the sets
{[d] : d E DG} of good classes, for GE X, are recovered as the connected com-
ponents of the good classes with respect to the relation: 3D, 3D' are related iff
there is a triangle of good classes containing 3D and 3D'. For a fixed GE X, the
classes [dι] of elements of the first kind are recovered as those that belong to
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at least two good triangles. Finally, the relation G itself is recovered by noting
that </, j> G G iff there is a good triangle containing [d'] and [dj].

This concludes the proof of the lemma.

Theorem 2.3 Suppose T has DOP. Then for every uncountable λ > λ0, T
has 2 λ isomorphism types of a-models of power λ.

Proof: By the reduction 1.5, we have finite sets A, Do D A, Dx D A and
BDDQUDI, and we have a regular type/7 G S(B) such that Do/A, Dx/A are
of weight \,DO^LDU Bis dominated by DODX/A, Dx/D0 and D0/Dx\ p J_ DOf

A

p _L Dχ\ moreover, either d$ = df(A) or do/A _L dχ/A for df enumerating £>,.
Wlog, A = 0 . Let b° enumerate B. By Lemma 2.2, we may assume that
t{d\/do) and t(do/df) are trivial (since/? _L dθ9p _L du and B is dominated by
rff/flβ and rf§/rf?). Hence (since rf§ X rf?), ί(rf§) and ί(rf?) are trivial too.

A 0-class (l-class) is an equivalence class [ί/] under ^k of an element
d = df} (d = d\) (in the universe, or later, in a fixed model). 3D*, 3D£ e t c »
always denote a A:-class. If do = d\> then 0-classes and 1-classes coincide.

Whenever <£)': / G /) is a family of distinct classes (0-classes and
1-classes), then for any dι G 3D' (/ G / ) , (dι)ieIis an independent system; this
follows by the triviality of t(do)9 and t(dι). (Consider the cases d0 = du

d0 _l_ dx separately.)
Any type of the form/^ with bdod{ = b°dodχ is said to be over (d0, d\).

Given 3D0) £>u a type over (d 0, d ^ for some d0 G ίD0, di G £>! is said to be
ewer (3D0» 3D/) I f £>o> 3Dό, ©i, ©ί are distinct, p is over (£)0> £>i)» and/7' is
over (SDό, SD{)» t h e n /? ± /?'; to see this notice that for dk G ©^, d'k G SDjt we
have do^i Û rforfί hence b Λ, b' if bdod{ s Z?^6^ί Ξ &°rfod?, s i n c e *° i s

dominated by dod®; p Lp' follows from/7 _L 0 by C.8. In other words, if {2)0,
©ό} Π {»!, 3Df} = 0 , /7 and p' are as before, and p jL p', then either £) 0 = ©ό
or ΐ>ι = ίD{. We show that, in fact, 0 or 1 can be chosen uniformly.

Claim 1 For one of k = 0 or k = 1, the following is true. Whenever
{£>0> £>ό} Π {£>!, »{} = 0, pis over (£>0, £>i),p' /5ouβr (3Dό, 3D{) andp£p\
then £>k = ΐ>'k.

Proof of Claim 1: Suppose the claim fails to be true. Figure 2 contains the proof:

P

£θ WO ) Qd) j »!

/7"

Figure 2.
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In detail: there are distinct £>0, 3Dό, and 3Dls with/7 over (3D0, S^) and/?' over
(£>ό, SDi) s u c h that p X p' (by the assertion failing for k = 0). By applying a
suitable isomorphism, the items exemplifying the failure of the assertion for
k = 1 can be used to give a class 3){ distinct from each of 3D0, 3Dό, 3^ and a
type/?" over (£>ό, £>ί) such that/?' //?". By D.5'(iii) we inferp jίp", which
contradicts the assertion made before the Claim.

From now on, we assume that the assertion of Claim 1 holds for k — 0.
Our plan of constructing many models of power λ is as follows. We let G

be any binary relation on a set \G\ of power λ such that \G\ is the disjoint union
of sets / and J of power λ with the property that </, j) E G implies / E / and
j E J (G is a bipartite graph); in addition, we assume that for every / E / (y E
J) there is at least oney E J (i E I) such that </, j) E G; finally, we assume
that there is a unique / E /such that for ally E / we have </,y> E G. Depend-
ing on G, we construct a model M = MG. We let dι and dj for / E I,j E / be
elements such that d' s d#, tf7 = rff, and Z?'7 an element such that dιdjbij =
dodib0 for every </, y) E G; we stipulate furthermore that the system C =
(dl)iG[

 Λ (dJ)jGJ ~ {bij)^ij)^G be independent with respect to the partial
ordering in which / < </, y>, y < </, y> and no other relations holds; C exists by
A. 12. C also denotes the set of all the d\ d\ biJ. We will show that there is a
model M = MG containing the set C such that (i) every type in the set (P =
{Pb'j: </, y) E G} has dimension < ω in M; (ii) every stationary type q ± to all
types in (P and with a finite domain included in M has dimension λ in M.

We will not quite be able to recover G from MG; however, if G* is the
binary relation on / defined by (i, ϊ) E G* iff there are infinitely manyy E J
such that </, j) E G and </', y) E G, then we will recover G* from (MG, rf1');
i.e., (MG{, d') - (MG 2, d

ι) will imply G* - G| . Since it is easy to construct 2 λ

G's such that the G* are pairwise nonisomorphic, the proof of the theorem will
be completed.

To prove the existence of M = MG, using the notation introduced above
we show

Claim 2 For b = b'oJo (</0> Jo) £ G) we Λαi e

pb ± C/b .

Proof of Claim 2: Let £/ be any set extending b such that ί / i C and let /? be
/?|l/; we need to show

p I C/ί/ ,

i.e., that p has a unique extension to £/ U C. Clearly (see A. 11), if we replace
the item b = b'oJo by U in the system C (so that </0, y'o) will index £/ instead of
b), the system remains 'relatively independent'.

Let d0 = dι\ dx = rfΛ, Co = {</'": / E / - {/0}}, C t = {^: j e J - {y0}},
^ o = { ^ / o y : </o,y>G G & y ^ y o } , ^ ^ ! * ^ </,y>E G&iΦi0}.

Consult Figure 3. By relative independence, we have U d, E for E — Co U

C\ U Bι. Hence, since p ± dx and thus /? ± rfj, it follows that

P^P\E. (2)
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U (for b)
do^— dx

Co j d j

Figure 3.

By relative independence, we have U J- d0Cu hence by p _l_ d0 we have

p _L d0Cι. Again by relative independence, we have UE d, Bo. Since p\E
(being parallel to p) is JL to d0Cι, it follows that ° ι

p\Eyp\(EUB0)=p\C .

Together with (2), this shows what we wanted, that p \- p\C.

The existence of MG with the required properties is now proved by using
Claim 2, D.12"(iii), and D.12' similarly to that of Mx in the proof of
Lemma 2.2.

We now turn to the question of recovering a version of G from (M, dι)
(M = MG).

We look at classes (0-cίasses and 1-classes) in M. The distinguished classes
are, by definition, those of the form 3D'' = [d*] (i E / ) , 3Dy = [dj] (j E J). Since
we have the element di distinguished, we can pick out the distinguished 1-classes
by the following criterion: a class 2) is a distinguished 1-class iff there is d E 3D
and b E Msuch that di db = dodfb0 and pb has dimension <λ in M. The ^nly
if part of this equivalence is clear. Assume that we have rfG3) and b as said
and that 3D is not a distinguished 1-class. By property (ii) of M, we have some
/ E / andy E / such that p' =dfPbiJ X Pb> If 3D ̂ fc 3D' (which is certainly the
case when t(d0) ± t(dx)) then {£>;, £>'} Π {3D, £><>} = 0 , hence by Claim 1,
3D1' = £>z, hence / = ΐand d{ = d'; by the triviality of t(dι\, and by 3D Φ 3Dy, we
have dj J< d\ since Z?/:/ is dominated by dJ'/dι, b by d/d\ we obtain ^ / y J< Z?,

hence/?' ±pb by C.8. It remains to consider the case 3D = SV (and d$ = d°),
but this leads immediately to a contradiction, as shown in Figure 4, which
proves what we said about identifying the distinguished 1-classes. The distin-
guished 0-classes are then identified as those 3D that are not distinguished
1-classes and for which there is a distinguished 1-class 3D' such that some type
over (3D, 3Dr) has dimension less than λ in M; this follows immediately from
Claim 1.

For / E / and J' c Λ we write iGJ' iff </, j) E G for all but perhaps finitely
many j E J'. We also write 3D,G{ϊ)y: j E J'} for iGJ'.
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Pb PbXp' , P'f-P" p»

£ > ; 3D' £ > y 3D'

:.pb X /?", contradiction.

Figure 4.

Claim 3 For © α distinguished 0-class and X a set of distinguished 1-classes,
we have ΐ)GX iff the following holds: there is d E 3D and for all but finitely
many 3d' G X there is d' — day E 3D' swc/ί ί/ίαί somep over (d, df) has dimen-
sion <λ in M.

Proof of Claim 3: The Only if part of the claim is clear by construction.
Suppose deS>,X'CX,X-X'is finite, and for each 3D' E X' we have d' =
tfav G 3D' and some// =p&> over (d, d') with dim(p9 M) < λ. By property (ii)
of Λf, for each 3D' E Ar/, there is / E /, and there is j = y©' E 7 such that
Λy / P^v. By Claim 1, 3D' = 3D, in particular, / is fixed. From now on, / will
denote the unique index for which 3D'' = 3D. Let Y be the set of all 3D-7" with
ϊ =Jτ>' f ° r some &' G X\ We have 3DGΎ. Now assume that it is not the case
that ΐ>GX. Then there is an infinite subset X" of X' such that X" ΠY=0.

Let K={je J: [dJ] E Y}. We have that K is an infinite subset of /, for
each j E K, pj =df pbu is over (dι\ dj) and for some pj over (d, dJ), with
[dJ] E ^ ' ,

Py/A (3)

It follows by the triviality of /(df) that the system (dJ)J(EK

 Λ (dJ)JeK is
independent.

Let ΛΓ0 C ̂  be finite such that for D = {dy: G ^ U {dy: j E iΓ} and
i ) r = {dJ: j E AΓ0} U {dJ: j E ΛΓ0] we have

ddi ± D .
D'

Now, let j E K — KQ. TO emphasize the character of the elements involved,
redenote: d = d0, d' = d0, dy = d 1 ? d

J — d\. By the last nonforking relation,
together with D' X dχd\ (by the independence of D), we conclude

d o d o X d{d{

note also that we have:

d{X dx .

We immediately deduce the following three relations:

dι X d! , (4)
flfo^O
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ίiU, (5)
do

rfiψrfo (6)
do

P = Pj =Pb'J is over (dθ9 dx)9 i.e., for b = dom(p), bdodx = b°dodι'9 p = pj is
over (d0, dχ)9 i.e., for b = dom(β), bdodι = b°dodι. b is dominated by dι/d0,
hence by dι/dodo too (by (5) and C. l l ( i ) ) ; similarly, b is dominated by
dι/dQd0. It follows by (4) that we have

U.ί. (7)
do^o

Now, again by (5) and the fact that b is dominated by d{/dθ9 we infer b J- dθ9
do

hence byp ± d0 and C.8, we get that/? _L dodo. By (7) and C.8, therefore, we
have p ± p9 a contradiction to (3).

Claim 3 clearly establishes that (MG{9 rf') - (M C 2 , rf') implies G* - G2*, as
promised before. This completes the proof of Theorem 2.3.

3 Representations In this section we discuss a certain kind of analysis of
models in terms of trees of 'smalΓ models. The main result of the section is the
quasi-uniqueness Theorem 3.4 asserting that any isomorphism of two models
represented by certain trees induces a 'quasi-isomorphism' of those trees. In
Section 5, this will enable us to give lower bounds on the number of models by
considering models represented by trees that are pair wise nonquasi-isomorphic.

This section has no reference to the property NDOP. In the next section,
NDOP will be used to show that every model has a representation.

In this section, the theory T is stable and countable. Although we talk
about primary models and weight-1 types, we do not need existence statements
concerning these items. The countability assumption is inessential.

An ω-tree is a partially ordered set order-isomorphic to a subposet of the
poset of finite sequences of elements of a fixed set, ordered by 'initial segment
of, and also, having a single root (minimal element), η < v denotes that v is a
successor of η (v is farther from the root than η); <) denotes the root; v~ — η
if η < v.

Definition 3.1

(i) An ω-tree of sets Q = (Aη)ηGlis given by an ω-tree /, and a set (subset
of the Γ-universe) Aη such that η < v implies Aη C Aμ. d is independent if it
is independent with respect to the tree-ordering of /. Any model primary
(α-primary) over Aj = | J Aη is said to be represented (a-represented) by d.

(ii) A normal tree of sets is an ω-tree (Aη)ηGl of sets such that: (a) for
any η G /, the system {Av)v>η is independent over Aη, (b) η < v < τ implies
Av < AT (see C.14).

(iii) A representation is a normal tree 31 = (Nη)ηGl of models such that
7V< > is prime over 0 , and for η < v9 Nv is of the form Nη(av) (prime over
Nη U {av}) for some av SR over Nη. 91 is a representation of any model
primary over the set TV/ =df | J Nη.
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(iv) An a-representation is a normal tree 91 = (Nη)η(Ξί of tf-models such
that N< > is tf-prime over 0 , and for η < v, Nv is of the form Nη[av] (α-prime
over Nη U {#„}) for some av regular over Nη. 91 is an a-representation of M if
M is #-primary (α-prime) over Nj.

Remark: Notice that in a representation as in (iii), if η < v, then Nv is of weight
1 over Nη, and of course every Nμ is countable.

Let Q be a normal tree, with the notation of the definition. S, 5 ' , . . . will
denote an arbitrary convex (downward closed) subset of /, <> G S; S+ = {v G
I: v~ GS}9 S* = S+ - S. For any subset J of /, Aj =df U {Ay. y G / } . Some-
times we even write simply / for Ay, e.g. we may write

S X v to mean As J- Av .

Theorem 3.2 For So, 5 ^ S2, 5, 5 ' convex subsets of I, we have

(i) v4 5 + n 5 ' < As> provided S C S7;
As

(ii) CE is α/7 independent tree, hence ASχ X ASl provided S0D Sx Π S2.
ASo

Proof-

Step 1. Let p E /. A p-seί is a subset Z? C / such that p G R, for all *> G R we have

p < v, and if *> G R and p < μ < v, then μ E R.

\ R I >/^
P

Figure 5.

/? has Λβ/gΛ/ < n if for all *> G /?, distance (p, v) - card{μ: p < μ < v} is <« .
By induction on « < ω, we (simultaneously) prove the (conjunction of the)
following two statements:

(1 ) n η < p, R a p-set of height <n => p < R (the last is, of course, an abbrevi-
ation for Ap < AR).

{2)n Whenever η G /, and Rp is a p-set of height < Λ for all p > η, the system
(Rp)p>v is independent over η.
For n = 0, there is nothing to prove.
Let ft > 1; assume (\)n-\ and (2) r t _ 1 .
We prove ( !)„.
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Denote, for any v > p, vER, the set {μ G R: μ > v) by Rp; Rv is a *>-set
of height <n - 1. Apply (2) Λ _! to conclude that (Ru)p is an independent
system over p, and (l) Λ _i to conclude that

v<Rr .

We have p < v.
V

Hence by C.14 (i), p < i?^; i.e., Rv/p _L iy (i.e., t(AR/Ap) is ± to every
type over Aη). η

By the independence of the Rv over η9 and C.14(ii), we conclude

U {Ru: vGR &v> p}/p x ιy

= R

i.e., p < R, as required for ( l ) ^ .
v

We now prove (2)Λ .
For any finite set ^ of successors of r/, we prove that (Rp)pGχ is indepen-

dent over η; we do this by induction on \X\. For \X\ = 0, 1, there is nothing
to prove; assume \X\ > 2. Pick p 0 E ^ by induction hypothesis, </?p)pG^_{Poj

is independent over r;.

Figure 6.

It remains to show that

RP0 ± U RP ( i )
^ pexf

holds. By (1)Λ (already proved) we have
RP0/p0 X all types over η .

Since X' X p 0 by 3.1 (ii)(a), we have
v

RP0/p0 X X'/po .

It follows that we have

Rp0 J^ X' 9

i.e.,

# P 0 X X . (2)
P0
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Now, by (1)Λ again, Rp/p _L all types over η, hence

Rp/p±p0/η (pGX') . (3)

The Rp{p E Xf) are independent over X' since they are independent over ψ, also
Rp X Xr (similarly to (2)); therefore from (3) and X' X p 0, we get (see

P V

C.5(i)):

U Rp/X' ± Po/X'
p€X'

hence,

U Rp^Po

i.e., ' • (4)

U RΛx.
pSX' X J

By X' X p 0, Po < ^po (0)#i)» c 8> a n d (2)» w e h a v e t h a t R^/Xte orthogonal

to all types over X\ in particular to \J Rp/X\ Using (4), we get from this

that pex>

Rβ0/X± U * P / * . hence i?P0 X (J Λp .

The last relationship combined with (2) gives

*PO J- U RP

X' X po and (4) gives
v

Po X U ^ P >
^ peΛ"

and the last two facts give (by 'transitivity' again), (1) as required.
This completes the proof of (1)Λ and (2)n.

In summary, in Step 1 we proved:

(l)oo η < p => Ap < A>p (with >p = {v\ v > p})

(2)a, (A>p)p>η is an independent system over Aη.

Step 2. Now, we prove

Ap X_ ^4^ (or pΔJ_ it p; here ^t p = {v: v ^ p})
^4p P

as follows; see also Figure 7.
Let po = p > P\ > P2 > > p«-i > ρn

 = ( ) be all the predecessors of p;
put Ro = {̂ : f > p}, and /?,- = {*>: y > pf , ^ £ p/.J . By (2)^, we have

RQU...\JRiX Λ/+i

{v:v>Pi}
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Po = P\^ ί R\ J

\ ί Rn-\ J

Pn = (>

Figure 7.

hence,

Λ ° » i , X i i * * i U . . . U Λ / + 1 ( 0 < s / < / i ) .

By (repeated) transitivity, the last gives

p\

which is identical to our claim.
By A.13, assertion (ii) of the theorem follows.

Step 3. Now, we prove the first assertion of the theorem, more precisely the
special case

AS+<AS++ . (5)

Let σ E S+*; by Step 2, we know

σ~ X__ S (6)
σ

and

σ±_ S+ . (7)
σ

Since (by 3.1 (ii)(b)), we have σ/σ~ _L σ , by C.8 and (6), we conclude

σ/σ~ ± S .

Suppose/? G S(AS); the last fact plus (7) yields that

σ/S+ JL p .
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This is true for all σ G S+*; by Step 2, (Aσ: σ G S+*> is independent over As+,
hence

S+*/S+ Lp

or equivalently,

S++/S+ ±p

since/? G S(AS) was arbitrary, (5) follows.
Now, (5) applied to 5 + , S++,... in place of 5 gives

5 + + < s + + + 5 + + + < s + + + +

and a fortiori,

s s

By transitivity C.14(i), we conclude that

S + < / .
s

Applying the last to the subset S' of /instead of / (take the 'induced' sub-
tree of sets), we obtain the assertion (i) of the Theorem.

Let d = (Aη: η G /) be a normal tree again; let us write pv = t(Au/Av-).

Corollary 3.3 If v~ Φ μ~ andpv, pμ are stationary, then pv ± pμ.

Proof: Since pv ± all types over Aμ, for μ < v , the conclusion is clear if
μ < v or v < μ. Thus we may assume that μ<v,v<μ. Suppose v~ Φ μ~; e.g.,
μ~ •& v~\ in particular, μ~ Φ < ). Apply 3.2(i) as follows: Let

S ' = ( < O U(<μ)[(</χ) = {pG/:p</χ}] ,
S=(<p") U « μ " )

then

S+ ΠS' = ( < O U (<μ-)

(μ is not in S + , since μ~ 3̂  ^ ~ ) .

Therefore,

The type on the left-hand side is an nf extension of pμ, the other is an nf
extension of pv, both by 3.2(ii), since μ S. v~ and v £ μ~. Since pμ9 pv are
stationary, pμ ± pv.

With the notation above, a class of d is any set of the form

JVQ = {v: v~ = vό and pv jί pvo) {v0 Φ < >) .

If the types pv are of weight 1 (as in case of representations), relation jL is an
equivalence relation among the pv (v G / ) . By 3.3 the classes are exactly the
equivalence classes of this equivalence.
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Theorem 3.4 (Quasi-uniqueness of representations) Let M? be represented
by the normal tree 31 f = (Nη)ηGIt of countable models such that Nl is of
weight 1 over N^ (for all η < v in 7f; £ = 0, 1). Let

f: M°^Mι

be an isomorphism. Then there is a partial 1 — 1 correspondence

hcl° x l ι

i(v, *>>> <", v) E h => v = v'\ (v, P), <*>', P) E A => v = v')

between elements of7° and 71 such that (writing "v — P" for "<*>, P) E A"), we
have

(i) when v « P, f(pv) X pp; here pv = t(N?/N0,-), pP = t(N}/N\-)
(ii) // v >-> P, r •-> r, then v <r iff v < f

(iii) for any class JofΐH0, we have that there are only countably many v E /
for which v ~ v is undefined; similarly for classes of VI1.

Proof-

Step L For the purposes of Lemma 3.5 below we use the data of the theorem

but assume only that / : M° -* Mx is an elementary embedding. The lemma

contains the main step of the construction of the assignment v — v. We leave out

the upper index 1 sometimes; M = M 1 , TV/ = N}, etc.
Given a countable subset B of M' (/ = 0, 1) there is a countable model B,

B C B C M\ such that AT' is atomic over N\i U B (see B.6). We fix such an
assignment B *-* B.

Let us use the following notation and terminology. Let Bv =f(N®). Let
now η < v in 7° be fixed, and write B = Bη, A = Bv. Let S C I( = I1) be count-
able and convex. We say that v and S are properly related if the following two
conditions hold:

B^Nj, (8)
Ns

A X B UNS , (9)

B

and, in particular,

A i- Ns . (9')
B

Note that, given η, we can choose S satisfying (8); and then clearly (e.g., by
D.2(i)), all but countably many v > η will satisfy v and S will be properly
related.

A 0-class (\-class) is a class of the normal tree 91° (91 *) (see above). A
node η of 7° (71) is called proper if there is at least one uncountable class above
η (whose members are > η).
Lemma 3.5 Suppose that v and S are properly related; use the notation
above.

(i) There is some Po E S* such that for the \-class J = JPo containing Po, we
have
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A*ks

N™
andf(pp)XpPo.
Clearly, J is uniquely determined by v alone.
(ii) There is v e S* Π J such that

^ Λ *5'-<p> •
Any v E S* w/YΛ this property is said to be S-related to v.
(iii) Suppose, in addition, that S C S', v < r, ίmc/ r α«fif 5 ' are properly related.
Then, if P is S-related to v, f is S'-related to τ, we have v < f, and also

A > NP .
BUNS

(iv) Let v be a proper node in 1°. Suppose that v and S, are properly related
(i= 1, 2) and v{ is Srrelated to v (i = 1, 2). 77jeA2 *>! = P2

Proof of Lemma 3.5: We first claim

Λ > Ns* . (10)
5UN5

Suppose

A .X N s* . (11)

Recall (3.2(i)) the relation

Ns+< Nj

i.e., t(Nj/Ns+) ±NS.
Using (8), we infer t(N,/Ns+) ± 8 U Ns (by C.8). t(A/B U 7V5+) rf/i/

over B U 7VS by (11), r(Λ///5 U 7V5+) dnf over Ns+ by (8); therefore, the last
orthogonality relation implies

A X 7V7 .

By (11) again,

A A- Ni ,
BUNS

and then, by (9'),

Since 5 is a model, and Mis atomic over B U Nr, it follows (see C.12), that

A ψ M
i?

hence by (9),

,4 X M ,

contradicting A CM. This proves (10).
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Let / ' be the set of v E S* such that q =dft(A/B) _L pp. If v E S*, by 3.2
we have Np X JVS; since by (8), Np *L B Ό Ns, we have NP*L BU Ns: hence

Np- Ns Np~

q ± t(Np/B U Ns) for P E / ' . It follows that

q±t(Nj./BUNs) (12)

since (Np)PξΞj> is independent over B U Ns (by 3.2(ii) and (8)). If we had / ' =
5*, (12) (and (9)) would contradict (10). Let Po E 5* - / ' ; by definition,
f(Pp) XPPQI i e., we have the second assertion of (i). Since f{pv) is of weight
1, for any v E 5* - / ' we must have pp jί pPo; hence S* - J ' C / -df the
1-class containing Po

Assume 4̂ X Ns*nκ we'll deduce a contradiction. We have TVy X
BUNS BUNS

Ns*nj! this follows from 3.2(ii) and (8). Hence by the assumption and (12) we
conclude A X Nj>; i.e., A X 7VS* (since S* - Jf C / ) ; by

£U7VsU(sτv) ^UNsu(s ny)

the assumption again, this would give A X N5*, contradicting (10).

We have verified part (i) of the lemma.
The system (NP)PGS* is independent over B U Ns; hence by D.3', there is

vGS* satisfying the assertion of (ii). By (i), we must have v E /, as said in (ii).
Now, with v S-related to *>, let r > v and fGl, such that f £ 5. Let P' be

the unique index < f such that v' E 5*. Assume that

BUNS

Claim Under the notation and conditions of the last paragraph, we have

f(Pτ)±Pt

First assume f ~ > v' and consider the following diagram of sets, Figure 8, with
the arrows containments.

f(N?) UBUNS NfUBUNs

t t
J(N°T-) UBUNS Nf-UBU Ns,

may be equal ί j j j may be equal

MUίUΛίj NyUBU Ns'

^^BUNS^

Figure 8.

This is a normal tree of sets: the only independence relation (at the branching)
involved in this is our assumption; the orthogonality relations follow from those
in 91° and ΐίl1 and (9) as well as Nv> X B U NSi which is a consequence

NP'-

of (8). By 3.3, the Claim follows. The remaining case f = P' is similar.



162 L. HARRINGTON and M. MAKKAI

Using the Claim, we see (iii) as follows. Assume the assumptions of (iii).
Then, since f E (S') *, we have t£S. Now, if P Φ P' (P' as in the Claim) then
by (ii) (P being S-related to v), we find that the assumption of the Claim holds,
hence f(pτ) ±-Pf> contradicting the fact that f is S'-related to r (see (i)); hence
P' = P; i.e., v < t we claimed in (iii) (P = f is impossible since f(pp) ±f(pτ)).
Now we know P' — P\ if we had A J- TV,,, then by the Claim again, we would

get the contradiction f(pτ) ±pfl this proves the second assertion in (iii). This
completes the proof of part (iii).

Assume the hypotheses of part (iv). Since v is proper, we can find v' > v
with uncountably many successors. Find a countable convex S' such that Sx U
S2 C S' C /, and

Bv, X Nj .
Ns>

Since v' has uncountably many successors, there is r > v' such that r and S' are
properly related. Let f be S'-related to r. Applying (iii) once to v, r, S\ C 5 '
and Pi, once to v, r, S2 C S' and P2> we obtain that P{<t and z>2 < t We also
know that PΪ9 P2 belong to the same 1-class (by (i)); in particular, Pf = P2~ It
follows that P{ = ί>2

We can make the following 'global' use of Lemma 3.5. It is easy to see that we
can assign a countable convex set Sη C / to every η G1° such that v < η implies
Sη C Sv and such that

for all η G 7°; let us call such a system (Sη)ηGlo a spine for/, and let us fix a
spine. Define a partial map J> •-> P from 7° to 7 1 as follows. For *> = < >, P is not
defined. For other p, P is defined if and only if v is properly related to S = £„-,
and P is then chosen to be an index in 7 such that P is S-related to v\ if *> is
proper, v is uniquely determined by this property (see (iv)). Note that, given
any η E 7°, for all but countably many v> η, v *-> P will be defined; moreover,
the map is order preserving: v *-> vy T - ^ T , v < T => P < f (see (iii)). The
map v ~ P induces a map from uncountable 0-classes to 1-classes: to any
uncountable 0-class /, we have a unique 1-class / such that vGJ,PGJ imply
f{pv) jL pp and such that: if v ~ P and v G J, then P £ j . Moreover, if J - /
under this induced map, and J is uncountable, J has to be uncountable too:
supposing / countable, letting η be the root of /, and using the attendant
notation introduced prior to Lemma 3.5, we could find a countable J' CJ such
that (with S = Sη)

NjUBUNs^l Bj ,

hence for v E / — / ' , by

Bj ±BV( = A)
ΰ

we have

Nj U B U Ns X Bv ,
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hence (9) as well as A _>L TV/, contradicting (i). By the construction, if
BUNS

J *-* J as above, η is the root of /, ή is the root of /, then ή E Sη.

Step 2. Now, assume/: M° >̂ Mι is an isomorphism; we are going to use the
above for b o t h / a n d / " 1 . Fix spines (Sη: η E 7°) for/, and (Sή: ή E 71) for
f~ι; by the above we have partial maps

pUSv (/o-^/i)

vhΛv (I^Io)

defined from these spines. Our goal is to show that, possibly after disregarding
some further indices, these two correspondences become inverses of each other.

Recall that h0 and hi induce a map from uncountable 0-classes to un-
countable 1-classes and one from uncountable 1-classes to uncountable 0-classes
and that, actually, these can be defined without reference to the maps h0 and
h\. Since the relations

Γ\pp) X.pv

are equivalent, it follows that the two maps of classes are inverses of each other.
We now fix our attention on a pair of uncountable classes J and / corre-

sponding to each other via ho(hι), with respective roots η and ή; /is a 0-class,
/is a 1-class.

As before, we write Bv =f(N®)9 B = Bη; we omit the upper index 1; we
also write N = Nή. The set C =f-ι(Nή) ("symmetric" to B) is mcluded injhe
countable model C C M° (such that M° is primary over N/θC); we let TV =
/(C) (since we want to map everything over to the "1-side"). Let us put So =
Sή, So = Sη (given by the spines for / a n d / " 1 ) , and let us define, by induction
on n < ω, the countable convex subsets SQ C . . . C S£ C S^+i C . . . of 7°, and
similarly Sn C 7, such that

BNNSn:L B,o
VH

and

BNBso+ιX N j .

If we put 5° = U S°, S = U Sn and D = BNBS°NS, then we have

Diso
B'° < 1 3 >

D^N,. (14)
Ns

Put J' = J - S° = (S0)* D J, J' = J - S = S* Γ) J. By Br X Bso (a con-
B

sequence of the independence of the tree {Bv)v^jθ) and (13), we get

Br X f l (15)
B

In particular, Bv X BNS for every v E / ' ; i.e., v and S are properly related.
B
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Similarly,

Nj. X D . (16)
N

Let v E J'. By 3.5(i), we have Bv ^ Nj>. This implies
BNS

Bvjz Nj, (vGJ') (17)

indeed, we have the implications

B, α. Nj. }

(14)=*£> X Nf BNs

BNS J

Similarly, we obtain

Np φ Br (PGJ') . (18)
D

Now, let v be a proper node in / ' . Since By 4, BNS implies Bv X BNS ,
B B A ^

v and Sη are properly related; i.e., v G dom(h0). By 3.5(ii), there is v E / ' , P
S-related to v; by 3.5(iv), P = ho(v), and by 3.5(iii), we have Bv ^ Np. Just
as we inferred (17), we now conclude BNs

Bv J* Np (PG Jf proper, v~°v) , (19)

and symmetrically,

Np S Bv (per proper, p ίi *) . (20)

Define /i (Λ) to b^ the set of proper nodes in / ' (in J ' ) . We claim that
Λo maps 7! into 7 l f h\ maps 7i into 7 l f and in fact, on these sets h0 and hi arc
inverses of each other. If v E J\, there is some uncountable 0-class above it; the
1-class corresponding to this (under fι0) is uncountable too; since h0 is order-
preserving, it follows that v = ho(v) is proper too; in other words, h0 maps Jλ

into J\. Similarly, hi maps Jι into J\. Now, let PGJ\ and let us consider v and
P such that

Now, both (19) and (20) apply. Since w(Np/D) = w(N0/N) = 1 (see (16)), it
follows that Bv ^ Bv. Since {Bv)vξΞr is independent over B, and we have (15),

D

we conclude that v = v must be the case. This shows that hi °h0 is the identity
on Jγ. Also, by symmetry /*o°#i is the identity on 7 l e This proves the claim.

We will show that | / ' - 7^ = | / ' - Jx\. This will follow (see D.5(ii))
from the fact that both systems (Bv)vGj>_Jl and {Np)p^j>_jx are maximal
independent over DNjx in their union, and each member of these systems
has weight 1 over DNjr In fact, using the bijection v - v of Jx and J{ such
that Bv ^ NP9 we find by D.5'(iv) and C.ll(iv) that {Bv)v(Ξj>_Jχ ~ (Np)PGj{
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is independent over D, hence (Bv)v(Ej>_Jx is independent over DNjr Clearly,
(Nρ)ρ<ΞJ'-Jι is independent over DNjr If, contrary to the first maximality
assertion, we had v E /' - J\ such that (Bv)v^j'_jχ

 Λ <Â > is independent over
DNj{, then we would have Bj>-Jγ >L Np, hence by Nj{ X Np, also

Br-jγNjχ X Λfr . (21)

By D.5'(iv) and C.ll(iv), replacing each Bv by Np (v •-> P, v E J\) in {Bv)v^r,
we get that Ά =<# (B^ej*-^ Λ <Λ^>PGy1 is independent over Zλ Together with
(21), this means that 4̂ ~ <7VP> is independent over D. But then, replacing each
Npby Bv (P •-> v, P E 7i) in ^4, we get that (Bv)vGj> ^ (Np) is independent over
D, in contradiction to (18). Another application of D.5'(iv) and C.ll(iv)
shows that Bv X Nj{ for v E / ' - J\\ this proves that w{Bv/DNjλ) = w(Bv/

D) = 1; also, it can be used, together with (17), to show the second maximality
assertion.

In summary, we also have \J' — Jχ\ = \J' — Jχ\.
To finish the proof of Theorem 3.4, we only have to make a few remarks.

We define the 1-1 correspondence of the theorem as follows. Elements in 7° (in
71) whose class is countable will not take part in the correspondence. Other-
wise, if /is an uncountable 0-class, Jis the corresponding 1-class, we let / ' and
J' be the subsets as above (the difference J— J', J— J' are countable); the cor-
respondence will map /' bijectively onto /'. In particular, on the set Jx C J' of
proper nodes, the correspondence is just Λo, and it is onto J\. On the remain-
ing set / ' - Ju the correspondence is any bijection onto J' - Jx. Since Λo is
order-preserving, and since all elements p of J' — J\ (J' — J\) are improper, and
thus the correspondence for nodes above v is undefined, and since we have
disturbed Λo on / ' — J\ only by going to another element with the same
predecessor, the correspondence is order-preserving.

The reader will notice that the whole proof can be repeated for a-
representations of α-models practically without change. In fact, the only thing
to watch is the matter of cardinalities. For simplicity, we still assume T is
countable. Let λ0 = Xo if ^is t.t., λ0 = 2K° otherwise (see the beginning of
Section 2). Then we have

Theorem 3.4' Let dle = (N^)vGIe be an a-representation {see 3.1(/f)) of
the a-model Me (f = 0, 1), and letf: M°^Mι be an isomorphism. Then there
is a partial 1-1 correspondence v •-> v between 1° and I1 such that

(i) when v -> P, we have f(pp) ± p; (pp, p are as before)
(ii) ifv*->P,τ~τ, then v < τ iff P< f
(iii) for any class J of 91°, we have that there are only countably many v E /

for which v •-> P is undefined; similarly for classes ofdl1.

The proof of the theorem for the case λ0 = Xo (Tis t.t.), or with 'countably
many' replaced by 'λo many' in part (iii), is literally the same as that of 3.4.
The arguments necessary for the remaining case will not be given here; c.f. the
end of [6].
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4 Consequences of NDOP Throughout this section, T is superstable and
satisfies NDOP.

Proposition 4.1 Let M be a-prime over Njfor an independent ω-tree of
a-models (Nη)ηGI. Then p X M implies p X Nvfor some v E /.

Proof: First assume that /is finite. If /is linearly ordered, the assertion is trivial.
Otherwise, we use induction on |/ | . We put / = S{ U S2 such that Su S2 are
convex, S\Π S2 = So is linearly ordered, and Si Φ I, S2Φ L NSo is the same as
Nτ for r the maximal element of So; let us denote NSo by Mo. By indepen-
dence,

hence (see C.12(ii)) if M, is α-prime over NSi (/ = 1, 2), we have

MXJLM2 .
M 0

 2

By the arguments in the proof of 1.4, we can find M, α-prime over NSi (i =
1, 2) such that the given Mis α-prime over Mλ U M2. By NDOP, e.g., p jL Mx.
By induction hypothesis (|Si| < | / | ) , there is η G S{ such that/7 / Nη9 conclud-
ing the case when / is finite.

In the general case, let q E S(M) such that p X q\ since T is superstable,
there is finite B CM such that q dnf over B; hence p X q\B and thus p X B.
There is a finite convex Γ C I such that B is ^-atomic over NΓ, hence B <Z Mf

for some α-prime M' over NΓ. Since/? X ΆΓ, the first case applies and proves
what we want.

Proposition 4.1' Let T be t.t. Let M be prime over Njfor an independent
ω-tree (Nη)ηGI of models. Then p X M implies p X Nv for some v E /.

Proof: The same as that of 4.1, using the equivalent formulation 1.3 of NDOP.

Proposition 4.2 Suppose M is a-prime over Njfor an independent ω-tree
(Nη)ηGI of a-models. Then M is a-minimal over Nj\ i.e., there is no a-model M'
such that N/CM' g M.

Proof: Suppose such M' existed. Then, of course, M' is α-prime over Nf as
well. Let p E S(M') be a nonalgebraic type realized in M. By 4.1, p X Nη for
some η E /. By D.ll(v), there is regular q E S(Nη) such that/? jL q. By D.5'(i),
q\NΓ is realized in M as well, say by a E M — M'. We have a X TV/, hence by

C.12(ii), a X M since M is α-prime over Nj\ contradiction to a E M - Nη.

Proposition 4.2' Let T be t.t. Suppose M is a-prime over Njfor an inde-
pendent ω-tree (Nη)η(Ξl of models. Then M is minimal over Nj.

Proof: The same as that of 4.2, cf. D.17.

Theorem 4.3 (Existence of ^-representation) Every a-model has an a-
representation.

Proof: Let M be an α-model. We construct an ω-tree / and a tree (Nη)ηeί of
tf-models, by proceeding by an induction on the level of η. We define 7V< > to be
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any tf-prime model C M. Supposing that we have defined the indices η as well
as the indexed models Nv up to and including level n, let η be an index of level
n9 and consider Nη C M. Let (av)v(Elo be a system of elements ap£M such that
ap/Nη is regular, av/Nη ± Nη- if η~ is defined, (av)vGlo is independent over Nη,
and maximal among all such systems. We define the set of successors of η to
be 70 (or some set in 1-1 correspondence with 70); we put Nv = Nη[av], some
model contained in Mα-prime over Nη U {#„}. This completes the construction
of <A^)r?G/; it is clearly an ^-representation. Suppose now that M is not tf-prime
over N/, in particular, M is not tf-minimal over Nji there is an α-model Mr such
that Nj C Mr g M; of course, M' can be chosen to be α-prime over Nτ. Let p
be a type E S(M') realized in M - M'. By 4.1, there is η such that p jL Nη.
Choose η to be of minimal level in addition. There is regular q €Ξ S{Nη) such
that p X q\ q\M' is realized in M — M\ say by a. For the case η Ψ < >, we have
p j_ Nη-9 hence q ± Nη-. Notice that a XM'. The system <«„>„>, Λ <α> is

independent over Nη, and it consists of elements of M regular over A^, with
types over Nη that are _L to Nη- if η Φ <>; this is a contradiction to the maxi-
mality of (av)v>η.

Theorem 4.3' ( Γ t . t . ) (Existence of representations) Every model has a
representation.

Proof: The same as that of 4.3.

5 Numerical computations In this section we derive estimates for I(T, Kα),
the number of isomorphism types of models of Γin power Kα, for T countable
and t.t., and for Ia(T, Kα), the number of isomorphism types of α-models of
Γin power Kα, for T countable and super stable. The countability assumption
on T is only for convenience. The results for theories satisfying NDOP
are obtained in an identical way for the two cases, and they are deduced
in an elementary way from 3.4, the quasi-uniqueness result (to obtain the
lower bounds), and 4.3', the existence of representations (to obtain the upper
bounds). Of course, theories with DOP are dealt with in 2.3.

Until further notice we assume now that Γis t.t. and countable.
A concrete n-chain is a sequence N0CNι C . . . CNn of models such that

Â o is prime over 0 , and A^+ 1 = Nk(ak) for some ak SR over Nk such that
ak/Nk ± Nk_{ if k > 0. Two concrete Λ-chains (Nk)k<n, {Nk)k<n are iso-
morphic if there is an isomorphism of Nn onto N'n that maps each Nk onto
Nk(k < n)\ an {abstract) n-chain {represented by {Nk)k<n) is an (the) isomor-
phism type [7] of some /z-chain 7 (of (Nk)k<n).

The basic tree of T (denoted C or C(Γ)) is the poset whose underlying set
is the set of all chains (/z-chains for all n < ω), with the obvious ordering:
l<Nk)k*n] ^ lWk)kχn'] iff n < n' and (Nk)k^n = (N'k)k<n. C is an ω-tree.

The depth of T, d{ T) is the usual well-foundation rank of the basic tree
C; rank(o{c) = sup{ranke{cf) + 1: cf a successor of c} for c in C, and d{T) =
rank(o{root(o) {sup of a set of ordinals is the smallest ordinal greater or equal
to all ordinals in the set). d{T) = 00 if Q is not well-founded (in which case T
is called deep); d{T) is an ordinal if C is well-founded (in which case Γis called
shallow).
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Theorem 5.1 Suppose T is t.t. and countable and suppose T has NDOP. We
have the estimates

fmin(2««, Λ/(r)-i(|ω + α| κ°)) if I < d(T) < ω

I(T, K J < \
lm//i(2K«, ^ ( Γ ) + i ( | ω + α | ) ) if d(T) > ω

Γ min(2*°, pd{T)-Λ\<x\)) if1 < d(T) < ω and α > ω
I(T, KJ > \

l/m/ι(2*«, Λ (r)+i(|α|)) ifd{T)>ωandcc>ω .

In particular, if d(T) > ω and a > ω, we A# ve £Ae equality

I(T, Ka) = min(2**9 ^<r)+i( |α |))

Proof: First we deal with the upper bounds. A (6-) labeled tree I is an ω-tree
together with a function/: /-• β such that/ is order- and level-preserving; in
particular, if η < v in /, / (η) <f(v) in 6. In other words, to every node of /
on level n, say, we attach an /7-chain, so that the chain attached to η is the
Restriction' of the chain attached to v, if η < p. Two labeled trees are isomorphic
if there is a tree-isomorphism between them that also preserves labels.

It is practically obvious that labeled trees capture exactly the notion of
'isomorphism type of representations'. More particularly, let 91 f = (Ne

η)ηGIe
(I = 0, 1) be two normal trees of models. An isomorphism h: 91° => dlι is, by
definition, an isomorphism h: I0^ I1 of trees (posets) together with a family
(hη)ηGlo of isomorphisms hη: N^^N^ such that if η < v, then hv extends hη.
Given a representation 91 = (Nη)η<Ξl, its type is the labeled tree Iπ with under-
lying tree / and with label on η, the isomorphism type of the concrete chain
N() C Nηo C Nm C . . . C Nη, where <> < η0 < η{ <... < η are all the
η' G / with η' <η. It is clear that two representations are isomorphic iff their
types are isomorphic labeled trees. It is also clear that any C-labeled tree is the
type of some representation.

It is an important but easy observation that if Mί is represented by
91' (ί = 0, 1) and 91° = 91 1 (in the sense defined above), then M°^Mι. To
see this, first note that 91° = 91 * implies Λ#> - Λtfi; in fact if Λ = <A,
<Ai,>»e/°>: 9 l ° ^ 9 l 1 , then (J A.: N%^N}ι. This follows from the indepen-

dence property (3.2(ii)) of normal trees, together with the following obvious
general fact: if (A ) i G ί is independent over A* (I = 0, 1), A: A0 ^ A1 (an
elementary isomorphism), A,: Af^A}9 hi D h (i e /) , t(Af/A) is stationary,
then

U A/: lU ί^ lU/ .

The observation now follows from the uniqueness of prime models (B.7).
From the above discussion we now see that the existence theorem (4.3') implies
that

/(r, κj</(e, κβ)
where the last quantity is the number of isomorphism types of C-labeled trees.
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Hence, to complete the proof of the first part of the theorem, it suffices to
estimate 7(C, Kα) from above suitably.

Let C temporarily be any countable tree of ("well-foundation") rank δ;
let 7(6, < Kα) denote the number of nonisomorphic 6-labeled trees of power
< Kα. We prove by induction on δ that

| Ί if δ = 0 Ί
7 ( β , < K β ) < ] pδ^(\ω + a\^) i f l < δ < ω [ (1)

l ^ a + i ( | ω + α | ) if δ > ω J

For δ = 0, the assertion is obvious. Let δ > 0.
Let β[ l] be the first level of Q (successors of the root). If /is a C-labeled

tree, η E /[I] (the first level of /), then η determines a labeled tree Iη with root
77, labeled by C/(r?) (the subtree of Q with root/(17), f(η) being the label on η,
f(η) E C[ 1 ]). It is clear that the isomorphism type of / is determined by how
many times each isomorphism type of a Cc-labeled tree (c E C[l]) is repre-
sented as Iη(η E /[ 1 ]). More precisely, let X be the set of isomorphism types of
Cc-labeled trees of cardinality < Kα, collectively for all c E 6[1J; for each
xEX, let [x] be the cardinality of the set {η E /[ 1 ]: Iη is in the class x}; if we
do this for two C-labeled trees 7° and 71, then

I° = Iι# [x] ( / 0 ) = [x] (Γ) for all x E X

this is clear. Since [x] may range over all cardinals (including finite ones) < Kα,
[x] ranges over a set of power |ω + α|. It follows that

7(6, < K α ) < |ω + α|lχl . (2)

Let us denote the expression on the right-hand side of (1) by g(δ).
By induction hypothesis, for Xc = the set of isomorphism types of Cc-

labeled trees (cGC[l j ) , we have (since rank(6c) < δ)

\XC\ <supg(y)
7<δ

hence, since X = | J Xc and C [ 1 ] is countable,
cee[i]

\X\<X0.supg(y) . (3)
7<δ

*0 supg(y)

Since, as it is easily seen, the function g satisfies g(δ) = |ω + a\ Ύ<δ ,
(2) and (3) imply (1). As we noted above, (1) implies the upper bounds in the
theorem.

The opposite inequality is slightly trickier to deduce; the method works only
for a > ω. Of course, we now use the "quasi-uniqueness" theorem, Theorem 3.4.

The labels do not help us any more; hence we talk about (bare) trees 7
instead of labeled trees.

In 3.4, the following quasi-isomorphism of tree is implicit: 7° — 71 iff
there is a partial 1-1 correspondence h between 7° and 71 that preserves and
reflects order (but not necessarily level) and such that for every η E 7° (every
η E 71), for all but countably many successors v oϊ η9 h(v) (h~ι(v)) is defined;
we also write h: 7° ̂  71.
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We want to find a class of trees in which quasi-isomorphisms preserve
levels.

Let us call a tree / ample if for all η G /, if an isomorphism type of trees
occurs among the subtrees with roots the successors of η9 then it occurs uncount-
ably often; in symbols, for all v0 > η,

\{v>η:I, = IV0}\^Xι .

For ample 7°, 71, if h: 7° => 71, and r) = h{η)9 then rank/O^) = rank/i(τ));

this is easy to check by induction.
Here is a trick (verbal communication by Shelah), to ensure that a quasi-

isomorphism preserves levels. Suppose a > ω and let

X=(Xn:n<ω)

be a family of sets of uncountable cardinalities < Kα such that the Xn are pair-
wise disjoint and each is of cardinality \a\. A tree / is constrained by X if for
each n < ω, if η E I[n] (level n in /) and ranker?) = 1, then the number of suc-
cessors of η is a cardinal in Xn. We claim that if 7°, 71 are ample trees both
constrained by X, and h: I0=^Iι

9 then h preserves levels, at least for elements
of rank > 0: if ή - h(η)9 ranker?) > 0, and η G I°[n], then ή G Iι[n], The
proof is by induction on rank/θ(τj). If this equals 1, then so does rank/i(ή),
and the assertion is a direct consequence of the trees being constrained by X.
Let rank^^) > 1. Then η has an immediate successor v such that rank/θ(j/) >
1, and by ampleness, there is such v such that P = h(p) is defined; by induction
hypothesis, level/ι(P) = level/θ(*>); since ή < P, it follows that level/1(77) <
Ievel/θ(τ7); by symmetry, level7o(i7) < level/i(ή), hence the two levels are equal.

Now, we estimate the number q(oc9 δ) of quasi-isomorphism types of X-
constrained ample trees of power Kα and of rank < δ, for a > ω and X as
above. We claim that

rmm(2*X ^ δ _ ! ( | α | ) ) if 1 < δ < ω

<7(«, δ) > (4)
Lm/AZ(2K«, ^ + i ( | α | ) ) if ω < δ .

Let £(γ) = ^ γ _ i ( | α | ) for 1 < 7 < ω, g(y) = ^ 7 + i ( | α | ) for 7 > ω; let
g*(δ) =supg(y). For δ = 1, there is nothing to prove; assume δ > 1; suppose

y<δ

the assertion is true for 7 < δ. Hence, there are at least mini!**, g*(δ)) pair-
wise non-quasi-isomorphic ample trees of cardinality Kα and of rank < δ con-
strained by X' = (Xn+\' n<ω) (with X~ {Xn\ n<ω) the given constraint).
Let Y be a set of pairwise non-quasi-isomorphic trees with all these properties
such that \Y\ = m/«(Kα, g*(δ)). Now, consider an arbitrary assignment/with
dom(f) = Y such that for each 7G Y,f(J) is an uncountable cardinality < Kα;
the number of such assignments is | « | ' y ' = min(2*a

9 |α | g * ( δ ) ) = min(2*a,
g(δ)). Given such an/, one can construct a tree 7 = 7^such that the subtrees
Iη of 7 determined by elements η in 7[1] are, up to ^-isomorphism, all from Y,
and in fact, each tree / from Y occurs exactly / (/ ) many times, up to q-
isomorphism, as some Iη (η G 7[1]). Clearly, 7/is constrained by X9 it is ample,
its rank is < δ, and its power is exactly Kα.
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We claim that If => If implies that / = /'. In fact, if h is the quasi-
isomorphism, it maps the first level (except countably many elements) of V
onto the first level (except countably many elements) of If>, and if h(η) — ή
(η E If[\]), then it induces a quasi-isomorphisms l{^if; hence, h maps the
set {η: l{^J] onto {ή: if =* J} modulo countably many exceptions, for each
JG Y; i.e?,/(/) = / '(/) for all / E Y as claimed.

This proves (4).
The estimate (4) now implies the corresponding estimate in the theorem.

Let δ = d(T); let / be any tree of rank < δ. Make / into a C-labeled tree by
choosing an arbitrary labeling /: / -• C (this is possible since rank(7) <
rank(C); if rank(C) = <χ>, this is clear; if rank (C) < oo, induct on rank(C)).
Consider any representation 91 = (Nη)ηGl whose type is /; let M7 be the model
represented by 91. If Mj — MΓ> then by 3.4 the (bare) trees / and Γ are quasi-
isomorphic. Hence, we get for 7(Γ, Kα) the same lower estimates as (4) for
q(a, δ).

For a deep theory T, when d(T) — oo, the theorem says that I(T, Kα) is
the maximal number, 2Kα, whenever a > ω. One can improve this result by
removing the restriction a > ω.

Theorem 5.2 Suppose T is t.t. and countable. Suppose T is deep; i.e.,
d(T) = oo. Then 7(Γ, Kα) = 2*« for a > 0.

Proof: The assumption d(T) — oo implies that there is an infinite sequence
No C Nγ C . . . C Nn C . . . such that (Nk)k<n is a concrete H-chain for all n < ω.
Let N\ = N0(aι), and let B be a finite subset of No such that t(aι/N0) is based
on B (i.e., #! X Λ/Q and t(a\/B) is stationary). Let us fix an arbitrary

B

uncountable cardinal K = Kα. We consider models that are represented by some
9X = (Nη)ηGI with / an ample (see the proof of Theorem 5.1) ω-tree of cardi-
nality K and such that for <> = η0 < η{ <j... < ηn in /, (Nηk)k<n ~ (Nk)k<n;
i.e., such that the type of 91 is a labeled tree in which we have used only the
labels cn = [(A^)^^^] (n < ω); wlog, we also assume that 7V<> is literally the
same as No. Let M°, M 1 be two such models, represented by appropriate 91°,
91 *, and assume that/is an isomorphism M° => M 1 which is the identity on B.
Given any v in 7° on level 1, and v in 71 on level 1, we have that pv — t(Np/
N( >) jL t{ax/B), and pp / t(ax/B)\ hence, since/is the identity on B, f(pv) X
pp. Consider now the "quasi-isomorphism" h derived from/according to 3.4.
We must have that any v E 7° on level 1 (if it is in the domain of h) cor-
responds by h to some v in Γ on the first level; this is because the condition
f{pv) X pp determines the class of v in 7', and we have seen that indices v on
level 1 (that obviously form a single class, by the way) do satisfy this condition.
Next, remember that if v *-> v under Λ, then rank/o(j/) = rank7i(ί>) (by the
ampleness, see the proof of Theorem 5.1 above).

By these remarks, it is now easy to construct 2K nonisomorphic models of
power K. With any large enough set X C K, associate an ample tree 7 = Ix of size
K such that the set of ranks of elements on level 1 in 7 is precisely X. Let Mx

be the model whose type is Ix with the labeling with the cn as above. Our
remarks above show that if Mx and Mx> are 7?-isomorphic, then X = X'. Since
B is finite, we obtain the conclusion of the theorem.
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For Γt.t. and countable, <3(T) is clearly a countable tree. Therefore, obvi-
ously, if d(T) < oo, then d(T) is a countable ordinal. Using this remark, we
now have a corollary about countable t.t. theories not mentioning the property
NDOP.

Corollary 5.3 Suppose Tis countable and t.t. Then a > 0 and I(T, Kα) <
2*« imply I(T, K )̂ < Λ,,(|ω + β\),for any ordinal β.

Proof: Let a > 0.1(T, Kα) < 2K« implies, on the one hand, that Γhas NDOP
(by 2.3; now λ0 = Ko), and on the other hand, that d(T) < oo (by 5.2). Thus,
the conclusion follows from d(T) < ω\ and 5.1.

Assume now that Γis, more generally, s.s. In the context of α-models, we
have a notion of depth analogous to the one introduced above. In fact, we will
show in the next section that in case Γis t.t. the two notions of depth coincide;
anticipating that result, we do not make a notational distinction between the two.
In some detail: we have the notion of 'concrete fl-chain' as before, with No a-
prime (over 0 ) , and Nk+Ϊ = Nk[ak] (replacing Λ^+i = Nk(ak)); using the
resulting modified notion of '/2-chain', we arrive at the (modified) 'basic tree'
C, and we put d(T) = rank of 6.

Theorem 5.4 Suppose T is s.s. and countable, and suppose that T has
NDOP. Then we have

fmin(2\ A,(Γ)-i(|ω + α|κ°)) if I * d(T) < ω
/β(Γ, Kj<j

lmin(2*°9 ^ ( Ό + i ( | ω + α|)) ifd(T) > ω

wm(2K«, ?d(T)-i(\<*\)) //I <rf(Γ) <ω, α>ω,
and Kα > λ0

min(2*«, μd{T)+i(\<*\)) ifd(T) > ω, a > ω,
and Kα > λ0 .

In particular,

Ia(T, Kβ) = min(2*"9 ^ ( r ) + i ( | α | ) ) ifd(T) > ω, a > ω, and Kα > λ0 .

Also, Ia(T, Kα) = 2K« whenever d(T) = oo, a > 0, and Kα > λ0. As a
corollary, we have that a > 0 and Ia(T, Ko) < 2K« imply Ia(T, K )̂ <
Pd(T)+ι(\ω + β\) whenever T is countable superstable.

The proofs of the various parts of Theorem 5.4 are identical to those of
the corresponding results given above, using the corresponding results for
#-models in previous sections.

6 A discussion of depth In this section Γis assumed to be superstable. We
start by restating the definition of the depth of T in a manner slightly different
from the one in the last section. For brevity, let (P denote the class of pairs
<M, M'> of tf-models M, M', such that M g M', and M' is finitely α-generated
over M (M' = M[a] for some a). We define the function d{ —) on <P such that
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d(MVM) = d((M, M')) is an ordinal or oo as follows, d(-) is uniquely deter-
mined by the following condition:

d(MVM) > a + 1 & for some M" such that
<M', M"> G (P, we have f (AfVAf) X M and d(M"/Mr) > α.

(Of course, we have the conventions: α < oo for all a E Ore/, and also
oo + 1 = oo.)

For a finite tuple a, and α-model M, d{a/M) = d(M[a]/M). Note that we
clearly have that a/M ^ a'/M implies d(a/M) - d(aVM) (M an α-model).

Proposition 6.1 (T is s.s.) Suppose M C TV are a-models, and a >X TV. Then
M

(i) tf(tf/M) <d(a/N); and
(ii) Supposing that T has NDOP, we have d(a/M) = d(a/N).

Proof: In this proof, A/ and TV denote α-models, M C TV.
ad(i). This is a straightforward computation. We prove by induction on

a that a X TV and d{a/M) > α imply d(a/N) > α. It suffices to consider the
M

case a = β + 1. Assume a JL N and d(a/M) > β + 1; i.e., for some Z?,

b/M[a] -L M and rf(Z?/M[α]) > j8. Without loss of generality, 6 X TV. It
M[ί7]

follows that & X TV[α]; hence by induction hypothesis, d(b/N[a]) > β. Since
Λ/[ύr]

we have M[a] X TV, b/M[a] X M implies b/M[a] X TV, hence &/TV[tf] X TV.
This shows that b is a witness for d(a/N) > |8 + 1.

ad(ii). The proof is a similar induction. Suppose a X TV and d(a/N) >
j8 + 1; let b be such that &/TV[ύr] X TV and d(b/N[a]) > β. Since the α-prime
model over M[a] U TV is α-prime over TVU {a} (as is easily seen by a X TV),

M

we may assume that N[a] is α-prime over M[a] U TV. We claim that there is a
type q' G S(M[α]) such that qr ^ q = f(&/ΛT[α]). Indeed, let <7 ̂  ® /̂ (n G
S(TV[α])) be a regular decomposition of # (see D.10). Let / < n be any index.
^ X TV implies η X TV. By NDOP (note that M[α] X TV) we have η jL M[a]\

M

i.e., /*/ ̂  r\ for some regular r/E S(M[a]) (see D. l l (v) , D.5'). Since this was
true for all i < n9 q^q1 —df® rU as claimed. If b' realizes q'\N[a], then, by

i<n

q ^ q'\N[a], we clearly have that d(b'/N[a]) = d(b/N[a]) > β. By the induc-
tion hypothesis, d(b'/M[a]) > β. b'/M[a] X M, since b'/M\ά\ is parallel to
& VTV[#], and the latter type is orthogonal to the even larger set TV. These facts
tell us that b' witnesses d(a/M[a]) > β + 1, as desired.

Proposition 6.1 is an encouragement to define the depth of any stationary
type, at least for the case when T is s.s. and has NDOP, as we will assume from
now on. For stationary q, d(q) is d(a/M) for an tf-model M such that
dom(q) C M and a ι= q\M. Proposition 6.1 tells us that d(a/M) does not
depend on the choice of M (within the conditions stated), or in other words,
that d(-) is a parallelism invariant.

Proposition 6.2 Suppose T is s.s. and has NDOP.

(i) p < q implies d(p) < d(q).
(ii) For any stationary p, d(p) = max{d{r) :r <p, r is regular}.
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Proof: ad(i). Exercise.
ad(ii). Notice that up to ^ , there are only finitely many regular r such that

r <p (see D.10, D.ll), hence there are only finitely many values in the set after
the 'max' operation. Therefore, it suffices to prove that d(p) > β + 1 implies
that there is r regular such that r <p and d(r) > β + 1, under the assumption
that the same statement is true with β + 1 replaced by β (induction hypothesis).
So, assume Mis an α-model, q G S(M[a]), d{q) > β and q _L M (here/? is par-
allel to a/M). By the induction hypothesis, there is s G S(M[a]) such that s is
regular and d(s) > β. By the decomposition theorem, M[a] is α-prime over
(J M[cij] for an M-independent system <#/>,<„ of elements realizing regular
i<n

types over M. By NDOP, s jί M[#/] for some i < n, hence for some s' G
S(M[di]), s ' 3̂ s; by 6.1, c/(,s ') = d(s) > 0. Let r = t{a{/M)\ then s1' witnesses
d(r) > |8 + 1, as desired.

Note that if we put <P1 = {<M, M'> G (P : M' = M[α] for some α with a/M
regular}, and we define dχ( —) on (P] just as d was defined on (P (in particular,
with "<AΓ, M"> G (?!" replacing "<Mr, Mr/> G (P"), then 6.2 tells us that
d(MVM) = dx(hΓ/M) for <M, M'> G (Pj.

Let us write d(M) = sup{d{p) + 1 \p G S(M)}, with Many β-model. We
have rf(M) = sup{dx(p) + 1:/? G »S(M), /? regular}. It is now obvious that
d(T) as defined in the last section, in the second version with "α-models", is
the same as d(M0) for Mo the α-prime model (over 0 ) .

It is not hard to see that, in fact, d(M) = d(M0) = d(T) for any α-model
M: on the one hand, with Mo C M, it is clear that d(M0) < d(M); on the other
hand, using an ^-representation of M, we can easily see that for every regular
p G S(M), there is a regular p' G S(M0) such that d\(p) < dγ(p'), proving
d(M) < d(M0) (for a similar argument, see the proof of Proposition 6.4
below).

Let us now turn to the case when Γis t.t. and has NDOP. We could define
do(a/M) for arbitrary tuples a and arbitrary models Manalogously to d(a/M);
but we do not seem to be able to prove the analog of 6.1(ii) for the resulting
notion. Instead, we restrict our attention to strongly regular a/M, and introduce
the analog of dx (see above). Accordingly, let (Po be the class of all pairs
<M, M') such that Mf — M(a) for some a with a/M strongly regular. Note (see
D.22) that <M, M') G (Po iff M' is 'minimal' over M in the weak sense that
M S M' and for every N with M ξ i V c M ' there is an M-isomorphism of N
onto AT. Note also that if a/M, a'/M are both SR and α/M ^ α'/M, then
α/M — a'/M, and in fact, M(#) is M-isomorphic to M{a').

RK

Define do(~) to be the unique function from (Po to Ord U {oo} such that
for any a G Ord,

do(MVM) > α + U there is <M', M"> G (Po such that
t{M"/M') ± M and rfo(M7M') > α.

As before, we put do(a/M) = do(M(a)/M) for a/M SR. In this context,
note that if M e M', then t(b/Mf) JL Mis equivalent to t(M'(b)/M') ± M (see
C.4(v) andC.12(i)).
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Proposition 6.3 Suppose T is t.t., a/M is SR and a X TV. Then
M

(i) do(a/M) < do(a/N), and
(ii) if T has NDOP, then do(a/N) = do(a/M).

Proof: The proof is quite similar to that of Proposition 6.1. We omit the proof
of (i).

ad(ii). Suppose d(a/N) > 0 + 1, and the appropriate induction hypothe-
sis. Let b be such that b/N(a) is SR9 b/N(a) _L TV, and do(b/N(a)) > β. We
may assume (by a d- TV) that N(a) is prime over M(a) U TV. By NDOP

M

(see 1.3), λf(a) d, TV and b/N(a) ± TV, we have b/N(a) X M(a). By D.17,
M

there is q E S(M(a)) such that q is SR and (7 / b/N(a). Let 6' realize <7|TV(α).
As we noted above, we now have that (N(a))(b) and (N(a))(bf) are N(a)-
isomorphic, so since do((N(a))(b)/N(a)) > 0, so is do((N(a))(b')/N(a)) > 0.
By the induction hypothesis, and since b' >L N(a), we conclude do(b'/

M(a)

M(a)) > 0. Since also bVM(a) ± M, clearly, we obtain do(a/M) > β + 1 as
desired.

Proposition 6.4 Suppose T is t.t. and has NDOP. Let a/M be SR. Then

do(a/M) = dxia/M) = d(a/M) .

Proof: Note that d(a/M) makes sense, for an arbitrary model M, via the
extension made after 6.1 of the function d(—) to any stationary type. Similarly
for d{(a/M), since a/Mis regular.

Let us prove do(a/M) < d(a/M). Assume do(a/M) > β + 1, and the
appropriate induction hypothesis. Let TV be an α-model extending M such that
fliiV we want to show that d(a/N) > β + 1. By 6.3, do(a/N) > do(a/M) >

M

β + 1, hence there is a nonalgebraic type # E S(N(a)) such that q ± N and
rfo(<7) ̂  j8. Let #' = tf|Mtf] (where N[a] D N(a)). We still have qf _L TV, and
by the induction hypothesis, d(q) = d(q') > do(q) > β; hence, d(a/N) >
β + 1, as required.

Next, we prove dx{a/M) < do(a/M). Assume dx(a/M) > 0 + 1, and the
appropriate induction hypothesis. For an α-model TV extending M with # X TV,
we have some 6 such that 6/TV[#] is regular, b/N[a] ± TV, and d\{b/N[a\) > 0.
In (TV[tf])[&] - N[a], there is some b' such that bVN[a] is S/? (see D.16).
Since bVN[a] is dominated by b/N[a], we have that 6VTV[α] <̂ b/N[a], hence
(TV[ύr])[Z?'] is TV[tf]-isomorphic to (N[a])[b], and 6VTV[̂ 1 -L TV. It follows that
d\(b'/N[a]) = dx(b/N[a\) > 0. By the induction hypothesis, and bVN[a]
being SR9 do(b'/N[a]) > 0. Next, apply 4.3' with a slight twist: let 91 =
Wj^e/be a representation of TV[α] "over TV": for η < v, (Nη9 Nv) E (Po, M i s
prime over TV/ and TV< > = TV (instead of TV<) being a prime model over 0 ) ; and,
in addition, for some P> < >, Np = N(a). It is clear that the proof of 4.3' will
give us such a representation of TV[α] "over TV" as well. Since for every b E
N[a] — TV, we have a ̂  b (see B.9), it follows that the only successor of < ) is

N

v for which TV̂  = N(a). Now, by 4.Γ, there is some v E /such that bVN[a] X
Nv. Let v be minimal (closest to < )) with the given property; necessarily, v > v.
We have some q E S(NV) SR and nonorthogonal to bVN[a] (see D.17); hence
by the remarks made before the definition of dθ9 do(q\N[a]) = do(b7N[a]) >
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β and by 6.3(ii), do(q) > β. The Concrete chain' N( > C Nηι C . . . C NVn_{ C
Nv CNv(b') with <>, r/!,..., ηn_\ being all the elements of / preceding v
(n > 1, η{ = P) clearly shows that do{Nηx/N{)) = do(N(a)/N) is at least
do(b'/Np) + /ι ( n o t e t h a t d o ( N η / N η i _ χ ) > d o ( N η i + ι / N η i ) + 1, w i t h i , 0 = < > ,
77Λ = J>, for all / with 0 < i < n, because of the definition of a representation,
and also, d(Nv/Nηn_{) > d(b'/Nv) = 1 since δ'/W, J_ Λ ^ ) . We have proved
that do(a/N) > do(b'/Nv) + n = do(q) + n> do(q) + 1 > 0 + 1, as desired.

Let us define do(M)9 for Γt.t. and having NDOP, as sup{d(M7M) +
1: (M, M') E (Po}. Now, it is clear that d(T) as defined in Section 5 is
the same as ύfo(Λ/o), with Mo the prime model (over 0 ) . Also, do(Mo) =
d(Mo), with Mo the α-prime model (over 0 ) . In fact, do(Mo) < £/o(Mo), and
do(Mo) = d(Mo) follow directly from 6.3 (note that do(r\λf$) = do(r) for all
SR r E S (Mo)), and 6.4, respectively. On the other hand, an argument simi-
lar to the one employed in the proof of 6.4 shows that do(Mo) < do(Mo) (by
considering a representation of MQ "over M o "). We have established that the
two possible definitions of d{T), for Γt.t. and having NDOP, introduced in
Section 5 give actually the same value to d( T).

We note that the definition of depth in [6] is slightly different. Shelah's
d(M'/M) (for (M, M') e (Pi) is our d(M'/M) if the latter is < ω, and our
d(MVM) + 1 if our d(MVM) > ω (compare 4.1 Definition in [6]; instead of
d(MVM), Shelah writes dp(M, M\ a) for a/Mregular, M' = M[a\). Simi-
larly, Shelah's Dp(T) = our d(T) if the latter is < ω, our d(T) + 1 otherwise.

Finally, let us point out that the so-called nonmultidimensional theories
represent those on the lowest level of the depth-hierarchy. T is called non-
multidimensional (n-md) if every nonalgebraic type is nonorthogonal to the
empty set, p jL 0 . This is equivalent to saying that there is a cardinal λ
(< card( t^)) such that there is no family of pairwise orthogonal nonalgebraic
types of cardinality > λ. Indeed, for any type q, there can be only w(q) many
pairwise orthogonal types which are all jL to q (see D.2(viii)); applying this to
types q G S(0), we immediately obtain that T being n-md implies that λ as
stated exists. Conversely, if there is a nonalgebraic type p ± 0, then C.6(i)
allows us to construct arbitrarily large families of pairwise _L types (in fact, con-
sisting of isomorphic copies of p itself).

For Γs.s., T being n-md is the same as to say that the number of equiva-
lence classes of the equivalence relation ^ is a set-cardinal (rather than a proper
class-cardinal); and in fact, it is the same as to say that this number is < 2 | Γ | ;
this is easily seen.

Let us now assume that Γis s.s. Notice that d(T) > 1, simply because T
has infinite models. Also notice that d(T) = 1 implies that Γhas NDOP: if we
had an instance of DOP as in Definition 1.1, then with some finite A C M, p
would be based on Mo U A; hence we would have for MQ = M0[A] that
p\Mό ± Mo, contradicting d(M0) = 1.

Finally, note that for T s.s., d(T) = 1 iff T is n-md. It is clear that T
n-md implies d(T) = 1. On the other hand, if d(T) = 1 and Mo is the α-prime
model, then every nonalgebraic type is /M o : this is clear since up to parallel-
ism, every stationary type is one over some MQ with (Mo, MQ) E (P. It follows
that "λ exists" as in the alternative definition of n-md, hence Γis n-md.
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NOTE

1. See AMS Abstracts 82T-03-324 (June 1982), and 83T-O3-11O, 83T-O3-111 (February
1983) as well as papers in the preprint collection, A Fall 82 Collection of Old and
New Preprints, by S. Shelah.
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