
106

Notre Dame Journal of Formal Logic
Volume 26, Number 2, April 1985

From Preference to Utility:

A Problem of Descriptive

Set Theory

JOHN P. BURGESS*

1 Introduction Some years ago J. H. Silver proved that a co-analytic
equivalence relation on a Polish space has either countably many or continuum
many equivalence classes. Later L. Harrington greatly simplified the compli-
cated original proof. The present paper is a sort of footnote to Harrington's lec-
tures on these matters. It will be shown that information developed in his proof
settles a problem of (hyper-)theoretical mathematical economics first investi-
gated by Wesley [13] and Mauldin [8]. Namely, it will be shown that any
family of closed preference orders that is parametrized in a Borel fashion can
be represented by a family of continuous utility functions parametrized in an
absolutely measurable fashion. Though the author is greatly indebted to
Mauldin's work [8], the treatment of the problem here will be self-contained.
Background and motivation for problems of this kind can be found in [6],
Section 2.1. Terminology and notation pertaining to descriptive set theory will
be as in [9].

2 Definitions Throughout let ψ be a topological space. A preference order
on 'ψ is any transitive, connected binary relation <*. Associated are the strict
preference and indifference relations given by:

x < * y <—> x < * y & ~y < * x
X = * y +-> x < * y & y < * χm

Note that Ξ * i s an equivalence relation, and that < * induces a linear order on
its equivalence classes, [x]* will denote the equivalence class of x. < * will be
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called closed if all sets of the forms ί μ: x <* y] and {y: y <* x\ are closed; or
in fancier language, if the given topology on *ψ is at least as fine as the order
topology induced by <*. When ψ has a countable basis this condition implies
(by Theorem 5 below) that <* is closed when considered as a subset of *ψ X If.
When *ψ is 7\, the converse implication holds. So our terminology is not
entirely inappropriate.

A utility function on ψ is any function / taking values in the closed unit
interval [0,1]. A utility function f represents a. preference order <* if we
always have x <* y iff f(x) < f(y). Plainly a necessary condition for the
existence of a representation by a continuous utility function / is that <*
should be closed; often this condition is also sufficient.

3 Proposition (cf. [8], Theorem 2.8) // ψ is countable, then every
preference order <* on ψ can be represented by a utility function φ; moreover,
when <* is closed, φ can be taken as continuous.

Proof: Cantor's back-and-forth method yields a function Φ assigning each <*
a representation φ taking values in the rationals of the open unit interval, which
moreover is "as near to surjective as possible" in the sense that we have
r e (Q Π (0, 1)) - range φ only when one of the following holds:

3x(~3z(x<*z)&/0c)<r)
3y(~3z(z<*y)&r<f(y))
3x3y(x <*y& ~3z(x <* z <* y) &f(x) < r<f(y)).

Plainly this condition implies continuity with respect to the order topology and
any finer topology.

4 Supplement (cf. [8], Theorem 5.5) The set PO of all preference orders
on ω is (when a relation is identified with its characteristic function) a closed
subset of a homeomorph (namely ω X ω 2 ) of the Cantor space &. The set UF of
all utility functions on ω is just (the underlying set of) the Hubert cube ω [0,1 ].
Thus both sets carry natural Polish topologies. Tedious but routine computa-
tions show that the function Φ of the foregoing proof is Borel-measurable with
respect to these topologies.

5 Theorem (Debreu [3]; cf. [8] for a proof like that below and others)
// Ϋ has a countable basis, then any closed preference order <* on ψ can be
represented by a continuous utility function f.

Proof: As a first try, fix a basis (£/,: / e ω) and define:

k . ( v ) _ilifUtC{z:z<*y\
Λ y ) (0 otherwise

i

It is readily verified that the utility function k represents <*. Unfortunately, it
may be only semicontinuous. But the existence of any representation at all,
even a discontinuous one, has one important consequence: Call [x]* SL jump
class if:

Ξy(x <* y & ~3z(x <* z <* y)).
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Then the number of jump classes is countable (for the intervals (k(x), k(y))
arising from such classes are nonempty and disjoint).

As a second try, fix# a sequence (zz : ie ω) dense in γ9 say by taking
z, e £/f . Apply the function Φ of the proof of Proposition 3 to the restriction
of <* to the z, , obtaining a representation φ. Extend this to a function h on all
of Y by defining:

ί inf{φ(zj): y <* zz } if this set is nonempty
h ( y ) ~ \ 1 otherwise.

It is not hard to see that the utility function h is continuous (e.g., what is
h"l[0,ayi If there is no zz <*-maximal with respect to the property φ(z, ) <a,
then it is the union of the open sets \y\ y <* z7} for those z7 with φ(z7) < α. If
there is such a zz , then by "near surjectivity" there must also be a z# <*-minimal
with respect to the property φ{z^) > a, and then the set in question is just
{y: y <* z^X). Nor is it hard to see that we always have:

x<*y->h(x)<h(y).

Unfortunately, the converse may sometimes fail. But at least we can say:

x <* y &h(x) = h(y)~+ [x]* is a jump class.

(For otherwise there must exist zz , Zj with x <* z, <* y and x <* z7 <* z, ,
whence h(x) < φ(z7) < 0(z/) < h(y). In fact, this shows that no more than three
=*-equivalence classes can be carried by h to the same value r.)

As a third try, fix## a sequence (x, : z e ω) containing at least one repre-
sentative of each jump class. On account of the use we are eventually to make
of this proof, we do not insist that each [x/]* actually be a jump class, but
rather we let m, be 1 or 0 according as it is or is not a jump class. Define:

\lifXi<*y
JΛy> lθ otherwise

/ ' = 2 Σ/ mifi

It is readily verified that/does everything required.

6 Alternative Proof: For future use, we offer a roundabout alternative to the
above proof: Fix# (z,-: i e ω) and define h as above. Fix###a sequence (η: i e ω)
such that for all r e [0, 1 ] we have:

3x3y(x <* y & h{x) = r = Λ(JO) -> 3z>, = r.

Fix sequences (xz : / e ω), (x, ': / e ω), (x"f: i e ω) such that:

3x(A(x) = r,)-*AUί) = r/

3x(x ^ * JC/ & A(JC) = n) -> jc" ^ * x; & h(x") = r,
3x(x ^ * xί & x 7̂ * xΓ & h(x) = r/) -> xΓ' ^ * x & x,'" ^ * xj' & A(xΓ) = r, .

Define a sequence (xz : / e ω) by letting x3/ = x\, x3 / + 1 = x,-', x3 / + 2 = x " . Then
define mz , /i , / ', and/as above to complete the construction.
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7 Remark: Plainly the representation of Theorem 5 is not unique. Other
representations can be obtained by composition with monotone continuous
functions. In the proof, this nonuniqueness is reflected in the need for making
arbitrary choices (at the places marked # and # # ) . When we try to carry out
the proof "parameter-wise" for an indexed family < r of preference orders,
these choices will cause us trouble. To avoid appeal to the Axiom of Choice, we
will have to invoke certain uniformization or selection theorems. (The round-
about Alternative Proof requires less powerful such theorems than the more
direct original proof.) From the exhaustive catalogs [11], [12] we select and
list below the uniformization theorems we will need. Logicians may prefer the
proofs in [9], Part 4F, to those in the original papers.

8 Definitions Throughout let 3~, % be Polish spaces. A function between
such spaces is analytically measurable (C-measurable, respectively) if it is
measurable with respect to the smallest σ-field containing the analytic sets
(containing the Borel sets and stable under operation J, respectively). Analytic
measurability implies C-measurability which implies absolute measurability.
The class of C-measurable functions is stable under composition as the class of
analytically measurable functions is not.

9 Theorem (Yankov [ 14], von Neumann [10]) Let A C J~ X % be analytic.
Then A can be uniformized by an analytically measurable function.

10 Theorem Let B C ^Γ X % be Borel with each fiber Bt = \x\ (t, x) e B\
σ-compact.

(a) (Arsenin [ 1 ]) The projection ofB to £Γ is Borel.
(b) (Choban [2]) B can be uniformized by a B or el-measurable function.

11 Theorem (Luzin? cf. [7]) Let A C J~ X % be analytic with each fiber
At countable. Then there exists a sequence ( # : i e ω) of Borel-measurable
functions f: J*'->% such that for all t, At C \fi(f): ie ωi.

12 Corollary (to Harrington's proof of Silver's theorem) Let E C 4Γ X %2

be co-analytic with each fiber Et an equivalence relation on %:

(a) The set C = {t e £Γ': Et has only countably many equivalence classes] is
co-analytic.
(b) There exists a sequence (ft: i e ω) of analytically measurable functions
fr. έΓ -* % such that for all t e C, ί/KO " i e ω] contains at least one representa-
tive of each E(-equivalence class.

Proof: (b) Assume £Γ = % = W (= ωω) and for simplicity take E to be Π}
without parameters. Apply Theorem 9 to each Σ} subset of 7i/2, and extend the
resulting uniformizations to analytically measurable functions /} defined on all
of 71/. To see that the ft do what they should, invoke the following fact estab-
lished in Harrington's proof: If an equivalence relation which is Π} in parameter
t has only countably many classes (as is the case for Et when t e C), then for
every x there is a set containing x and contained in the equivalence class of x
which is Δ} in parameter t.
(a) It follows from (b) that C is at worst a C-set, being the inverse image under
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a C-measurable function of the co-analytic set:

Kf, *): Vjc3/x£f(ftl.

That C itself is actually co-analytic follows from the detailed statement of
Silver's theorem (according to which when a co-analytic equivalence has
uncountably many classes there exist a perfect set P and a continuous function
W such that for distinct x and y in P, W(x, y) "witnesses" the inequivalence of
x and y). We do not enter into details, as (a) will not be needed below.

13 Corollary Let A C S X % be analytic. Then:

(a) (Luzin [7]) The set C'= {t e XT': At is countable] is co-analytic.

(b) There exists a sequence (/j : / e ω ) of analytically measurable functions

fi\ ^Γ->%such that for all t e C, Άt QUiifY i e ωl

Proof: Apply Corollary 1 2 t o £ = {(t,(x, y)): x=yv(x<tAt&y 4 At)\.

14 Alternative Proof: There are very few results in descriptive set theory that
can be stated classically (as results of topology, not recursion theory) and
proved absolutely (in ZFC, without extra set-theoretic hypotheses) whose
known proofs require the use of logical methods (recursion theory, forcing,
and so on). For instance, there are no such results in [9]. Silver's theorem (even
with Harrington's proof) is one such result. From some points of view it is
desirable to stick to classical methods of proof (among which we count game-
theory) when possible. So let us outline a classical proof of Corollary 13.

Such a proof can be obtained by combining two things. On the one hand
we have a game-theoretic analysis of cardinality due in its original version to
M. Davis (answering a question of L. Dubins), and in the "unfolded" version
used below to D. A. Martin (according to information supplied by the referee).

Let A C O (= ω2) be analytic; write it as the projection of a closed
KCOX91/. Consider the game G*(A):

I plays: s o e 2 < ω , l ) o e ω slt bx s2, b2 . . .
V / \ / \ /

II plays: ao<2 ax a2 . . .

with I winning iff (a, β) e K, where:

oί = s(^(a0)^s{^(a1)^S2^(a2). . .
β = <bOtbl9b29..X

(Note that the payoff set is closed.) Then (cf. [9], pp. 295-297): A is countable
iff II has a winning strategy in G*(A). The proof shows that from such a
strategy a countable set including A can be developed in a particularly simple
fashion.

On the other hand, we have the work of Moschovakis on the complexity
of winning strategies for simple games. Let L C 7l/2 be closed, and for each
fiber Lt consider the usual game G(Lt). Then (cf. [9], Part 6E): The set Wu of
those t for which II has a winning strategy in G(Lt) is co-analytic. There is an
analytically measurable function S\\ assigning a suitable strategy to each t in
W\\. If it happens that W\\ is Borel, then S\\ can be taken Borel-measurable.
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It should be clear how a proof of Corollary 13 (and of Theorem 11, for
that matter) can be constructed from these materials.

15 Alternative Proof: Taking S - % = 71/ and assuming (a) of Corollary 13,
we can produce the functions required by (b) of Corollary 13 given any suitably
measurable function Q uniformizing the co-analytic set:

P = i(t, ξ): teC& Vx(x e At -• 3ix = (£)/)! .

Now by M. Kondo's theorem ([9], Part 4E) P can be uniformized by a function
Q which has co-analytic graph and hence is Δ^-measurable. In ZFC, we cannot
prove that all Δ2 sets are absolutely measurable, but this does follow from any
of the following extra set-theoretic hypotheses:

MA Martin's Axiom plus the negation of the Continuum Hypothesis
MC The existence of a measurable (or other large enough) cardinal
PD (Enough of) Protective Determinateness.

So we can get a cheap proof of Corollary 13 (with "analytically" weakened to
"absolutely") from famous theorems if we are willing to go a little beyond
ZFC. This illustrates what B. Russell called "the advantages of theft over
honest toil".

Actually, a little metamathematical bookkeeping turns this dishonest
proof into an honest one. R. M. Solovay, and independently Fenstad and
Normann [4] have introduced the notion of an absolutely A\ set and shown
(using absoluteness considerations and random-real forcing) that all such sets
are absolutely measurable. And the function Q above can be taken to be
absolutely Δ^-measurable if one is careful.

We have now assembled all the uniformization theorems needed below.

16 Definitions Let A be a so-called point-class, e.g., the Borel sets or the
C-sets. Let Y C J~ X % belong to A, with every fiber Yt Φφ. A A-parametrized
family of preference orders on Y is an R satisfying:

RQ\(tΛχ,y)) χ,yeYt\
R belongs to A.

For all t e ^Γ, Rt is a closed preference order on Yt (closure being
understood relative to the subspace topology on Yt).

We often write < r for Rt and use the self-explanatory notation < f , = f , []t.
A A-parametrized family of utility functions on Y is an F satisfying:

F: r-MO, 1]
F is Λ-measurable.

For all t e 3~, Ft(y) = F(t,y) defines a continuous utility function on

Yt (continuity being understood relative to the subspace topology on

Yt).

Finally, F represents R if for all t e 3~, Ft represents Rt.
In [8] the question is taken up of when a Borel-parameterized family of

preference orders can be expected to admit a representation by a Borel-param-
eterized family of utility functions. The following general result has apparently
been obtained independently by Mauldin and by Fremlin:
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17 Theorem Any Borel-parametrized family of preference orders can be
represented by a C-parametrized (hence absolutely measurably parametrized)
family of utility functions.

Proof: We carry out the proof of Theorem 5 "parameter-wise" invoking
Theorem 9 at the place marked #, and Corollary 12 at the place marked # # .
Assume XT = % = 71/, and fix a basis (ί/z : / e ω). Apply Theorem 9 to each
Y Π {71/ X £//), and extend the resulting uniformizations to analytically mea-
surable functions defined on all of 72/, and combine them to obtain an
analytically measurable function Z uniformizing the co-analytic set D defined
by:

D(t, ξ) <-> Vίtt), € Yt & \/i(Yt ΠUiΦφ^ (?)/ e £/,).

Thus ((Z(O)i: * β ω) behaves like (z, : / e ω) in the proof of Theorem 5.
Referring back to that proof (and invoking the Supplement to Proposi-

tion 2) it is not hard to obtain a Borel-measurable H: Y X 72/ -> [0, 1 ] such that
when ζ = Z(t), then the function Ht^(x) = H((t, x), ξ) is a continuous utility
function on Yt satisfying the following:

x<ty^Ht>ξ(x)<Ht>ξ(y)
x <t y &Htς(x) = Htις(y)-*' Mt is a jump class

i.e., Ht> ^ behaves like h in the proof of Theorem 5.
Define now an analytic / and a co-analytic E by:

J(t, lx)+-+xeYt8c3ye Yt{x <t y & ~3/(x <t (f)/ <t y))
E((t, f), {x, y))+-+x=yv W(t, f) & [x = r ^ v(-/(ί, ξ, x) &~J(t, ξ,y))]}.

Note that each Ett$ is an equivalence relation, and that when f = Z(t), then its
equivalence classes are precisely the jump class of < f plus one extra "waste"
class. Apply Corollary 12 to is, and extend the resulting functions to
analytically measurable functions defined on all of 71/, combine them, and
compose with Z to obtain a C-measurable function Ξ: 71/ -» 7v such that for all
t, ((Ξ(Y))Z : i e ω) behaves like (xz : i e ω) in the proof of Theorem 5, i.e., con-
tains at least one representative of each jump class of <^.

Next, suitably composing Z, Ξ, and the characteristic function of /,
obtain a C-measurable function M: TV -* G< such that for all t, M{t) behaves like
(m, : / e ω) in the proof of Theorem 5, i.e., M(t)(i) = 1 iff (Ξ(f))i i s a jump
class of < r .

Finally, define Borel-measurable functions as follows:

(r.αί. * ) , ?) | 0 otherwise

G'((t, x), (ξ, μ ) ) 4 Σ 2W μ(0G,((r, x), ξ)
L i

Gi.it, x), (ξ, ξ,μ))= \H{{t, x),ζ) + i G'iO. x), «, μ)).

Comparison with the definitions of f{, /', / in the proof of Theorem 5 shows
that to obtain our desired representation, it will suffice to set:

Fit, x) = Giit, x), iZit), S(.t), Mit))).
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18 Alternative Proof: To avoid direct use of Corollary 12, carry out the
Alternative Proof of Theorem 5 "parameter-wise", invoking Theorem 9 at the
places marked #, and Corollary 13 at the places marked # # # .

19 Corollary (Wesley [13]) Let R be a B or el-parametrized family of
preference orders, and v a o-finίte Borel measure on έΓ. Then there exist a
Borel N with vN - 0, and a B or el-parametrized family of utility functions F
representing the restriction of R to ^Γ - N.

Proof: Take N so that the restrictions to J~ - N of Z, Ξ, and M in the proof of
Theorem 17 are Borel-measurable.

20 Theorem (cf. [8], Theorem 5.6) Let Y C S X % be Borel with each
fiber Yt σ-compact. Then any B or el-parametrized family of preference orders
on Y can be represented by a B or el-parametrized family of utility functions.

Proof: Follow the Alternative Proof of Theorem 17, but invoking Theorem 10
in place of Theorem 9, and Theorem 11 in place of Corollary 13. We omit the
details, which include some uses of part (a) of Theorem 10 to verify that
certain sets are Borel, because this result improves only infinitesimally on what
is proved by Mauldin.

21 Historical Note: Wesley [13] obtained Corollary 19 using absoluteness
considerations and random-real forcing. A proof of Theorem 17 along similar
lines can be obtained by combining our Remarks 15 and 18 above. Mauldin [8]
obtained a purely classical proof of Corollary 19. A classical proof of Theorem
17 can be obtained by combining our Remarks 14 and 18. Mauldin [8] also
gave a proof of Theorem 17 with "C-measurable" weakened to "absolutely
measurable", assuming MA. Again this invites comparison without Remarks 15
and 18. It is hoped that the frequency with which [8] has been cited makes
clear the extent of our indebtedness to Mauldin.

22 Methodological Remark: One often meets with uses of uniformization or
selection theorems in problems on the (hyper-)theoretical fringes of mathemati-
cal disciplines normally thought of as applied (probability, control theory, etc.).
If one's interest is genuinely in applications—presumably in constructing highly
idealized models of empirical phenomena—then there can be no legitimate
objection to using hypotheses like PD going beyond the usual ZFC axioms of
set theory, at least so long as one can be reasonably confident that they are
consistent: For a model inside a model of set theory is still a model.

But if one is willing to assume enough determinateness, then uniformiza-
tion problems can be made to disappear once and for all, and it will never be
necessary again to prove special selection theorems for special applications (as
we had to prove Corollary 12 or Corollary 13 to get Theorem 17). For in
applications it will never be necessary to go beyond the family W of so-called
hyperprojective sets, which has the following properties (the first due to
Mycielski and Swierczkowski, the rest to Moschovakis):

all sets in % are absolutely measurable;
% contains the open sets and is stable under complementation, countable
union, and projection; and
any set in V can be uniformized by an ̂ -measurable function.
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Thus working inside % it is almost true that one can use the Axiom of Choice
freely, and still assume that all the functions one gets are measurable.
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