On the Possible Number no $(M)=$ The Number of Nonisomorphic Models $L_{\infty, \lambda}$-Equivalent to M of Power λ, for λ Singular

SAHARON SHELAH*

Introduction Let M be a model of power λ, with λ relations, each with $<\lambda$ places and of power $\leq \lambda$. What can be

$$
n o(M)=\left\{N / \cong: N \equiv_{\infty, \lambda} M,\|N\|=\lambda\right\} ?
$$

We assume $V=L$ (otherwise there are independence results (by [8])). It is known that
(A) If $c f \lambda=\aleph_{0}$, it can be only 1 (by Scott [5] for $\lambda=\aleph_{0}$, and generally by Chang [1], essentially).
(B) If λ is regular uncountable and not weakly compact it can be 1 or 2^{λ} (it can be 2^{λ}, see [3]; cannot be $\neq 1,2^{\lambda}$: for $\lambda=\kappa_{1}$ by Palyutin [4], for any λ by [6]).
(C) If λ is weakly compact $>\kappa_{0}$ then it can be any cardinal $\leq \lambda^{+}$(by [7]).

We prove here
(D) If λ is singular of uncountable cofinality, $n o(M)$ can be any cardinal $\chi<\lambda$ (and also $\chi=2^{\lambda}$). (This follows by 3.18 here.)

So we answer the question from [7], bottom of p. 26. The second question there, top of p. 26 , is answered trivially by 1.4.

Notation: We consider functions as relations.

[^0]
1 Introducing the notions

1.1 Definition

(1) Let for a model M of power $\lambda, n o(M)$ be the cardinality of $\left\{N / \cong: N \equiv_{\infty, \lambda}\right.$ $M,\|N\|=\lambda\}$.
(2) $S P_{\mu, \kappa}^{\lambda}=\left\{n o(M): M \in K_{\mu, k}^{\lambda}\right\}$ where $K_{\mu, \kappa}^{\lambda}=\{M: M$ is a model, $\|M\|=\lambda$ and M has μ relations each of $<\kappa$ places $\}$.
(3) Let $R K_{\mu, \kappa}^{\lambda}=\left\{M: M \in K_{\mu, \kappa}^{\lambda}, \Sigma\left\{\left|R^{M}\right|: R \in L(M)\right\} \leq \lambda\right\}$
$R S P_{\mu}^{\lambda, \kappa}=\left\{n o(M): M \in R K_{\mu, \kappa}^{\lambda}\right\}$.
(4) We always assume that λ, μ, κ are $\geq \aleph_{0}, \kappa \leq \lambda$ and that $\mu \geq c f \kappa$ or κ is a successor (otherwise $M \in K_{\mu, \kappa}^{\lambda} \Leftrightarrow M \in \bigcup_{\vartheta<\kappa} K_{\mu, \vartheta}^{\lambda}$). So w.l.o.g. every $M \in K_{\mu, \kappa}^{\lambda}$ is an $L_{\mu, \kappa}^{\lambda}$-model with a fixed $L_{\mu, \kappa}^{\lambda}$, which has for a closed unbounded set of $\alpha<\kappa$ exactly $\mu \alpha$-place predicates when κ is a limit cardinal, and $\mu \kappa^{-}$place relations when $\kappa=\left(\kappa^{-}\right)^{+}$.

Remark: Note that if $\lambda^{<\kappa}>\lambda$, then in a model $M \in K_{\mu, \kappa}^{\lambda}$ we can code an arbitrary model of $K_{\mu, \kappa}^{\chi}$, where $\chi=\lambda^{<\kappa}$. This is a point in favor of dealing with $R S P_{\mu, \kappa}^{\lambda}$.
1.2 Claim If $\mu \leq \mu_{1}$ and $\kappa \leq \kappa_{1}$, then $S P_{\mu, \kappa}^{\lambda} \subseteq S P_{\mu_{1}, \kappa_{1}}^{\lambda}$ and $R S P_{\mu, \kappa}^{\lambda} \subseteq$ $R S P_{\mu_{1}, \kappa_{1}}^{\lambda}$.
Proof: Trivial.
1.3 Claim We assume $\mu \geq \kappa$.
(1) If $\lambda=\lambda^{<\kappa}$ then $S P_{\mu, \kappa}^{\lambda}=S P_{\mu, \kappa_{0}}^{\lambda}$.
(2) $R S P_{\mu, \kappa}^{\lambda}=R S P_{\mu, \aleph_{0}}^{\lambda}$ when $\lambda>\kappa \vee c f \lambda \geq \kappa$.

Proof: (1) For every $M \in K_{\mu, \kappa}^{\lambda}$ let M^{*} be the following model:
(i) $\left|M^{*}\right|=|M| \cup \bigcup_{\alpha<\kappa}^{\alpha}|M|$
(ii) for each $i<\alpha<\kappa$ let $R_{\alpha, i}$ be the two-place relation

$$
R_{\alpha, i}^{M}=\left\{\langle a, \bar{b}\rangle: a \in M, \bar{b} \in{ }^{\alpha}|M|, \alpha=\bar{b}[i]\right\}
$$

(iii) For every α-place relation R of M, a one-place relation R^{*}

$$
\left(R^{*}\right)^{M^{*}}=\left\{\bar{b} \in{ }^{\alpha}|M|: M \vDash R[\bar{b}]\right\} .
$$

Clearly $n o\left(M^{*}\right)=n o(M), M \in K_{\mu, \kappa}^{\lambda} \Rightarrow M^{*} \in K_{\mu, \aleph_{0}}^{\lambda}$, hence $S P_{\mu, \kappa}^{\lambda} \subseteq S P_{\mu, \aleph_{0}}^{\lambda}$. The other inclusion holds by Claim 1.2.
(2) The proof is similar: define $\left(R^{*}\right)^{M^{*}}$ as above, $\left|M^{*}\right|=|M| \cup$ $\bigcup_{R}\left(R^{*}\right)^{M^{*}}$, and then

$$
R_{\alpha, i}=\left\{\langle a, \bar{b}\rangle: a \in M, \bar{b} \in{ }^{\alpha}|M| \cap\left|M^{*}\right|, a=\bar{b}[i]\right\}
$$

Why did we restrict λ ? Because looking at $L_{\infty, \lambda}$-equivalence we want that for every subset A of M^{*} of power $<\lambda,(A \cap M) \cup\{\operatorname{Rang} \bar{b}: \bar{b} \in A\}$ has power $<\lambda$.

1.4 Claim

(1) If $\mu \leq \lambda^{<\kappa}$ then $S P_{\mu, \kappa}^{\lambda}=S P_{\kappa, \kappa}^{\lambda}$.
(2) Moreover, if $\mu \leq \lambda$, then $S P_{\mu, \kappa}^{\mu, \kappa}=S P_{c f, \kappa \kappa}^{\lambda}$; if κ is a successor then $S P_{\mu, \kappa}^{\lambda}=$ $S P_{\aleph_{0}, \kappa}^{\lambda}$ (really when κ is a successor or $\aleph_{0} S P_{\mu, \kappa}^{\lambda}=S P_{1, \kappa}^{\lambda}$).
(3) Similar assertion holds for RSP.

Proof: (1) It is well known that ($\lambda,<$) is isomorphic to any model $L_{\infty, \omega^{-}}$ equivalent to it; moreover each element of $(\lambda,<)$ is defined by a formula in $L_{\infty, \omega}$ (and we can replace $L_{\infty, \omega}$ by $L_{\infty, \lambda}$). Also $L_{\infty, \lambda}$ satisfies the FefermanVaught Theorem. So we can show that for any M

$$
n o(M)=n o(M+(\lambda,<))
$$

Now in $M+(\lambda,<)$ we can use the $\alpha<\lambda$ and even sequences of length $<\kappa$ to parametrize the relations.
(2) and (3): Left to the reader.

1.5 Claim

(1) If $\mu \geq \chi=\lambda^{<\kappa}$ then $S P_{\mu, \kappa}^{\lambda}=S P_{\chi, \kappa}^{\lambda}$.
(2) If $\mu \geq \chi=\lambda+\kappa$ then $R S P_{\mu, \kappa}^{\lambda}=R S P_{\chi, \kappa}^{\lambda}$.

Proof: (1) For every $\alpha<\kappa$ and M, on ${ }^{\alpha}|M|$, we define an equivalence relation E_{α}, realizing the same atomic type. The number of classes is $\leq \lambda^{<\kappa}=\chi$ (if our hypothesis holds).

We define for every $M \in K_{\mu, \kappa}^{\lambda}$ a model M^{*} :
(i) $\left|M^{*}\right|=|M|$
(ii) for every $\alpha<\kappa$ and E_{α}-equivalence class A, let $R_{A}^{M^{*}}=\left\{\bar{a} \in{ }^{\alpha}|M|\right.$: $\bar{a} \in A\}$.
Clearly $M^{*} \in K_{\chi, \kappa}^{\lambda},\left\|M^{*}\right\|=\lambda$ and $n o(M)=n o\left(M^{*}\right)$. Hence $S P_{\mu, \kappa}^{\lambda} \subseteq S P_{\chi, \kappa}^{\lambda}$, and the other inclusion follows by Claim 1.2.
(2) Similar proof.
1.6 Claim If $\lambda^{<\kappa} \geq \chi>\lambda$, then $\operatorname{Sup}\left(S P_{\mu, \kappa}^{\lambda}\right) \geq \operatorname{Sup}\left(S P_{\mu, \kappa}^{\chi}\right)$.

Proof: Let $M \in K_{\mu, \kappa}^{\chi}$; for notational simplicity we assume that for some $\vartheta<\kappa$, $\lambda^{\vartheta} \geq \chi$, so w.l.o.g. $|M| \subseteq{ }^{\vartheta} \lambda$. So we reinterpret the relations of M as relations on λ; i.e., we define a model M^{*} :
(i) $\left|M^{*}\right|=\lambda$
(ii) for $R \in L(M), R \alpha$-place.
$R^{M^{*}}=\left\{\left\langle a_{i}: i<\vartheta \alpha\right\rangle: a_{i} \in\left|M^{*}\right|\right.$, and if we let for $\beta<\alpha, \bar{b}_{\beta}=\left\langle a_{\vartheta, \beta+i}\right.$: $i\langle\vartheta\rangle$ then $\left.\left\langle\bar{b}_{\beta}: \beta<\alpha\right\rangle \in R^{M}\right\rangle$.

It is easy to see that $M^{*} \in K_{\mu, \kappa}^{\lambda}$, and $n o\left(M^{*}\right) \geq n o(M)$ (we get \geq and not necessarily equality, as in $n o(M)$ we use a finer equivalence relation: $L_{\infty, \chi^{-}}$ equivalent and not $L_{\infty, \lambda}$-equivalence).

1.7 Claim

(1) If $\chi_{i} \in S P_{\mu, \kappa}^{\lambda}(i<\alpha \leq \lambda)$ then

$$
\prod_{i<\alpha} \chi_{i} \in S P_{\mu, \kappa}^{\lambda}
$$

(2) Similarly for RSP.

Proof: (1) Let $M_{i} \in K_{\mu, \kappa}^{\lambda}, \chi_{i}=n o\left(M_{i}\right)$ and $L=L\left(M_{i}\right)$ is fixed (see Definition 1.1(4)). W.l.o.g. $\left|M_{i}\right| \cap\left|M_{j}\right|=\varnothing$ for $i \neq j$. We define a model M :
(i) $|M|=\bigcup_{i<\alpha} M_{i}$.
(ii) $R^{M}=\bigcup_{i<\alpha} R^{M_{i}}$ for each $R \in L$.
(iii) $\leq^{M}=\left\{(a, b):(\exists i \leq j \leq \alpha)\left[a \in M_{i} \wedge b \in M_{j}\right]\right\}$.

Clearly $M \in K_{\mu, \kappa}^{\lambda}$ and $n o(M)=\prod_{i<\alpha} n o\left(M_{i}\right)=\prod_{i<\alpha} \chi_{i}$, hence $\prod_{i<\alpha} \chi_{i}=n o(M) \in$
$S P_{\mu, \kappa}^{\lambda}$.
(2) The same proof.

1.8 Claim

(1) If $\chi \in S P_{\mu, \kappa}^{\lambda}, \vartheta$ a cardinal, $2 \leq \vartheta \leq \lambda$, then the cardinality of $\left\{\left\langle\vartheta_{i}: i<\chi\right\rangle\right.$: $\sum_{i<\chi} \vartheta_{i}=\vartheta$, each ϑ_{i} a cardinal, $\left.0 \leq \vartheta_{i} \leq \vartheta\right\}$ belongs to $S P_{\mu, \kappa}^{\lambda}$.
(2) Let $N_{i} \in K_{\mu, \kappa}^{\leq \lambda}$ (may be even a finite model), for $i<\alpha, \alpha \leq \lambda$, be pairwise nonisomorphic but $N_{i} \equiv_{\infty, \lambda} N_{0}$ and $\left[N \equiv_{\infty, \lambda} N_{0} \wedge\|N\|<\lambda \Rightarrow \bigvee_{i<\alpha} N \cong N_{i}\right]$. Let G_{i} be the group of automorphisms of N_{i} and define $f \approx g \bmod G_{i}$, if f, g are functions with domain N_{i} and $\left(\exists h \in G_{i}\right)\left(\forall a \in N_{i}\right)[f(a)=g(h(a))]$. Now \approx is an equivalence relation, and let $\chi^{N_{i}} / G_{i}=2 f / \approx: f a$ function from N_{i} into χ. Now if $\chi \in S P_{\mu, \kappa}^{\lambda}$ then $\sum_{i}\left|\chi^{N_{i} / G_{i}}\right| \in S P_{\mu, \kappa}^{\lambda}$.
(3) Similarly for $R S P_{\mu, \kappa}^{\lambda}$ (and $N_{i} \in R K_{\mu, k}^{\leq \lambda}$).

Proof: (1) Let $M \in S P_{\mu, \kappa}^{\lambda}, \chi=n o(M)$, and choose $M_{i} \cong M,\left|M_{i}\right| \cap\left|M_{j}\right|=\varnothing$ for $i<j<\vartheta$. Now define M as in the proof of Claim 1.7, except
(iii) $E^{M^{*}}=\left\{(a, b):(\exists i<\vartheta)\left(a \in M_{i} \wedge b \in M_{i}\right]\right.$.

Clearly $M^{*} \in K_{\mu, \kappa}^{\lambda}, n o\left(M^{*}\right)$ is as required to exemplify the conclusion.
(2) and (3): Proved similarly.

In the following two sections we shall prove:
1.9 Theorem If λ is singular of uncountable cofinality, $火_{0} \leq \xi \leq \lambda$ then $\xi^{c f \lambda} \in R S P_{\lambda, \lambda}^{\lambda}$.
Proof: See 3.17.
1.10 Theorem If λ is singular of uncountable cofinality, $\chi^{c f \lambda}<\lambda$ then $\chi \in R S P_{\lambda, \lambda}^{\lambda}$.
Proof: See 3.18.

In a following paper (in a Springer lecture notes volume) we shall prove similar results for $S P_{\aleph_{0}, \aleph_{0}}^{\lambda}$. Let us summarize the known results:

1.11 Theorem

(1) For every $\lambda, 1 \in S P_{\hat{\aleph}_{0}, \kappa_{0}}^{\lambda}$.
(2) If cf $\lambda=\aleph_{0}$, then $S P_{\mu, \aleph_{0}}^{\lambda}=\{1\}$ and when $[\lambda>\kappa \vee c f \lambda \geq \kappa], R S P_{\mu, \kappa}^{\lambda}=\{1\}$
(by Scott [5] when $\lambda=\aleph_{0}$ and Chang [1] when $\lambda>\aleph_{0}$)
(3) If $\lambda>\mathcal{N}_{0}$ is regular or $\lambda=\lambda^{\aleph_{0}}$ then $2^{\lambda} \in S P_{\aleph_{0}, \aleph_{0}}^{\lambda}$ (see [3] for λ regular, and by Shelah [8] for $\lambda=\lambda^{{ }^{*}}{ }_{0}$).
(4) $(V=L)$. If $\lambda>\kappa_{0}$ is regular not weakly compact then $S P_{\mu, \lambda}^{\lambda}=\left\{1,2^{\lambda}\right\}$ (by Palyutin [4] for $\lambda=\aleph_{1}$ by Shelah [6] generally).
(5) if $\lambda>\aleph_{0}$ is weakly compact then every $\chi, 2 \leq \chi \leq \lambda$, belong to $S P_{\hat{\aleph}_{0}, \aleph_{0}}$ (by Shelah [7]).
(6) If λ is singular, $\chi^{c f \lambda}<\lambda$ and $c f \lambda>\aleph_{0}$ then $\chi \in R S P_{\lambda, \lambda}^{\lambda}$ (by 1.10).
(7) If $\lambda>c f \lambda>\kappa_{0}$ and $\chi \leq \lambda$ then $\chi^{c f \lambda} \in R S P_{\lambda, \lambda}^{\lambda}$ (by 1.9).
(8) If $\lambda^{<\kappa}>\lambda$ then $2^{\lambda} \in S P_{\mu, \kappa}^{\lambda}$ (by 1.6 and 1.7(1)).

In a subsequent paper we shall improve (6) for some λ, χ.

2 Constructing the example This section is dedicated to the proof of
2.1 Main Lemma Suppose λ is strong limit singular, $\kappa=c f \lambda$. Also M is a model of power $\leq \lambda$, and
(a) $|M|=\bigcup_{i<\kappa} P_{i}^{M}, P_{i}^{M} \cap P_{j}^{M}=\varnothing$ for $i \neq j,\left|P_{i}^{M}\right|<\kappa, \vartheta=n o(M) P_{i}$ a monadic predicate of $\mathrm{M}, \vartheta=n o(M)$, or even
(b) $|M|=\bigcup_{i<\kappa} P_{i}^{M}, P_{i}^{M} \cap P_{j}^{M}=\varnothing$ for $i \neq j, P_{i}^{M}$ has power $<\lambda$ and the number of nonisomorphic N satisfying the following is $\vartheta: N \equiv_{L_{\infty, \kappa}} M$, moreover in the following game (with ω steps) player II has a winning strategy:
in stage $n(<\omega)$: player I chooses $i_{n}, \bigcup_{k<n} i_{l}<i_{n}<\kappa$; player II chooses an isomorphism g_{n} from $M \mid \bigcup_{j<i_{n}} P_{j}^{M}$ onto $N \mid \bigcup_{j<i_{n}} P_{j}^{N}$ which extends $\bigcup_{l<n} g_{l}$.
Then we can find a model M^{*}, of cardinality λ such that: no $\left(M^{*}\right)=\vartheta$ and each nonlogical symbol of $M^{* \prime}$ s language has an arity smaller than λ, and power $\leq 2^{\chi}$ for some $\chi<\lambda$, and $\left|L\left(M^{*}\right)\right| \leq \lambda \leq \lambda+|L(M)|$.

Remark: (1) We use hypothesis 2.1(b) only as $2.1(a) \Rightarrow 2.1$ (b). (Note $\|M\| \leq$ $\sum_{i<\kappa}\left|P_{i}^{M}\right| \leq \sum_{i<k} \kappa=\kappa$; if $\|M\|<\kappa$ necessarily $\vartheta=1$, in which case the conclusion is trivial, so $\|M\|=\kappa$.)
(2) In case (b) we can assume that the range of h_{R} (see below) is bounded (if we omit the R 's with unbounded h_{R} the hypothesis is not changed).

In order to get this in case (a) we need every relation of M has arity $<\kappa$.
Proof: Let L be the language of M. W.l.o.g. L has no function symbols and for every α-place predicate R there is a function h_{R} from α to κ such that
$M \vDash\left(\forall x_{0}, \ldots, x_{i}, \ldots\right)_{i<\alpha}\left[R\left(x_{0}, \ldots, x_{i}, \ldots\right) \rightarrow \bigwedge_{i<\alpha} P_{h_{R}(i)}\left(x_{i}\right)\right]$. We let $\alpha=$ $\alpha(R)$. We assume that there is $R \in L, \alpha(R)>1$. Let $\lambda=\sum_{i<\kappa} \lambda_{i}, \kappa<\lambda_{i}<\lambda_{j}$ for $i<j<\kappa$, and for each $i \lambda_{i}$ is a regular cardinal $>\sum_{j \leq i} \lambda_{j}$.

2.2 Definition

(1) We define a class K of L-models: $\mathfrak{H} \in K$ iff $|\mathfrak{U}|=\bigcup_{i<\kappa} P_{i}^{\mathscr{A}}$, for $i \neq j P_{i}^{\mathscr{A}} \cap$ $P_{i}^{\mathfrak{A}}=\varnothing$, and for every predicate $R, \mathfrak{Y} \vDash\left(\forall x_{0}, \ldots, x_{i}, \ldots\right)\left[R\left(x_{0}, \ldots, x_{i}, \ldots\right) \rightarrow\right.$ $\left.\bigwedge_{i} P_{h_{R}(i)}\left(x_{i}\right)\right]$.
(2) We let $K^{0} \subseteq K$ be the family of $N \in K$ such that player II wins the game described in 2.1(b).
(3) For each $\mathfrak{A} \in K$ we define an L^{*}-model \mathfrak{A}^{*} :
$\left|\mathfrak{H}^{*}\right|=\left\{\langle a, \xi\rangle: a \in \mathfrak{A}\right.$, and $\left.a \in P_{i}^{\mathfrak{M}} \Rightarrow \xi<\lambda_{i}\right\}$.
$P_{i}^{\mathscr{Q}^{*}}=\left\{\langle a, \xi\rangle: a \in P_{i}^{\mathfrak{d}}\right.$, and $\left.\xi<\lambda_{i}\right\}$.
For each $R \in L$ let $I_{R}=\left\{\langle\alpha, j\rangle: \alpha<\alpha(R)\right.$ and $\left.j<\lambda_{h_{R}(\alpha)}\right\}$, and let $R^{2 A^{*}}$ be the set of tuples

$$
\begin{aligned}
& \left\langle x_{0,0}, x_{0,1}, \ldots, x_{0, j}, \ldots ; x_{1,0}, x_{1,1}, \ldots, x_{1, j} \ldots ; \ldots ;\right. \\
& \left.\left.x_{\alpha, 0}, x_{\alpha, 1}, \ldots, x_{\alpha, j} \ldots ; \ldots\right)\right\rangle_{\langle\alpha, j\rangle \in I_{R}}
\end{aligned}
$$

which satisfies: there are $a_{\alpha} \in \mathfrak{A}$ for $\alpha<\alpha(R)$ such that
(a) $\mathfrak{A} \vDash R\left[a_{0}, \ldots, a_{\alpha}, \ldots\right]$ hence $a_{\alpha} \in P_{h_{R}(\alpha)}^{\mathscr{2}}$.
(b) for each α for all but $<\lambda_{h_{R}(\alpha)}$ ordinals $\gamma<\lambda_{h_{R}(\alpha)}, x_{\alpha, \gamma}=\left\langle a_{\alpha}, \gamma\right\rangle$
(c) the $x_{\alpha, \gamma}\left(\alpha<\alpha(R), \gamma<\lambda_{h_{R}(\alpha)}\right)$ are distinct, and $x_{\alpha, \gamma} \in P_{\alpha}^{थ^{*}}$.
(4) Let $K^{*}=\left\{\mathfrak{A}: \mathfrak{A}\right.$ an L^{*}-model, $L_{\infty, \lambda}$-equivalent to $\left.M^{*}\right\}$.
2.3 Fact If $\mathfrak{A} \in K^{0}$ then $\|\mathfrak{U}\|=\|M\|,\left|P_{i}^{\mathfrak{Y}}\right|=\left|P_{i}^{M}\right|$ (for each i). Also $M \in K^{0}$. Proof: Trivial.
2.4 Fact If $\mathfrak{B} \in K^{*}$ then $\|\mathfrak{B}\|=\lambda$ and $\left|P_{i}^{\mathfrak{B}}\right|=\lambda_{i}+\left|P_{i}^{M}\right|<\lambda$.

Proof: Trivial.
2.5 Fact If $N \in K^{0}$ then $N^{*} \in K^{*}$.

Proof: Call a set $A \subseteq M^{*}$ small if $\left|A \cap P_{i}\right|<\lambda_{i}$. Similarly for N. Call a partial isomorphism f from M^{*} to N^{*} good if some g induces it, which means:
$(\alpha) g$ is an isomorphism from $M \backslash \bigcup_{j<i} P_{j}^{M}$ onto $N \backslash \bigcup_{j<i} P_{j}^{N}$ (for some i) which is a winning position for player II in the game from $21(\mathrm{~b})$.
(β) the set $\{\langle a, \xi\rangle:\langle g(a), \xi\rangle \neq f(\langle a, \xi\rangle)$, e.g., one is defined the other not $\}$ is a small subset of M^{*}.
$(\gamma) f$ is one to one, preserving the predicates P_{i}, and it maps $\bigcup_{j<i} P_{j}^{M^{*}}$
onto $\bigcup P_{j}^{N^{*}}$. onto $\bigcup_{j<i} P_{j}^{N^{*}}$.

It is easy to see that the family of good f 's, exemplifies $M^{*} \equiv_{\infty, \lambda} N^{*}$.
2.6 Definition For each $\mathfrak{B} \in K^{*}$, we define \mathfrak{B}^{-}. For each $i<\kappa$ let
$S_{i}=\left\{\left\langle a_{\alpha}: \alpha<\lambda_{i}\right\rangle: a_{\alpha} \in P_{i}^{\mathfrak{B}}\right.$ for each $\alpha, a_{\alpha} \neq a_{\beta}$ for $\alpha<\beta<\lambda_{i}$, and for some $R, \gamma, b, h_{R}(\gamma)=i, \mathfrak{B} \vDash R\left[\bar{b}_{0}, \ldots, \bar{b}_{j}, \ldots\right]_{j<\alpha(R)}$ and $\left.\bar{b}_{\gamma}=\left\langle a_{\alpha}: \alpha<\lambda_{i}\right\rangle\right\}$
(we allow to use equality for R).
Clearly S_{i} is a definable subset of \mathfrak{B} (by a formula of $L_{\infty, \lambda}$ with no parameters). Now we define on S_{i} an equivalence relation E_{i} :
$\left\langle a_{\alpha}^{0}: \alpha<\lambda_{i}\right\rangle E_{i}\left\langle a_{\alpha}^{1}: \alpha<\lambda_{i}\right\rangle$ iff $\left\langle a_{\alpha}^{0}: \alpha<\lambda_{i}\right\rangle \in S_{i},\left\langle a_{\alpha_{1}}: \alpha<\lambda_{i}\right\rangle \in S_{i}$ and the symmetric difference of $\left\{a_{\alpha}^{0}: \alpha<\lambda_{i}\right\},\left\{a_{\alpha}^{1}: \alpha<\lambda_{i}\right\}$ has power $<\lambda_{i}$.
Now we define \mathfrak{B}^{-}:

$$
\begin{gathered}
\left|\mathfrak{B}^{-}\right|=\left\{\bar{a} / E_{i}: \bar{a} \in S_{i}, i<\kappa\right\} . \\
P_{i}^{\mathfrak{B}-}=\left\{\bar{a} / E_{i}: \bar{a} \in S_{i}\right\} . \\
R^{\mathfrak{B}-}=\left\{\left\langle\bar{a}_{0} / E_{i(0)}, \ldots, \bar{a}_{\alpha} / E_{i(\alpha)}, \ldots\right\rangle_{\alpha<\alpha(R)}: \bar{a}_{\alpha} \in S_{h_{R}(\alpha)} .\right. \\
\left.i(\alpha)=h_{R}(\alpha) \text { and } \mathfrak{B} \vDash R^{\mathfrak{B}}\left[\bar{a}_{0}, \bar{a}_{1}, \ldots, a_{\alpha}, \ldots\right]_{\alpha<\alpha(R)}\right\} .
\end{gathered}
$$

2.7 Fact If $N \in K^{0}$, then $\left(N^{*}\right)^{-}$is isomorphic to N, and $P_{i}^{\left(N^{*}\right)^{-}}=$ $\left\{\left\langle(a, \xi): \xi<\lambda_{i}\right\rangle / E_{i}: a \in P_{i}\right\}$ and the isomorphism is the obvious one.
2.8 Fact If $\mathfrak{B} \in K^{*}$ then $\mathfrak{B}^{-} \in K^{0}$.

Proof: We call a partial isomorphism g from M to \mathfrak{B}^{-}good if some f induces it, which means:
$(\alpha) f$ is an isomorphism from $M^{*} \mid \bigcup_{j<i} P_{j}^{M}$ onto $\mathfrak{B} \mid \bigcup_{j<i} P_{j}^{\mathfrak{B}}$ which

$$
\left(M^{*}, c\right)_{c \in \bigcup_{j<i} P_{j}^{M^{*}}} \equiv_{\infty, \lambda}(\mathfrak{B}, f(c))_{c \in \bigcup_{j<i} P_{j}^{\mathcal{B}}}
$$

(β) g is a function from $\bigcup_{j<i} P_{j}^{M}$ onto $\bigcup_{j<i} P_{j}^{\mathfrak{B}-}$, where for $a \in P_{j}^{M}$

$$
\mathrm{g}(a)=\left\langle f\langle a, \xi\rangle: \xi\left\langle\lambda_{j}\right\rangle / E_{j}\right.
$$

It is easy to see that the family of good g exemplifies $\mathfrak{B}^{-} \in K^{0}$.
2.9 Fact If $\mathfrak{B} \in K^{*}$ then $\left(\mathfrak{B}^{-}\right)^{*}$ is isomorphic to \mathfrak{B}.

Proof: As $\mathfrak{B} \in K^{*},\left|P_{i}^{\mathfrak{B}}\right|<\lambda$ (see Fact 2.3). Now by the definition $\mathfrak{B} \equiv_{\infty, \lambda} M^{*}$, hence there is a partition of $P_{i}^{\mathfrak{B}}, P_{i}^{\mathfrak{B}}=\bigcup_{a \in M}\left\{t_{a, \xi}: \xi<\lambda_{i}\right\}$, the $t_{a, \xi}$ are distinct (for $a \in P_{i}^{M}, \xi<\lambda_{i}$) and $\left\{\left\langle t_{a, \xi}: \xi<\lambda_{i}\right\rangle / E_{i}: a \in M\right\}$ is a list of all E_{i}-equivalence classes. So $P_{i}^{\mathfrak{G}^{-}}=\left\{\left\langle t_{a, \xi}: \xi<\lambda_{i}\right\rangle / E_{i}: a \in M\right\}$, and

$$
P_{i}^{\left(\mathfrak{B}^{-}\right)^{*}}=\left\{\left(\left\langle t_{a, \xi}: \xi\left\langle\lambda_{i}\right\rangle / E_{i}, \xi\right\rangle: a \in M, \xi<\lambda\right\}\right.
$$

Now define $F: \mathfrak{B} \rightarrow\left(\mathfrak{B}^{-}\right)^{*}$, for $a \in M_{i}$

$$
F\left(t_{a, \xi}\right)=\left(\left\langle t_{a, \xi}: \xi<\lambda_{i}\right\rangle / E_{i, \xi}\right) .
$$

It is easy to check that F is an isomorphism from \mathfrak{B} onto $\left(\mathfrak{B}^{-}\right)^{*}$.

Proof of Lemma 2.1: The series of facts above prove that the number of nonisomorphic models in K^{0} and in K^{*} are equal: the map $N \rightarrow N^{*}$ is from K^{0} into K^{*} (see Fact 2.5) and the map $\mathfrak{B} \rightarrow \mathfrak{B}^{-}$is from K^{*} to K^{0} (see Fact 2.8); those maps are each an inverse of the other (when we divide by isomorphism) (see Facts 2.7, 2.9). As by Definition 2.2(4) and Fact 2.4:

$$
K^{*}=\left\{\mathfrak{A}: \mathfrak{A} \equiv_{\infty, \lambda} M^{*},\|\mathfrak{A}\|=\lambda\right\}
$$

clearly $n o\left(M^{*}\right)$ is the number of nonisomorphic $M \in K$, which was assumed to be ϑ.

For λ not strong limit we use instead of Lemma 2.1:
2.10 Main Lemma Suppose that in 2.1 we assume further that every relation of M, restricted to $\bigcup_{j<i} P_{j}^{M}($ for $i<\kappa)$ has power $<\lambda$, but λ is singular, not necessarily strong limit.

Then $\vartheta \in R S P_{\lambda, \lambda}^{\lambda}$
Proof: As the proof is similar to that of Lemma 2.1, we shall only mention the required changes:

In Definition 2.2(3) we redefine $R^{2 थ^{*}}$:

$$
\begin{aligned}
R^{थ^{*}}=\{ & \left\langle x_{0,0}, x_{0,1}, \ldots, x_{0, j_{0}}, \ldots, x_{1,0}, x_{1,1}, \ldots, x_{1, j_{1}}, \ldots ;\right. \\
& \ldots ; x_{\alpha, 0}, x_{\alpha, 1}, \ldots, x_{\alpha, j_{\alpha}} \ldots ; \ldots \begin{array}{c}
\alpha<\alpha(R) \\
\langle\alpha, j\rangle \in I_{R}
\end{array}
\end{aligned}
$$

There are $a_{\alpha} \in \mathfrak{A}$ for $\alpha<\alpha(R)$ such that:
(a) $\mathfrak{A} \vDash R\left[a_{0}, \ldots, a_{\alpha}, \ldots\right]$ hence $a_{\alpha} \in P_{h_{R}(\alpha)}^{\mathscr{2}}$;
(b) for each α there are n and $0=\xi_{0}<\xi_{1}<\ldots<\xi_{n}<\lambda_{h_{R}(\alpha)}$ and $a_{\alpha, l} \in P_{h_{R}(\alpha)}$ for $l<n$, such that:

$$
\left.\begin{array}{l}
\xi_{n} \leq \gamma<\lambda_{h_{R}(\alpha)} \Rightarrow x_{\alpha, \gamma}=\left\langle a_{\alpha}, \gamma\right\rangle \\
\xi_{l} \leq \gamma<\xi_{l+1} \Rightarrow x_{\alpha, \gamma}=\left\langle a_{\alpha, l}, \gamma\right\rangle
\end{array}\right\} .
$$

In the proof of Fact 2.5 redefine " g induces f " by replacing (β) by:
$(\beta)_{1}^{\prime}$ for each $j<i$, there is $\xi_{j}<\lambda_{j}$ such that for $a \in P_{j}^{M}$,

$$
f(\langle a, \xi\rangle)= \begin{cases}\left\langle g_{j}, \xi\right\rangle & \text { if } \xi<\xi_{j} \\ \langle g(a), \xi\rangle & \text { if } \xi \geq \xi_{j}\end{cases}
$$

$(\beta)_{2}^{\prime}$ for each $j \geq i$ for some $\xi_{j}<\lambda_{j}, f\left(\left\langle g_{j}, \xi\right\rangle\right)=\langle a, \xi\rangle$ if $a \in P_{j}^{M}, \xi<\xi_{j}$, undefined otherwise.
$(\beta)_{3}^{\prime} g_{j}$ is a one-to-one function from P_{j}^{M} onto I_{j}^{N}.
Still the power of $L\left(M^{*}\right)$ is too large, but we can use Claim 1.4(1).
To get the desired conclusion we still have to find M as required in Lemma 2.1(b). We shall construct such M.

2.11 Conclusion
 If $\aleph_{0}<\kappa=c f \lambda<\lambda$ then $2^{\kappa} \in R S P_{\lambda, \lambda}^{\lambda}$.

Proof: it is well known that there are two trees, with κ-levels, $L_{\infty, \kappa}$ - equivalent:
one has a branch of order type κ, the other not. So each such tree is a model satisfying Lemma 2.1(a) for some $\vartheta \leq 2^{\kappa}, \vartheta>1$. In fact the hypothesis of Lemma 2.10 holds also. Hence, by 2.10 , $\left(\exists \vartheta \leq 2^{\kappa}\right)\left[\vartheta \in R S P_{\lambda, \lambda}^{\lambda} \wedge \vartheta>1\right]$. By Claim 1.7(2) this implies that $2^{\kappa} \in R S P_{\lambda, \lambda}^{\lambda}$.

3 Building к-Systems

3.1 Definition A κ-system will mean here a model of the form $\mathfrak{A}=$ $\left\langle G_{i}, h_{i, j}\right\rangle_{i \leq j<\kappa}$ where
(i) G_{i} is an Abelian group such that $\left(\forall x \in G_{i}\right)(x+x=0)$, the G_{i} 's are pairwise disjoint.
(ii) $h_{i, j}$ is a homomorphism from G_{j} into G_{i} when $i \leq j$.
(iii) $h_{i_{1}, i_{2}} \circ h_{i_{2}, i_{3}}=h_{i_{1}, i_{3}}$ when $i_{1} \leq i_{2} \leq i_{3}$.
(iv) $h_{i, i}$ is the identity.

We denote κ-systems by $\mathfrak{A}, \mathfrak{B}$ and for a system \mathfrak{A}, we write $G_{i}=G_{i}^{\mathscr{Q}}$ $h_{i, j}=h_{i, j}^{\mathfrak{2}}$. Let $\|\mathfrak{U}\|=\sum_{i<k}\left\|G_{i}\right\|$. Almost everything we prove holds for δ-systems, δ a limit ordinal and we shall use this.

Let $\mathfrak{A} \dagger \delta=\left\langle G_{i}^{\mathscr{Q}}, h_{i, j}^{\mathscr{Q}}\right\rangle_{i \leq j<\delta}$.
3.2 Definition We say $\mathfrak{A} \leq \mathfrak{B}$ if $G_{i}^{\mathfrak{A}}$ is a subgroup of $G_{i}^{\mathfrak{B}}, h_{i, j}^{\mathfrak{Q}} \subseteq h_{i, j}^{\mathfrak{P}}$, and:
$\left(^{*}\right)$ for every $j<\kappa, a \in G_{j}^{\mathfrak{B}}$ there is a maximal $i \leq j$ such that $h_{i, j}^{\mathfrak{B}}(a) \in G_{i}^{\mathfrak{Q}}$.
3.3 Fact \leq is transitive reflexive and if $\mathfrak{A}_{\alpha}(\alpha<\delta)$ is increasing then

$$
\bigwedge_{\alpha<\delta}\left[\mathfrak{A}_{\alpha} \leq \bigcup_{\beta<\delta} \mathfrak{A}_{\beta}\right] .
$$

3.4 Definition $\operatorname{Gr}(\mathfrak{A})=\left\{a=\left\langle a_{i, j}: i<j<\kappa\right\rangle: a_{i, j} \in G_{i}\right.$, and if $\alpha<\beta<\gamma<\kappa$ then $\left.a_{\alpha, \gamma}=a_{\alpha, \beta}+h_{\alpha, \beta}\left(a_{\beta, \gamma}\right)\right\}$.
This is a group by coordinatewise addition.
3.5 Definition For $a=\left\langle a_{i}: i<\kappa\right\rangle \in \prod_{i<k} G_{i}$, let fact $(a)=\left\langle a_{i, j}: i<j<\kappa\right\rangle$ where $a_{i, j}=a_{i}-h_{i, j}\left(a_{j}\right)$. Let Fact $(\mathfrak{H})=\left\{\operatorname{fact}(a): a \in \Pi G_{i}^{\mathfrak{Q}}\right\}$.
3.6 Claim The mapping $a \rightarrow f a c t(a)$ is from $\prod_{i<\kappa} G_{i}$ into $\operatorname{Gr}(\mathfrak{H})$, and is a homorphism. So $\operatorname{Fact}(\mathfrak{H})$ is a subgroup of $\operatorname{Gr}(\mathfrak{H})$.

3.7 Definition

(1) $G s(\mathfrak{H})=\left\{\bar{a} \in G r(\mathfrak{H})\right.$: for every $\left.\delta<\kappa,\left\langle a_{i, j}: i<j<\delta\right\rangle \in \operatorname{Fact}(\mathfrak{A} \mid \delta)\right\}$
(2) $E(\mathfrak{H})=\operatorname{Gr}(\mathfrak{H}) / \operatorname{Fact}(\mathfrak{H}), E^{\circ}(\mathfrak{H})=\operatorname{Gs}(\mathfrak{H}) / \operatorname{Fact}(\mathfrak{H})$.
(3) \mathfrak{U} is called smooth if for every limit $\delta<\kappa, E^{\circ}(\mathfrak{A} \mid \delta)$ has power 1.

Fact 3.7A Let \mathfrak{A} be a κ-system:
(1) for every limit $\delta, \operatorname{Fact}(\mathfrak{A} \mid \delta) \subseteq G s(\mathscr{H} \mid \delta) \subseteq G r(\mathfrak{H} \mid \delta)$.
(2) If \mathfrak{A} is smooth then for every limit $\delta<\kappa_{1}, E(\mathfrak{H} \mid \delta)$ has power 1 and, i.e.,
$\operatorname{Gr}(\mathfrak{H} \dagger \delta)=\operatorname{Fact}(\mathfrak{U} \dagger \delta)$.
(3) $G r(\mathfrak{H})=G s(\mathfrak{H})$.

Proof: (1) Easy.
(2) We prove this by induction on δ. For a given δ, by the induction hypotheses $\operatorname{Gr}(\mathfrak{H} \mid \delta)=G s(\mathfrak{H} \mid \delta)$. As \mathfrak{H} is smooth, $\left.E^{\circ}(\mathfrak{H} \mid \delta)=G s(\mathfrak{H} \mid) \delta\right) /$ Fact $(\mathfrak{H} \mid \delta)$ has power 1, hence $G s(\mathfrak{H} \mid \delta)=\operatorname{Fact}(\mathfrak{H} \mid \delta)$; together with the previous sentence we get $\operatorname{Gr}(\mathfrak{H} \mid \delta)=\operatorname{Fact}(\mathfrak{H} \mid \delta)$, hence $E(\mathfrak{H} \mid \delta)=G r(\mathfrak{H} \mid \delta) /$ Fact $(\mathfrak{H} \mid \delta)$ has power 1.
(3) Easy.
3.8 Claim There is $\mathfrak{A},|\mathfrak{A}|=\mu+\kappa$ and $|E(\mathfrak{H})| \geq \mu$.

Proof: Let G_{i} be the free Abelian group of order two generated by $W_{i}=$ $\left\{a_{i, j}^{\xi}: \xi<\mu, j<\kappa\right.$ but $\left.j>i\right\}$. So we can identify it with the family of finite subsets of W_{i}, with addition being the symmetric difference.
$h_{\alpha, \beta}: G_{\beta} \rightarrow G_{\alpha}$ is defined by
[1] $h_{\alpha, \beta}\left(a_{\beta, \gamma}^{\xi}\right)=a_{\alpha, \gamma}^{\xi}-a_{\alpha, \beta}^{\xi}$.
Check: For $\alpha<\beta<\gamma h_{\alpha, \gamma}=h_{\alpha, \beta^{\circ}} h_{\beta, \gamma}$ as

$$
\begin{aligned}
h_{\alpha, \beta}\left(h_{\beta, \gamma}\left(a_{\gamma, i}^{\xi}\right)\right) & =h_{\alpha, \beta}\left(a_{\beta, i}^{\xi}-a_{\beta, \gamma}^{\xi}\right)=\left(a_{\alpha, i}^{\xi}-a_{\alpha, \beta}^{\xi}\right)-\left(a_{\alpha, \gamma}^{\xi}-a_{\alpha, \beta}^{\xi}\right) \\
& =a_{\alpha, i}^{\xi}-a_{\alpha, \gamma}^{\xi}=h_{\alpha, \gamma}^{\xi}\left(a_{\gamma, i}^{\xi}\right) .
\end{aligned}
$$

Let $\boldsymbol{a}^{\xi}=\left\langle a_{i, j}^{\xi}: i<j<\kappa\right\rangle$. Clearly $\boldsymbol{a}^{\xi} \in \operatorname{Gr}(\mathfrak{H})$. We want to show $\boldsymbol{a}^{\xi}-\boldsymbol{a}^{\xi} \notin$ Fact (\mathfrak{H}) for $\xi \neq \zeta$.

If not there are $w_{i} \in G_{i}$
[2] $a_{i, j}^{\xi}-a_{i, j}^{\zeta}=w_{i}-h_{i, j}\left(w_{j}\right)$.
Clearly w_{i} is nothing but a finite subset of W_{i}.
Let $G_{i}^{*}=\left\langle\left\{a_{i, j}^{\epsilon}: \epsilon \neq \xi, i<j<\kappa\right\}\right\rangle$. We can define a projection g_{i} onto $G_{i}^{*}: g_{i}(x)=x \cap\left\{a_{i, j}^{\xi}: j<\kappa, j>i\right\}$. It is easy to check that for $i<j<\kappa, h_{i, j}{ }^{\circ} g_{j}=$ $g_{i} h_{i, j}$ and $h_{i, j}$ maps G_{j}^{*} into G_{i}^{*}. Applying g_{i} on the equations [2] we get $a_{i, j}^{\zeta}=w_{i}^{0}-h_{i, j}\left(w_{j}^{0}\right)$ when $w_{i}^{0}=g_{i}\left(w_{i}\right)$. So we get that for some $w_{i}(i<\kappa)$
[3] $a_{i, j}^{\xi}=w_{i}-h_{i, j}\left(w_{i}\right)$.
So there are $n<\omega$ and S, an unbounded subset of κ such that ($\forall i \in$ S) $\left|w_{i}\right|=n$.

Let $\alpha<\beta<\gamma$ be in S, by [3] $a_{\beta, \gamma}^{\xi}=w_{\beta}-h_{\beta, \gamma}\left(w_{\gamma}\right)$; apply $h_{\alpha, \beta}$ and get $a_{\alpha, \gamma}^{\xi}-a_{\alpha, \beta}^{\xi}=h_{\alpha, \beta}\left(w_{\beta}\right)-h_{\alpha, \gamma}\left(w_{\gamma}\right)$.

So

$$
a_{\alpha, \gamma}^{\xi}+h_{\alpha, \gamma}\left(w_{\gamma}\right)=a_{\alpha, \beta}^{\xi}+h_{\alpha, \beta}\left(w_{\beta}\right) .
$$

So for some $c_{\alpha} \in G_{\alpha}$ for every $\beta, \alpha<\beta$
[4] $a_{\alpha, \beta}^{\xi}+h_{\alpha, \beta}\left(w_{\beta}\right)=c_{\alpha}$.
Let $U_{\alpha}=\left\{i: a_{\alpha, i}^{\xi}\right.$ appear in $\left.c_{\alpha}\right\}$, remember c_{α} is a finite subset of W_{α}, so U_{α} is a finite subset of κ.
W.l.o.g. $\alpha \in S \wedge \beta \in S \wedge \alpha<\beta \Rightarrow \beta>\operatorname{Max} U_{\alpha}$. So if $\alpha<\beta$ are in S, by the equation [4], $h_{\alpha, \beta}\left(w_{\beta}\right)$ has elements of the form $a_{\alpha, \beta}^{\xi}$ or $a_{\alpha, \gamma}^{\xi}:(\gamma<\beta)$ only.
(Clearly $a_{\alpha, \beta}^{\xi}$ does not appears in c_{α}, so it appears in $h_{\alpha, \beta}\left(w_{\beta}\right)$.) Hence (by $h_{\alpha, \beta}$'s definition) some $a_{\alpha, \gamma}^{\xi}(\gamma>\beta)$ appears in $h_{\alpha, \beta}\left(w_{\beta}\right)$, but this contradicts the equality.
3.9 Fact Assume $c f \kappa>\mathfrak{\aleph}_{0}$. If $\mathfrak{A}_{\alpha}(\alpha<\delta)$ is \leq-increasing continuous, $a \in \operatorname{Gr}\left(\mathfrak{A}_{0}\right) \subseteq \operatorname{Gr}\left(\mathfrak{A}_{\alpha}\right), a \notin \operatorname{Fact}\left(\mathfrak{H}_{\alpha}\right)$ (for $\alpha<\delta$) then $a \notin \operatorname{Fact}\left(\bigcup_{\alpha<\delta} \mathfrak{A}_{\alpha}\right)$.
Proof: Suppose $a=\operatorname{fact}(\bar{b}) \bar{b}=\left\langle b_{i}: i<\kappa\right\rangle$. For each i there is a minimal $\alpha=\alpha(i)<\delta, b_{i} \in G_{i}^{\mathfrak{q}_{\alpha(i)}}$.

Now $i<j \Rightarrow \alpha(i) \leq \alpha(j)$, because $a_{i, j}=b_{i}-h_{i, j}\left(b_{j}\right)$ hence $b_{i}=a_{i, j}+$ $h_{i, j}\left(b_{j}\right)$ but $a_{i, j} \in G_{i}^{\mathfrak{R}_{0}} \subseteq G_{i}^{\mathfrak{q}_{\alpha(j)}}$, and $b_{j} \in G_{i}^{\mathfrak{q}_{\alpha(j)}}$. So $b_{i} \in G_{i}^{\mathfrak{q}_{\alpha(j)}}$ hence $\alpha(i) \leq$ $\alpha(j)$. If $\langle\alpha(i): i<\kappa\rangle$ has a bound $\alpha^{*}<\delta$ then $a \in \operatorname{Fact}\left(\mathscr{H}_{\alpha}\right)$ contradiction.

Hence $\langle\alpha(i): i<\kappa\rangle$ converge to δ. So $c f \delta=c f \kappa>\aleph_{0}$.
Hence for some $\vartheta<\kappa, c f \vartheta=\aleph_{0},\langle\alpha(i): i<\vartheta\rangle$ is not eventually constant and let $\beta=\bigcup_{i<\vartheta} \alpha(i)$.

However, look at $3.2\left({ }^{*}\right)$, apply to $\mathfrak{A}=\mathfrak{H}_{\beta}, \mathfrak{B}=\mathfrak{A}_{\alpha(\vartheta)}, j=\beta, a=b_{\beta}$, and get contradication.
3.10 Fact There is a smooth $\mathfrak{A},|\mathfrak{A}|=\mu^{\kappa}$ with $|E(\mathfrak{A})|=\mu$ such that every $h_{i, j}^{2,}$ is onto $G_{i}^{2 \mu}$.
Proof: By 3.8 there is $\mathfrak{M}_{0},\left\|\mathfrak{M}_{0}\right\| \leq \mu^{\kappa},|E(\mathfrak{H})| \geq \mu$. Let $\boldsymbol{a}_{\xi}+\operatorname{Fact}\left(\mathfrak{H}_{0}\right) \in \operatorname{Gr}\left(\mathfrak{H}_{0}\right) /$ Fact $\left(\mathfrak{N}_{0}\right)$ be distinct for $\xi<\mu$. We define by induction on $\alpha<\mu^{\kappa} \times \kappa^{+}$(ordinal multiplication) $\mathfrak{A}_{\alpha}, \leq$-increasing, continuous $\left\|\mathfrak{A}_{\alpha}\right\| \leq \mu^{\kappa}$, such that $\boldsymbol{a}_{\xi}-\boldsymbol{a}_{5} \notin$ $\operatorname{Fact}\left(\mathfrak{H}_{\alpha}\right)$ for $\xi \neq \zeta$. Clearly it is enough to prove [1], [2], [3] below (see later):
[1] if $\boldsymbol{b} \in \operatorname{Gr}\left(\mathfrak{A}_{\alpha}\right)-\left\langle\operatorname{Fact}\left(\mathfrak{A}_{0}\right), \ldots, \boldsymbol{a}_{\xi}, \ldots\right\rangle_{\xi<\mu}$, then we can define $\mathfrak{A}_{\alpha+1}$ such that: $\boldsymbol{b} \in \operatorname{Fact}\left(\mathfrak{H}_{\alpha+1}\right)$.
We take care of smoothness similarly. This is done as follows: let $\mathfrak{A}_{\alpha+1}=$ $\left\langle G_{i}^{\alpha+1}, h_{i, j}^{\alpha+1}\right\rangle_{i<j<k}$, where
$G_{i}^{\alpha+1}=\left\langle G_{i}^{\alpha}, x_{i}\right\rangle$-free extension (among Abelian satisfying $x+x=0$)
$h_{i, j}\left(x_{j}\right)=x_{i}-b_{i, j}$
[2] if $i<j<\kappa, x \in G_{i}^{\mathfrak{A}_{\alpha}}-$ Range $h_{i, j}^{\mathfrak{Y}_{\alpha}}$ we can define $\mathfrak{A}_{\alpha+1}$ such that $x \in$ Rang $h_{i, j}^{2_{\alpha+1}}$

We let

$$
G_{\xi}^{2_{\alpha+1}}= \begin{cases}G_{\xi}^{\mathfrak{Q}_{\alpha}} & \text { if } \xi \leq i \text { or } \xi>j \\ \left\langle G_{\xi}^{थ_{\alpha}}, x_{\xi}\right\rangle & \text { if } i<\xi \leq j\end{cases}
$$

$h_{\zeta, \xi}\left(x_{\xi}\right)=x_{\zeta}$ when $i<\zeta<\xi \leq j, h_{i, \xi}\left(x_{\xi}\right)=x$.
[3] if $\delta<\kappa, b \in \operatorname{Gr}\left(\mathfrak{A}_{\alpha} \mid \delta\right)$ then we can define $\mathfrak{A}_{\alpha+1}$ such that $b \in$ $\operatorname{Fact}\left(\mathfrak{H}_{\alpha+1} \mid \delta\right)$.
This is similar to [1].
Why are [1], [2], [3] enough?
As we can define the \mathfrak{U}_{α} 's such that if $\epsilon=\mu^{\kappa} \times \gamma, \epsilon(1)=\mu^{\kappa} \times(\gamma+1)$ $\epsilon\left({ }^{*}\right)=\mu^{\kappa} \times \kappa^{+}$:
(a) for $\boldsymbol{b} \in \operatorname{Gr}\left(\mathfrak{H}_{\mu^{\kappa} \times \gamma}\right)$ for some $\beta<\epsilon(1), \boldsymbol{b} \in\left\langle\operatorname{Fact}\left(\mathfrak{H}_{\beta}\right), \ldots, \boldsymbol{a}_{\xi}, \ldots\right\rangle_{\xi<\mu}$ (use [1]) hence:

$$
b \in\left\langle\operatorname{Fact}\left(\mathfrak{A}_{\epsilon(1)}\right), \ldots, a_{\xi}, \ldots\right\rangle
$$

(b) for every $x \in P_{i}^{2} \xi, i<j<\kappa$, for some $\beta<\epsilon(1)$

$$
\boldsymbol{x} \in \operatorname{Rang}\left(h_{i, j}^{\mathfrak{2}_{\beta}}\right) \text { (use [2]) (hence } x \in \operatorname{Rang}\left(h_{i, j}^{2 \eta_{\epsilon}\left({ }^{*}\right)}\right)
$$

(c) for every limit $\delta<\kappa$, if $\boldsymbol{b} \in \operatorname{Gr}\left(\mathfrak{H}_{\epsilon} \mid \delta\right)$ then for some $\beta<\epsilon(1)$, $\boldsymbol{b} \in \operatorname{Fact}\left(\mathfrak{H}_{\beta} \mid \delta\right)$ (see [3]) hence $\boldsymbol{b} \in \operatorname{Fact}\left(\mathfrak{U}_{\epsilon(*)} \mid \delta\right)$.

As cf $\epsilon\left({ }^{*}\right)>\kappa, \operatorname{Gr}\left(\mathfrak{U}_{\epsilon\left({ }^{*}\right)}\right)=\bigcup_{\beta<\kappa^{+}} \operatorname{Gr}\left(\mathfrak{H}_{\lambda^{\kappa} \times \beta}\right)$ and $\operatorname{Gr}\left(\mathfrak{U}_{\epsilon\left({ }^{*}\right)} \mid \delta\right)=$ $\bigcup_{\beta<\kappa^{+}} \operatorname{Gr}\left(\mathfrak{A}_{\lambda^{\kappa} \times \beta} \mid \delta\right)$, so $\mathfrak{A}_{\epsilon(*)}$ is as required.
3.11 Claim For every κ-system \mathfrak{A} where the $h_{i, j}^{2,}$ are onto, there is M, $\|M\|=\|\mathfrak{Y}\|$, as in Lemma 2.1(b), and we get for $M, \vartheta=\left|E^{\circ}(\mathfrak{H})\right|$.
Proof: We concentrate on $\vartheta \geq \boldsymbol{N}_{0}$.
For every $a \in \operatorname{Gr}(\mathfrak{H})$ we define a model M_{a} :
(i) $\left|M_{a}\right|=\bigcup_{i<k} G_{i}^{2}$.
(ii) $P_{i}^{M_{a}}=G_{i}^{\ell \ell k}$.
(iii) for every $i<\kappa, c \in G_{i}$ we have a partial function $F_{c}: P_{i}^{M_{a}} \rightarrow P_{i}^{M_{a}}$:

$$
F_{c}(x)=c+x
$$

(iv) for every $i<j$, we have a partial function $H_{i, j}: P_{j}^{M_{a}} \rightarrow P_{i}^{M_{a}}$

$$
H_{i, j}(x)=h_{i, j}(x)+a_{i, j} .
$$

The following series of Facts will prove Claim 3.11.
3.12 Fact $\quad M_{a} \cong M_{b}$ iff $a-b \in \operatorname{Fact}(\mathfrak{H})$ (the subtraction is in $\operatorname{Gr}(\mathfrak{H})$).

Proof: Suppose $\boldsymbol{b}-\boldsymbol{a}=\boldsymbol{f a c t}(\boldsymbol{d})$ where $\boldsymbol{d}=\left\langle d_{i}: i<\kappa\right\rangle$. We define an isomorphism $g=g_{d}$ from M_{a} onto M_{b} :
for $x \in G_{i}^{\mathscr{2}}$ let $g(x)=x+d_{i}$.
Clearly g maps each $P_{i}^{M_{a}}$ onto $P_{i}^{M_{b}}$ hence it maps $\left|M_{a}\right|$ onto $\left|M_{b}\right|$. Also g is one-to-one.

Now for each $i<\kappa, c \in G_{i}^{2}, x \in P_{i}^{M_{a}}=G_{i}^{\mathscr{Q}}$

$$
g\left(F_{c}^{M_{a}}(x)\right)=g(c+x)=c+x+d_{i}=c+g(x)=F_{c}^{M_{b}}(g(x))
$$

Lastly for $i<j, x \in P_{j}^{M_{a}}=G_{j}^{थ 1}$

$$
\begin{aligned}
& y\left(H_{i, j}^{M_{a}}(x)\right)=g\left(h_{i, j}(x)+a_{i, j}\right)=h_{i, j}(x)+a_{i, j}+d_{i}= \\
& h_{i, j}(x)+h_{i, j}\left(d_{j}\right)+b_{i, j}=h_{i, j}\left(x+d_{j}\right)+b_{i, j}=H_{i, j}^{M b}\left(x+d_{j}\right)=H_{i, j}^{M_{b}}(g(x))
\end{aligned}
$$

$$
\text { (the third equality is as } b-a=f a c t(d) \text { and } f a c t(d) \text { 's definition. }
$$

For the other direction suppose g is an isomorphism from M_{a} onto M_{b}. We let
$d_{i}=g(x)-x$ for any (some) $x \in P_{i}^{M_{a}}$ and $d=\left\langle d_{i}: i<\kappa\right\rangle$, and can check that $b-a=f a c t(d)$.
3.13 Fact For any $M_{a}, M_{b}(a, b \in G s(\mathfrak{H}))$ player II wins the game of 2.1(b).

Proof: We let (using the notation from the proof of Fact 3.12)

$$
\mathfrak{B}_{\alpha}=\left\{g_{d}: d \in \prod_{i \in \alpha} G_{i}^{9}, a|\alpha-b| \alpha=f a c t(d)\right\}
$$

By 3.12 and the hypothesis, $\mathfrak{B}_{\alpha} \neq \varnothing$, and by the proof of $3.12, \mathfrak{B}_{\alpha}$ is a set of isomorphisms from $M_{a} \mid \bigcup_{i<\alpha} G_{i}^{\text {Q }}$ onto $M_{b} \mid \bigcup_{i<\alpha} G_{i}^{\text {थ. }}$. The strategy of player II is to use partial isomorphisms from $\bigcup_{\alpha<\kappa} \mathfrak{\beta}_{\alpha+1}$. The only missing point is: for successor $\alpha<\beta<\kappa, g \in \mathfrak{B}_{\alpha}$, there is $g^{\prime} \in \mathfrak{B}_{\beta}, g \subseteq g^{\prime}$; equivalently, for $d_{0} \in$ $\prod_{i<\alpha} G_{i}^{\Omega}$, satisfying $a|\alpha-b| \alpha=f a c t\left(d_{0}\right)$ there is $d \in \prod_{i<\beta} G_{i}, d_{0}=d \mid \alpha$, and $a|\beta-b| \beta=f a c t(d)$. We know that for some $d_{1}, d_{2} \in \prod_{i<\beta} G_{i}^{9}, a \mid \beta=f a c t\left(d_{1}\right)$,
$b \mid \beta=f a c t\left(d_{2}\right)$.
Let $d_{0}=\left\langle d_{i}^{0}: i<\alpha\right\rangle, d_{1}=\left\langle d_{i}^{1}: i<\beta\right\rangle, d_{2}=\left\langle d_{i}^{2}: i<\beta\right\rangle$.
As $a\left|\alpha=\boldsymbol{f a c t}\left(d_{1} \mid \alpha\right), b\right| \alpha=\boldsymbol{f a c t}\left(d_{2} \mid \alpha\right)$ and $\boldsymbol{a}|\alpha-\boldsymbol{b}| \alpha=\boldsymbol{f a c t}\left(d_{0}\right)$ clearly for every $i<j<\alpha$

$$
\left(d_{i}^{1}-h_{i, j}\left(d_{j}^{1}\right)\right)-\left(d_{i}^{2}-h_{i, j}\left(d_{j}^{2}\right)\right)=d_{i}^{0}-h_{i, j}\left(d_{j}^{0}\right) ;
$$

hence,
(a) $d_{i}^{1}-d_{i}^{2}-d_{i}^{0}=h_{i, j}\left(d_{j}^{1}-d_{j}^{2}-d_{j}^{0}\right)$.

As $h_{\beta-1, \alpha-1}$ is from $G_{\beta-1}^{\mathfrak{Q}}$ onto $G_{\alpha-1}^{\mathfrak{Q}}$ (remember α, β are successor ordinals) for some $x \in G_{\beta-1}^{\text {P }}$:
(b) $h_{\alpha-1, \beta-1}(x)=d_{\alpha-1}^{1}-d_{\alpha-1}^{2}-d_{\alpha-1}^{0}$.

By (a) for every $i<\alpha$:
(c) $h_{i, \beta-1}(x)=d_{i}^{1}-d_{i}^{2}-d_{i}^{0}$.

Now define for $i, i<\beta$.
(d) $d_{i}=d_{i}^{1}-d_{i}^{2}-h_{i, \beta-1}(x)$.
$\mathrm{By}(\mathrm{c})$ for $i<\beta$:
(e) $d_{i}=d_{i}^{0}$.

Let $d=\left\langle d_{i}: i<\beta\right\rangle$, so $d \mid \alpha=d_{0}$. We shall show that $\boldsymbol{a}|\beta-\boldsymbol{b}| \beta=$ fact (d) thus finishing the proof of 3.13. For $i<j<\beta$

$$
\begin{aligned}
a_{i, j}-b_{i, j} & =\left(d_{i}^{1}-h_{i, j}\left(d_{j}^{1}\right)\right)-\left(d_{i}^{2}-h_{i, j}\left(d_{j}^{2}\right)\right) \\
& =\left(d_{i}^{1}-d_{i}^{2}\right)-h_{i, j}\left(d_{j}^{1}-d_{j}^{2}\right) \\
& =\left(d_{i}+h_{i, \beta-1}(x)\right)-h_{i, j}\left(d_{j}+h_{j, \beta-1}(x)\right) \\
& =\left(d_{i}-h_{i, j}\left(d_{j}\right)\right)+\left(h_{i, \beta-1}(x)-h_{i, j^{\circ}} h_{j, \beta-1}(x)\right)=d_{i}-h_{i, j}\left(d_{j}\right)
\end{aligned}
$$

So d is as required and we finish.
3.14 Fact If in the game for $\left(M_{a}, M\right)$ player II wins then $(\exists b)[M \cong$ $\left.M_{b} \wedge b-a \in G s(\mathfrak{A})\right]$.

Proof: We can use a weaker hypothesis:
$\left(^{*}\right) \quad$ For every $\alpha, M \dagger \bigcup_{i \leq \alpha} P_{i}^{M}$ is isomorphic to $M_{a} \dagger \bigcup_{i \leq \alpha} G_{i}^{9}$ and let the isomorphism be g_{α}^{-1} and prove $M \cong M_{b}$ for some $b \in G r(\mathscr{H})$;
by 3.12 (applied to the various $\mathfrak{A} \mid \delta)$, \boldsymbol{b} will be as required.
For any $i<j<\kappa,\left(g_{i}^{-1} g_{j}\right) \backslash P_{i}^{M_{a}}$ is necessarily an automorphism of $M_{a} \mid$ $P_{i}^{M_{R a}}$. So using the functions $F_{c}\left(c \in G_{i}^{2 \mathcal{I}}\right)$ clearly for some $d_{i, j} \in G_{i}^{\mathfrak{Q}} g_{i}^{-1} g_{j}(x)=$ $x+d_{i, j}$ for every $\left.x \in G_{i}^{2 \mathrm{I}}\right)$.

Using the functions $H_{i, j}^{M_{\alpha}}$ we can check that $d_{\alpha, \gamma}=d_{\alpha, \beta}+h_{\alpha, \beta}\left(d_{\beta, \gamma}\right)$ for $\alpha<\beta<\gamma<\kappa$ hence $d=\left\langle d_{\alpha, \beta}: \alpha<\beta<\kappa\right\rangle \in \operatorname{Gr}(\mathfrak{H})$. It is also easy to check that $M_{d+a} \cong M$ (the isomorphism takes $x \in G_{i}$ to $g_{i}(x)$), so we finish.

What about finite μ ? The proof is O.K. for powers of 2 . Similarly we can use Abelian group of order p to get power of p, and then sum of models gives us any product.

Alternatively use 1.8.
3.15 Claim For every ϑ, there is a κ-system $\mathfrak{A},\|\mathfrak{N}\|=\kappa+\vartheta, \vartheta \leq\left|E^{\circ}(G A)\right|$. Proof: Just like the proof of 3.10 .
3.16 Fact For every κ-system $\mathfrak{A},\left|E^{\circ}(\mathfrak{H})\right| \leq|E(\mathfrak{H})| \leq\|\mathfrak{U}\|^{\kappa}$.

Proof: As $|G r(\mathfrak{H})| \leq\|\mathfrak{A}\|^{\kappa}$.
3.17 Conclusion If $\aleph_{0}<\kappa=c f \lambda<\lambda$ and $\vartheta \leq \lambda$ then $\vartheta^{\kappa} \in R S P_{\lambda, \lambda}^{\lambda}$.

Proof: First assume $\vartheta<\lambda$. Let \mathfrak{A} be a system as provided by 3.15 . So by 3.16 $\vartheta \leq\left|E^{\circ}(\mathfrak{A})\right| \leq \vartheta^{\kappa}$. By 3.11 there is a model M of power $\|\mathfrak{H}\|=\kappa+\vartheta \leq \lambda$, satisfying the conditions of $2.1(\mathrm{~b}), 2.10$ for $\vartheta=\left|E^{\circ}(\mathfrak{H})\right|$. So by $2.1,2.10$ $\left|E^{\circ}(\mathfrak{H})\right| \in R S P_{\lambda, \lambda}^{\lambda}$; hence, by $1.7,\left|E^{\circ}(\mathfrak{H})\right|^{\kappa} \in R S P_{\lambda, \lambda}^{\lambda}$. However, $\vartheta^{\kappa} \leq\left|E^{\circ}(\mathfrak{H})\right|^{\kappa} \leq$ $\left.\vartheta^{\kappa}\right)^{\kappa}=\vartheta^{\kappa}$. So

$$
\vartheta^{\kappa} \in R S P_{\lambda, \lambda}^{\lambda}
$$

We are left with the case $\vartheta=\lambda$. Let $\lambda=\sum_{i<k} \lambda_{i}, \lambda_{i}<\lambda$. By what we have already proved $\lambda_{i}^{k} \in R S P_{\lambda, \kappa}^{\lambda}$ for each $i<\kappa$. By $1.7 \prod_{i<\kappa} \lambda_{i}^{k} \in R S P_{\lambda, \kappa}^{\lambda}$ but by easy cardinal arithmetic $\vartheta^{\kappa}=\lambda^{\kappa}=\prod_{i<\kappa} \lambda_{i}^{\kappa}$.
3.18 Conclusion If $\aleph_{0}<\kappa=c f \lambda<\lambda, \vartheta^{\kappa} \leq \lambda$, then $\vartheta \in R S P_{\lambda, \lambda}^{\lambda}$.

Proof: Like the proof of 3.17 , using 3.10 instead of 3.15 .

REFERENCES

[1] Chang, C. C., "Some remarks on the model theory of infinitary languages," pp. 36-63 in The Syntax and Semantics of Infinitary Languages, Lecture Notes in Mathematics, 72, ed. J. Barwise, Springer, New York, 1968.
[2] Hiller, H. L. and S. Shelah, "Singular cohomology in L," Israel Journal of Mathematics, vol. 26 (1977), pp. 313-319.
[3] Nadel, M. and J. Stavi, " $L_{\infty, \lambda}$-equivalence, isomorphism and potential isomorphism," Transactions of the American Mathematical Society, vol. 236 (1978), pp. 51-74.
[4] Palyutin, E. A., "Number of models in $L_{\infty, \omega_{1}}$ theories III," Algebra I Logika, vol. 16, no. 4 (1977), pp. 443-456. English translation: Algebra and Logic, vol. 16, no. 4 (1977), pp. 299-309.
[5] Scott, D., "Logic with denumerably long formulas and finite strings of quantifiers," pp. 329-341 in The Theory of Models, North Holland, Amsterdam, 1965.
[6] Shelah, S., "On the number of nonisomorphic models of cardinality $\lambda, L_{\infty, \lambda}$ equivalent to a fixed model," Notre Dame Journal of Formal Logic, vol. 22, no. 1 (1981), pp. 5-10.
[7] Shelah, S., "On the number of nonisomorphic models in $L_{\infty, \lambda}$ when λ is weakly compact," Notre Dame Journal of Formal Logic, vol. 23, no. 1 (1982), pp. 21-26.
[8] Shelah, S., "The consistency of $\operatorname{Ext}(G, \mathbf{Z})=\mathbf{0}$," Israel Journal of Mathematics, vol. 39 (1981), pp. 283-288.
[9] Shelah, S., "A pair of nonisomorphic $\equiv_{\infty, \lambda}$ models of power λ for λ singular with $\lambda^{\omega}=\lambda$," Notre Dame Journal of Formal Logic, vol. 25, no. 2 (1984), pp. 97-104.

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

[^0]: *This research was partially supported by the BSF (United States-Israel Binational Science Foundation) which the author wishes to thank.

