Notre Dame Journal of Formal Logic Volume 26, Number 1, January 1985

On the Possible Number no(M) = The Number of Nonisomorphic Models $L_{\infty,\lambda}$ -Equivalent to M of Power λ , for λ Singular

SAHARON SHELAH*

Introduction Let M be a model of power λ , with λ relations, each with $<\lambda$ places and of power $\leq \lambda$. What can be

$$no(M) = \{N/\cong : N \equiv_{\infty,\lambda} M, ||N|| = \lambda\}$$
?

We assume V = L (otherwise there are independence results (by [8])). It is known that

- (A) If $cf \lambda = \aleph_0$, it can be only 1 (by Scott [5] for $\lambda = \aleph_0$, and generally by Chang [1], essentially).
- (B) If λ is regular uncountable and not weakly compact it can be 1 or 2^{λ} (it can be 2^{λ} , see [3]; cannot be $\neq 1, 2^{\lambda}$: for $\lambda = \aleph_1$ by Palyutin [4], for any λ by [6]).
- (C) If λ is weakly compact $> \aleph_0$ then it can be any cardinal $\leq \lambda^+$ (by [7]). We prove here
 - (D) If λ is singular of uncountable cofinality, no(M) can be any cardinal $\chi < \lambda$ (and also $\chi = 2^{\lambda}$). (This follows by 3.18 here.)

So we answer the question from [7], bottom of p. 26. The second question there, top of p. 26, is answered trivially by 1.4.

Notation: We consider functions as relations.

^{*}This research was partially supported by the BSF (United States-Israel Binational Science Foundation) which the author wishes to thank.

1 Introducing the notions

1.1 Definition

- (1) Let for a model M of power λ , no(M) be the cardinality of $\{N/\cong: N \equiv_{\infty,\lambda}\}$ M, $||N|| = \lambda$.
- (2) $SP_{\mu,\kappa}^{\lambda} = \{no(M): M \in K_{\mu,\kappa}^{\lambda}\}$ where $K_{\mu,\kappa}^{\lambda} = \{M: M \text{ is a model, } ||M|| = \lambda \text{ and } M$ has μ relations each of $<\kappa$ places.
- (3) Let $RK_{\mu,\kappa}^{\lambda} = \{M: M \in K_{\mu,\kappa}^{\lambda}, \Sigma\{|R^{M}|: R \in L(M)\} \leq \lambda\}$ $RSP_{\mu}^{\lambda,\kappa} = \{no(M): M \in RK_{\mu,\kappa}^{\lambda}\}.$ (4) We always assume that λ, μ, κ are $\geq \aleph_0, \kappa \leq \lambda$ and that $\mu \geq cf \kappa$ or κ is a
- successor (otherwise $M \in K_{\mu,\kappa}^{\lambda} \Leftrightarrow M \in \bigcup_{\vartheta < \kappa} K_{\mu,\vartheta}^{\lambda}$). So w.l.o.g. every $M \in K_{\mu,\kappa}^{\lambda}$ is an $L_{\mu,\kappa}^{\lambda}$ -model with a fixed $L_{\mu,\kappa}^{\lambda}$, which has for a closed unbounded set of $\alpha < \kappa$ exactly μ α -place predicates when κ is a limit cardinal, and μ κ place relations when $\kappa = (\kappa^{-})^{+}$.

Remark: Note that if $\lambda^{<\kappa} > \lambda$, then in a model $M \in K_{\mu,\kappa}^{\lambda}$ we can code an arbitrary model of $K_{\mu,\kappa}^{\chi}$, where $\chi = \lambda^{<\kappa}$. This is a point in favor of dealing with $RSP_{\mu,\kappa}^{\lambda}$.

If $\mu \leq \mu_1$ and $\kappa \leq \kappa_1$, then $SP_{\mu,\kappa}^{\lambda} \subseteq SP_{\mu_1,\kappa_1}^{\lambda}$ and $RSP_{\mu,\kappa}^{\lambda} \subseteq$ 1.2 Claim $RSP_{\mu_1,\kappa_1}^{\lambda}$.

Proof: Trivial.

- 1.3 Claim We assume $\mu \geq \kappa$.
- (1) If $\lambda = \lambda^{<\kappa}$ then $SP_{\mu,\kappa}^{\lambda} = SP_{\mu,\aleph_0}^{\lambda}$. (2) $RSP_{\mu,\kappa}^{\lambda} = RSP_{\mu,\aleph_0}^{\lambda}$ when $\lambda > \kappa \vee cf \ \lambda \geq \kappa$.

Proof: (1) For every $M \in K_{\mu,\kappa}^{\lambda}$ let M^* be the following model:

- (i) $|M^*| = |M| \cup \bigcup_{\alpha} |M|$
- (ii) for each $i < \alpha < \kappa$ let $R_{\alpha,i}$ be the two-place relation

$$R_{\alpha,i}^M = \{\langle a, \bar{b} \rangle : a \in M, \ \bar{b} \in {}^{\alpha}|M|, \alpha = \bar{b}[i]\}$$
.

(iii) For every α -place relation R of M, a one-place relation R^*

$$(R^*)^{M^*} = \{ \bar{b} \in {}^{\alpha}|M| : M \vDash R[\bar{b}] \} .$$

Clearly $no(M^*) = no(M)$, $M \in K_{\mu,\kappa}^{\lambda} \Rightarrow M^* \in K_{\mu,\kappa_0}^{\lambda}$, hence $SP_{\mu,\kappa}^{\lambda} \subseteq SP_{\mu,\kappa_0}^{\lambda}$. The other inclusion holds by Claim 1.2.

(2) The proof is similar: define $(R^*)^{M^*}$ as above, $|M^*| = |M| \cup M^*$ $\bigcup_{n} (R^*)^{M^*}$, and then

$$R_{\alpha,i} = \{ \langle a, \bar{b} \rangle : a \in M, \ \bar{b} \in {}^{\alpha}|M| \cap |M^*|, \ a = \bar{b}[i] \} .$$

Why did we restrict λ ? Because looking at $L_{\infty,\lambda}$ -equivalence we want that for every subset A of M^* of power $\langle \lambda, (A \cap M) \cup \{Rang \ \bar{b} : \bar{b} \in A \}$ has power $<\lambda$.

1.4 Claim

- (1) If $\mu \leq \lambda^{<\kappa}$ then $SP_{\mu,\kappa}^{\lambda} = SP_{\kappa,\kappa}^{\lambda}$.
- (2) Moreover, if $\mu \leq \lambda$, then $SP_{\mu,\kappa}^{\lambda} = SP_{cf\kappa,\kappa}^{\lambda}$; if κ is a successor then $SP_{\mu,\kappa}^{\lambda} = SP_{\kappa,\kappa}^{\lambda}$ $SP_{\aleph_0,\kappa}^{\lambda}$ (really when κ is a successor or \aleph_0 $SP_{\mu,\kappa}^{\lambda} = SP_{1,\kappa}^{\lambda}$).
- (3) Similar assertion holds for RSP.

Proof: (1) It is well known that $(\lambda, <)$ is isomorphic to any model $L_{\infty, \omega}$ equivalent to it; moreover each element of $(\lambda, <)$ is defined by a formula in $L_{\infty,\omega}$ (and we can replace $L_{\infty,\omega}$ by $L_{\infty,\lambda}$). Also $L_{\infty,\lambda}$ satisfies the Feferman-Vaught Theorem. So we can show that for any M

$$no(M) = no(M + (\lambda, <))$$
.

Now in $M + (\lambda, <)$ we can use the $\alpha < \lambda$ and even sequences of length $< \kappa$ to parametrize the relations.

(2) and (3): Left to the reader.

1.5 Claim

- (1) If $\mu \ge \chi = \lambda^{<\kappa}$ then $SP_{\mu,\kappa}^{\lambda} = SP_{\chi,\kappa}^{\lambda}$. (2) If $\mu \ge \chi = \lambda + \kappa$ then $RSP_{\mu,\kappa}^{\lambda} = RSP_{\chi,\kappa}^{\lambda}$.

Proof: (1) For every $\alpha < \kappa$ and M, on $\alpha |M|$, we define an equivalence relation E_{α} , realizing the same atomic type. The number of classes is $\leq \lambda^{<\kappa} = \chi$ (if our hypothesis holds).

We define for every $M \in K_{u,\kappa}^{\lambda}$ a model M^* :

- (i) $|M^*| = |M|$
- (ii) for every $\alpha < \kappa$ and E_{α} -equivalence class A, let $R_A^{M^*} = \{\bar{a} \in {}^{\alpha}|M| :$ $\bar{a} \in A$.

Clearly $M^* \in K_{\chi,\kappa}^{\lambda}$, $||M^*|| = \lambda$ and $no(M) = no(M^*)$. Hence $SP_{\chi,\kappa}^{\lambda} \subseteq SP_{\chi,\kappa}^{\lambda}$, and the other inclusion follows by Claim 1.2.

(2) Similar proof.

1.6 Claim If
$$\lambda^{<\kappa} \ge \chi > \lambda$$
, then $Sup(SP_{\mu,\kappa}^{\lambda}) \ge Sup(SP_{\mu,\kappa}^{\chi})$.

Proof: Let $M \in K_{\mu,\kappa}^{\chi}$; for notational simplicity we assume that for some $\vartheta < \kappa$, $\lambda^{\vartheta} \geq \chi$, so w.l.o.g. $|M| \subseteq {}^{\vartheta}\lambda$. So we reinterpret the relations of M as relations on λ ; i.e., we define a model M^* :

- (i) $|M^*| = \lambda$
- (ii) for $R \in L(M)$, R α -place.

 $R^{M^*} = \{ \langle a_i : i < \vartheta \alpha \rangle : a_i \in |M^*|, \text{ and if we let for } \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : a_{\vartheta,\beta+i} : a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta < \alpha, \ \bar{b}_\beta = \langle a_{\vartheta,\beta+i} : \beta, \ \bar{b}_\beta = \langle$ $i < \vartheta \rangle$ then $\langle \bar{b}_{\beta} : \beta < \alpha \rangle \in \mathbb{R}^{M} \rangle$.

It is easy to see that $M^* \in K_{\mu,\kappa}^{\lambda}$, and $no(M^*) \ge no(M)$ (we get \ge and not necessarily equality, as in no(M) we use a finer equivalence relation: $L_{\infty,\gamma}$ equivalent and not $L_{\infty,\lambda}$ -equivalence).

1.7 Claim

(1) If $\chi_i \in SP_{\mu,\kappa}^{\lambda}$ $(i < \alpha \le \lambda)$ then

$$\prod_{i<\alpha}\chi_i\in SP_{\mu,\kappa}^{\lambda}.$$

(2) Similarly for RSP.

Proof: (1) Let $M_i \in K_{\mu,\kappa}^{\lambda}$, $\chi_i = no(M_i)$ and $L = L(M_i)$ is fixed (see Definition 1.1(4)). W.l.o.g. $|M_i| \cap |M_j| = \emptyset$ for $i \neq j$. We define a model M:

(i)
$$|M| = \bigcup_{i < \alpha} M_i$$
.

(ii)
$$R^M = \bigcup R^{M_i}$$
 for each $R \in L$.

(ii)
$$R^M = \bigcup_{i < \alpha} R^{M_i}$$
 for each $R \in L$.
(iii) $\leq^M = \{(a, b) : (\exists i \leq j \leq \alpha) [a \in M_i \land b \in M_j]\}$.

Clearly $M \in K_{\mu,\kappa}^{\lambda}$ and $no(M) = \prod_{i < \alpha} no(M_i) = \prod_{i < \alpha} \chi_i$, hence $\prod_{i < \alpha} \chi_i = no(M) \in SP^{\lambda}$

(2) The same proof.

1.8 Claim

(1) If $\chi \in SP_{\mu,\kappa}^{\lambda}$, ϑ a cardinal, $2 \le \vartheta \le \lambda$, then the cardinality of $\{\langle \vartheta_i : i < \chi \rangle : i < \chi \}$ $\sum_{i \le \gamma} \vartheta_i = \vartheta, \text{ each } \vartheta_i \text{ a cardinal, } 0 \le \vartheta_i \le \vartheta$ belongs to $SP_{\mu,\kappa}^{\lambda}$.

(2) Let $N_i \in K_{\mu,\kappa}^{\leq \lambda}$ (may be even a finite model), for $i < \alpha$, $\alpha \leq \lambda$, be pairwise nonisomorphic but $N_i \equiv_{\infty,\lambda} N_0$ and $\left[N \equiv_{\infty,\lambda} N_0 \land ||N|| < \lambda \Rightarrow \bigvee_{i < \alpha} N \cong N_i \right]$. Let G_i be the group of automorphisms of N_i and define $f \approx g \mod G_i$, if f,g are functions with domain N_i and $(\exists h \in G_i)(\forall a \in N_i)[f(a) = g(h(a))]$. Now \approx is an equivalence relation, and let $\chi^{N_i}/G_i = 2f/\approx :fa$ function from N_i into χ . Now if $\chi \in SP_{\mu,\kappa}^{\lambda}$ then $\sum_{i} |\chi^{N_i}/G_i| \in SP_{\mu,\kappa}^{\lambda}$.

(3) Similarly for $RSP_{\mu,\kappa}^{\lambda}$ (and $N_i \in RK_{\mu,\kappa}^{\leq \lambda}$).

Proof: (1) Let $M \in SP_{\mu,\kappa}^{\lambda}$, $\chi = no(M)$, and choose $M_i \cong M$, $|M_i| \cap |M_j| = \emptyset$ for $i < j < \vartheta$. Now define M as in the proof of Claim 1.7, except

(iii)
$$E^{M^*} = \{(a,b) : (\exists i < \vartheta) (a \in M_i \land b \in M_i].$$

Clearly $M^* \in K_{\mu,\kappa}^{\lambda}$, $no(M^*)$ is as required to exemplify the conclusion.

(2) and (3): Proved similarly.

In the following two sections we shall prove:

1.9 Theorem If λ is singular of uncountable cofinality, $\aleph_0 \le \xi \le \lambda$ then $\xi^{cf\lambda} \in RSP^{\lambda}_{\lambda\lambda}$.

Proof: See 3.17.

If λ is singular of uncountable cofinality, $\chi^{cf\lambda} < \lambda$ then 1.10 Theorem $\chi \in RSP_{\lambda,\lambda}^{\lambda}$.

Proof: See 3.18.

In a following paper (in a Springer lecture notes volume) we shall prove similar results for $SP_{\aleph_0,\aleph_0}^{\lambda}$. Let us summarize the known results:

1.11 Theorem

- (1) For every λ , $1 \in SP_{\aleph_0,\aleph_0}^{\lambda}$.
- (2) If $cf \lambda = \aleph_0$, then $SP^{\lambda}_{\mu,\aleph_0} = \{1\}$ and when $[\lambda > \kappa \vee cf \lambda \ge \kappa]$, $RSP^{\lambda}_{\mu,\kappa} = \{1\}$ (by Scott [5] when $\lambda = \aleph_0$ and Chang [1] when $\lambda > \aleph_0$)
- (3) If $\lambda > \aleph_0$ is regular or $\lambda = \lambda^{\aleph_0}$ then $2^{\lambda} \in SP^{\lambda}_{\aleph_0,\aleph_0}$ (see [3] for λ regular, and by Shelah [8] for $\lambda = \lambda^{\aleph_0}$).
- (4) (V = L). If $\lambda > \aleph_0$ is regular not weakly compact then $SP_{\mu,\lambda}^{\lambda} = \{1,2^{\lambda}\}$ (by Palyutin [4] for $\lambda = \aleph_1$ by Shelah [6] generally).
- (5) if $\lambda > \aleph_0$ is weakly compact then every $\chi, 2 \le \chi \le \lambda$, belong to $SP^{\lambda}_{\aleph_0, \aleph_0}$ (by Shelah [7]).
- (6) If λ is singular, $\chi^{cf\lambda} < \lambda$ and $cf\lambda > \aleph_0$ then $\chi \in RSP_{\lambda,\lambda}^{\lambda}$ (by 1.10). (7) If $\lambda > cf\lambda > \aleph_0$ and $\chi \leq \lambda$ then $\chi^{cf\lambda} \in RSP_{\lambda,\lambda}^{\lambda}$ (by 1.9). (8) If $\lambda^{<\kappa} > \lambda$ then $2^{\lambda} \in SP_{\mu,\kappa}^{\lambda}$ (by 1.6 and 1.7(1)).

In a subsequent paper we shall improve (6) for some λ, χ .

- 2 Constructing the example This section is dedicated to the proof of
- 2.1 Main Lemma Suppose λ is strong limit singular, $\kappa = cf \lambda$. Also M is a model of power $\leq \lambda$, and
- (a) $|M| = \bigcup P_i^M$, $P_i^M \cap P_j^M = \emptyset$ for $i \neq j$, $|P_i^M| < \kappa$, $\vartheta = no(M)$ P_i a monadic predicate of M, $\vartheta = no(M)$, or even
- (b) $|M| = \bigcup_{i < \kappa} P_i^M$, $P_i^M \cap P_j^M = \emptyset$ for $i \neq j$, P_i^M has power $< \lambda$ and the number of nonisomorphic N satisfying the following is ϑ : $N \equiv_{L_{\infty,\kappa}} M$, moreover in the following game (with ω steps) player II has a winning strategy:

in stage $n(<\omega)$: player I chooses i_n , $\bigcup_{l< n} i_l < i_n < \kappa$; player II chooses an isomorphism g_n from $M \upharpoonright \bigcup_{j < i_n} P_j^M$ onto $N \upharpoonright \bigcup_{j < i_n} P_j^N$ which extends $\bigcup_{l < n} g_l$.

isomorphism
$$g_n$$
 from $M \upharpoonright \bigcup_{j \le i_n} P_j^M$ onto $N \upharpoonright \bigcup_{j \le i_n} P_j^N$ which extends $\bigcup_{l \le n} g_l$.

Then we can find a model M^* , of cardinality λ such that: $no(M^*) = \vartheta$ and each nonlogical symbol of M^* 's language has an arity smaller than λ , and power $\leq 2^{\chi}$ for some $\chi < \lambda$, and $|L(M^*)| \leq \lambda \leq \lambda + |L(M)|$.

Remark: (1) We use hypothesis 2.1(b) only as $2.1(a) \Rightarrow 2.1(b)$. (Note $||M|| \le$ $\sum_{i < \kappa} |P_i^M| \le \sum_{i < \kappa} \kappa = \kappa; \text{ if } ||M|| < \kappa \text{ necessarily } \vartheta = 1, \text{ in which case the conclusion}$ is trivial, so $||M|| = \kappa$.)

(2) In case (b) we can assume that the range of h_R (see below) is bounded (if we omit the R's with unbounded h_R the hypothesis is not changed).

In order to get this in case (a) we need every relation of M has arity $<\kappa$.

Proof: Let L be the language of M. W.l.o.g. L has no function symbols and for every α -place predicate R there is a function h_R from α to κ such that $M \vDash (\forall x_0, \ldots, x_i, \ldots)_{i < \alpha} \left[R(x_0, \ldots, x_i, \ldots) \to \bigwedge_{i < \alpha} P_{h_R(i)}(x_i) \right].$ We let $\alpha =$ $\alpha(R)$. We assume that there is $R \in L$, $\alpha(R) > 1$. Let $\lambda = \sum_{i \le \kappa} \lambda_i$, $\kappa < \lambda_i < \lambda_j$ for $i < j < \kappa$, and for each $i \lambda_i$ is a regular cardinal $> \sum_{i \in I} \lambda_i$.

2.2 Definition

- (1) We define a class K of L-models: $\mathfrak{A} \in K$ iff $|\mathfrak{A}| = \bigcup_{i < \kappa} P_i^{\mathfrak{A}}$, for $i \neq j$ $P_i^{\mathfrak{A}} \cap P_i^{\mathfrak{A}} = \emptyset$, and for every predicate R, $\mathfrak{A} \models (\forall x_0, \ldots, x_i, \ldots)[R(x_0, \ldots, x_i, \ldots) \rightarrow R(x_0, \ldots, x_i, \ldots)]$ $\bigwedge_i P_{h_R(i)}(x_i)$].
- (2) We let $K^0 \subseteq K$ be the family of $N \in K$ such that player II wins the game described in 2.1(b).
- (3) For each $\mathfrak{A} \in K$ we define an L^* -model \mathfrak{A}^* : $\begin{aligned} |\mathfrak{A}^*| &= \{\langle a, \xi \rangle \colon a \in \mathfrak{A}, \text{ and } a \in P_i^{\mathfrak{A}} \Rightarrow \xi < \lambda_i \}. \\ P_i^{\mathfrak{A}^*} &= \{\langle a, \xi \rangle \colon a \in P_i^{\mathfrak{A}}, \text{ and } \xi < \lambda_i \}. \end{aligned}$ For each $R \in L$ let $I_R = \{\langle \alpha, j \rangle \colon \alpha < \alpha(R) \text{ and } j < \lambda_{h_R(\alpha)} \}$, and let $R^{\mathfrak{A}^*}$ be the

set of tuples

$$\langle x_{0,0}, x_{0,1}, \dots, x_{0,j}, \dots; x_{1,0}, x_{1,1}, \dots, x_{1,j}, \dots; \dots; x_{\alpha,0}, x_{\alpha,1}, \dots, x_{\alpha,j}, \dots; \dots \rangle \rangle_{\langle \alpha,j \rangle \in I_R}$$

which satisfies: there are $a_{\alpha} \in \mathfrak{A}$ for $\alpha < \alpha(R)$ such that

- (a) $\mathfrak{A} \models R[a_0, \ldots, a_{\alpha}, \ldots]$ hence $a_{\alpha} \in P_{h_R(\alpha)}^{\mathfrak{A}}$. (b) for each α for all but $<\lambda_{h_R(\alpha)}$ ordinals $\gamma < \lambda_{h_R(\alpha)}$, $x_{\alpha,\gamma} = \langle a_{\alpha}, \gamma \rangle$ (c) the $x_{\alpha,\gamma}(\alpha < \alpha(R), \gamma < \lambda_{h_R(\alpha)})$ are distinct, and $x_{\alpha,\gamma} \in P_{\alpha}^{\mathfrak{A}^*}$.
- (4) Let $K^* = \{\mathfrak{A} : \mathfrak{A} \text{ an } L^*\text{-model}, L_{\infty,\lambda}\text{-equivalent to } M^*\}.$
- If $\mathfrak{A} \in K^0$ then $\|\mathfrak{A}\| = \|M\|$, $|P_i^{\mathfrak{A}}| = |P_i^M|$ (for each i). Also $M \in K^0$. 2.3 Fact Proof: Trivial.
- If $\mathfrak{B} \in K^*$ then $\|\mathfrak{B}\| = \lambda$ and $|P_i^{\mathfrak{B}}| = \lambda_i + |P_i^M| < \lambda$. 2.4 Fact Proof: Trivial.
- If $N \in K^0$ then $N^* \in K^*$.

Proof: Call a set $A \subseteq M^*$ small if $|A \cap P_i| < \lambda_i$. Similarly for N. Call a partial isomorphism f from M^* to N^* good if some g induces it, which means:

- (a) g is an isomorphism from $M
 ightharpoonup \bigcup_{i \le i} P_j^M$ onto $N
 ightharpoonup \bigcup_{i \le i} P_j^N$ (for some i) which is a winning position for player II in the game from 2.1(b).
- (β) the set $\{\langle a, \xi \rangle : \langle g(a), \xi \rangle \neq f(\langle a, \xi \rangle), \text{ e.g., one is defined the other not}\}$ is a small subset of M^* .
- (γ) f is one to one, preserving the predicates P_i , and it maps $\bigcup_{j < i} P_j^{M^*}$ onto $\bigcup_{i < i} P_j^{N^*}$.

It is easy to see that the family of good f's, exemplifies $M^* \equiv_{\infty,\lambda} N^*$.

2.6 Definition For each $\mathfrak{B} \in K^*$, we define \mathfrak{B}^- . For each $i < \kappa$ let

$$S_{i} = \{ \langle a_{\alpha} : \alpha < \lambda_{i} \rangle : a_{\alpha} \in P_{i}^{\mathfrak{B}} \text{ for each } \alpha, \ a_{\alpha} \neq a_{\beta} \text{ for } \alpha < \beta < \lambda_{i}, \text{ and for some } R, \gamma, b, \ h_{R}(\gamma) = i, \ \mathfrak{B} \vDash R[\bar{b}_{0}, \ldots, \bar{b}_{j}, \ldots]_{j < \alpha(R)}$$
 and $\bar{b}_{\gamma} = \langle a_{\alpha} : \alpha < \lambda_{i} \rangle \}$

(we allow to use equality for R).

Clearly S_i is a definable subset of \mathfrak{B} (by a formula of $L_{\infty,\lambda}$ with no parameters). Now we define on S_i an equivalence relation E_i :

$$\langle a_{\alpha}^0 : \alpha < \lambda_i \rangle \ E_i \langle a_{\alpha}^1 : \alpha < \lambda_i \rangle iff \langle a_{\alpha}^0 : \alpha < \lambda_i \rangle \in S_i, \ \langle a_{\alpha_1} : \alpha < \lambda_i \rangle \in S_i \text{ and the symmetric difference of } \{a_{\alpha}^0 : \alpha < \lambda_i \}, \ \{a_{\alpha}^1 : \alpha < \lambda_i \} \text{ has power } < \lambda_i.$$

Now we define \mathfrak{B}^- :

$$|\mathfrak{B}^-| = \{\bar{a}/E_i : \bar{a} \in S_i, i < \kappa\} .$$

$$P_i^{\mathfrak{B}^-} = \{\bar{a}/E_i : \bar{a} \in S_i\} .$$

$$R^{\mathfrak{B}^-} = \{\langle \bar{a}_0/E_{i(0)}, \dots, \bar{a}_{\alpha}/E_{i(\alpha)}, \dots \rangle_{\alpha < \alpha(R)} : \bar{a}_{\alpha} \in S_{h_R(\alpha)} .$$

$$i(\alpha) = h_R(\alpha) \text{ and } \mathfrak{B} = R^{\mathfrak{B}}[\bar{a}_0, \bar{a}_1, \dots, a_{\alpha}, \dots]_{\alpha < \alpha(R)}\} .$$

- **2.7 Fact** If $N \in K^0$, then $(N^*)^-$ is isomorphic to N, and $P_i^{(N^*)^-} = \{\langle (a,\xi) : \xi < \lambda_i \rangle / E_i : a \in P_i \}$ and the isomorphism is the obvious one.
- **2.8 Fact** If $\mathfrak{B} \in K^*$ then $\mathfrak{B}^- \in K^0$.

Proof: We call a partial isomorphism g from M to \mathfrak{B}^- good if some f induces it, which means:

(α) f is an isomorphism from $M^* \upharpoonright \bigcup_{j < i} P_j^M$ onto $\mathfrak{B} \upharpoonright \bigcup_{j < i} P_j^{\mathfrak{B}}$ which preserve $L_{\infty,\lambda}$ -equivalence, i.e.,

$$(M^*,c)_{c\in\bigcup_{j\leqslant i}P_j^{M^*}}\equiv_{\infty,\lambda}(\mathfrak{B},f(c))_{c\in\bigcup_{j\leqslant i}P_j^{\mathfrak{B}}}.$$

(β) g is a function from $\bigcup_{j < i} P_j^M$ onto $\bigcup_{j < i} P_j^{\mathfrak{B}^-}$, where for $a \in P_j^M$

$$g(a) = \langle f \langle a, \xi \rangle : \xi < \lambda_j \rangle / E_j$$
.

It is easy to see that the family of good g exemplifies $\mathfrak{B}^- \in K^0$.

2.9 Fact If $\mathfrak{B} \in K^*$ then $(\mathfrak{B}^-)^*$ is isomorphic to \mathfrak{B} .

Proof: As $\mathfrak{B} \in K^*$, $|P_i^{\mathfrak{B}}| < \lambda$ (see Fact 2.3). Now by the definition $\mathfrak{B} \equiv_{\infty,\lambda} M^*$, hence there is a partition of $P_i^{\mathfrak{B}}$, $P_i^{\mathfrak{B}} = \bigcup_{a \in M} \{t_{a,\xi} : \xi < \lambda_i\}$, the $t_{a,\xi}$ are distinct (for $a \in P_i^M$, $\xi < \lambda_i$) and $\{\langle t_{a,\xi} : \xi < \lambda_i \rangle / E_i : a \in M\}$ is a list of all E_i -equivalence classes. So $P_i^{\mathfrak{B}} = \{\langle t_{a,\xi} : \xi < \lambda_i \rangle / E_i : a \in M\}$, and

$$P_i^{(\mathfrak{B}^-)^*} = \{ (\langle t_{a,\xi} : \xi < \lambda_i \rangle / E_i, \xi \rangle : a \in M, \xi < \lambda \} .$$

Now define $F: \mathfrak{B} \to (\mathfrak{B}^-)^*$, for $a \in M_i$

$$F(t_{a,\xi}) = (\langle t_{a,\xi} : \xi < \lambda_i \rangle / E_{i,\xi}) .$$

It is easy to check that F is an isomorphism from \mathfrak{B} onto $(\mathfrak{B}^-)^*$.

Proof of Lemma 2.1: The series of facts above prove that the number of nonisomorphic models in K^0 and in K^* are equal: the map $N \to N^*$ is from K^0 into K^* (see Fact 2.5) and the map $\mathfrak{B} \to \mathfrak{B}^-$ is from K^* to K^0 (see Fact 2.8); those maps are each an inverse of the other (when we divide by isomorphism) (see Facts 2.7, 2.9). As by Definition 2.2(4) and Fact 2.4:

$$K^* = \{\mathfrak{A} : \mathfrak{A} \equiv_{\infty, \lambda} M^*, \|\mathfrak{A}\| = \lambda\}$$

clearly $no(M^*)$ is the number of nonisomorphic $M \in K$, which was assumed to be ϑ .

For λ not strong limit we use instead of Lemma 2.1:

Suppose that in 2.1 we assume further that every relation 2.10 Main Lemma of M, restricted to $\bigcup P_j^{\hat{M}}$ (for $i < \kappa$) has power $< \lambda$, but λ is singular, not necessarily strong limit.

Then $\vartheta \in RSP_{\lambda,\lambda}^{\lambda}$

Proof: As the proof is similar to that of Lemma 2.1, we shall only mention the required changes:

In Definition 2.2(3) we redefine $R^{\mathfrak{A}^*}$:

$$R^{\mathfrak{A}^*} = \left\{ \langle x_{0,0}, x_{0,1}, \dots, x_{0,j_0}, \dots, x_{1,0}, x_{1,1}, \dots, x_{1,j_1}, \dots; \dots; x_{\alpha,0}, x_{\alpha,1}, \dots, x_{\alpha,j_{\alpha}}, \dots; \dots \rangle_{\alpha < \alpha(R)} : \alpha, j \in I_R \right\}$$

There are $a_{\alpha} \in \mathfrak{A}$ for $\alpha < \alpha(R)$ such that:

- (a) $\mathfrak{A} \models R[a_0, \ldots, a_{\alpha}, \ldots]$ hence $a_{\alpha} \in P_{h_R(\alpha)}^{\mathfrak{A}}$; (b) for each α there are n and $0 = \xi_0 < \xi_1 < \ldots < \xi_n < \lambda_{h_R(\alpha)}$ and $a_{\alpha,l} \in P_{h_R(\alpha)}$ for l < n, such that:

$$\begin{aligned} \xi_n &\leq \gamma < \lambda_{h_R(\alpha)} \Rightarrow x_{\alpha,\gamma} = \langle a_\alpha, \gamma \rangle \\ \xi_l &\leq \gamma < \xi_{l+1} \Rightarrow x_{\alpha,\gamma} = \langle a_{\alpha,l}, \gamma \rangle \end{aligned}.$$

In the proof of Fact 2.5 redefine "g induces f" by replacing (β) by:

 $(\beta)_1'$ for each j < i, there is $\xi_i < \lambda_i$ such that for $a \in P_i^M$,

$$f(\langle a, \xi \rangle) = \begin{cases} \langle g_j, \xi \rangle & \text{if } \xi < \xi_j \\ \langle g(a), \xi \rangle & \text{if } \xi \geq \xi_j \end{cases}$$

- $(\beta)'_2$ for each $j \ge i$ for some $\xi_i < \lambda_i$, $f(\langle g_i, \xi \rangle) = \langle a, \xi \rangle$ if $a \in P_i^M$, $\xi < \xi_i$, undefined otherwise.
- $(\beta)'_3$ g_j is a one-to-one function from P_i^M onto I_i^N .

Still the power of $L(M^*)$ is too large, but we can use Claim 1.4(1).

To get the desired conclusion we still have to find M as required in Lemma 2.1(b). We shall construct such M.

If $\aleph_0 < \kappa = cf \lambda < \lambda$ then $2^{\kappa} \in RSP_{\lambda,\lambda}^{\lambda}$. 2.11 Conclusion

Proof: it is well known that there are two trees, with κ -levels, $L_{\infty,\kappa}$ - equivalent:

one has a branch of order type κ , the other not. So each such tree is a model satisfying Lemma 2.1(a) for some $\vartheta \leq 2^{\kappa}$, $\vartheta > 1$. In fact the hypothesis of Lemma 2.10 holds also. Hence, by 2.10, $(\exists \vartheta \leq 2^{\kappa})[\vartheta \in RSP_{\lambda,\lambda}^{\lambda} \wedge \vartheta > 1]$. By Claim 1.7(2) this implies that $2^{\kappa} \in RSP_{\lambda,\lambda}^{\lambda}$.

3 Building K-Systems

- **3.1 Definition** A κ -system will mean here a model of the form $\mathfrak{A} = \langle G_i, h_{i,j} \rangle_{1 \leq j < \kappa}$ where
- (i) G_i is an Abelian group such that $(\forall x \in G_i)(x + x = 0)$, the G_i 's are pairwise disjoint.
- (ii) $h_{i,j}$ is a homomorphism from G_i into G_i when $i \le j$.
- (iii) $h_{i_1,i_2} \circ h_{i_2,i_3} = h_{i_1,i_3}$ when $i_1 \le i_2 \le i_3$.
- (iv) $h_{i,i}$ is the identity.

We denote κ -systems by \mathfrak{A} , \mathfrak{B} and for a system \mathfrak{A} , we write $G_i = G_i^{\mathfrak{A}}$ $h_{i,j} = h_{i,j}^{\mathfrak{A}}$. Let $\|\mathfrak{A}\| = \sum_{i < \kappa} \|G_i\|$. Almost everything we prove holds for δ -systems, δ a limit ordinal and we shall use this.

Let $\mathfrak{A} \uparrow \delta = \langle G_i^{\mathfrak{A}}, h_{i,j}^{\mathfrak{A}} \rangle_{i \leq j < \delta}$.

- **3.2 Definition** We say $\mathfrak{A} \leq \mathfrak{B}$ if $G_i^{\mathfrak{A}}$ is a subgroup of $G_i^{\mathfrak{B}}$, $h_{i,j}^{\mathfrak{A}} \subseteq h_{i,j}^{\mathfrak{B}}$, and:
- (*) for every $j < \kappa$, $a \in G_j^{\mathfrak{B}}$ there is a maximal $i \le j$ such that $h_{i,j}^{\mathfrak{B}}(a) \in G_i^{\mathfrak{A}}$.
- 3.3 Fact \leq is transitive reflexive and if $\mathfrak{A}_{\alpha}(\alpha < \delta)$ is increasing then

$$\bigwedge_{\alpha<\delta}\left[\mathfrak{A}_{\alpha}\leq\bigcup_{\beta<\delta}\mathfrak{A}_{\beta}\right]\;.$$

3.4 Definition $Gr(\mathfrak{A}) = \{a = \langle a_{i,j} : i < j < \kappa \rangle : a_{i,j} \in G_i, \text{ and if } \alpha < \beta < \gamma < \kappa \}$ then $a_{\alpha,\gamma} = a_{\alpha,\beta} + h_{\alpha,\beta}(a_{\beta,\gamma})\}.$

This is a group by coordinatewise addition.

- **3.5 Definition** For $a = \langle a_i : i < \kappa \rangle \in \prod_{i < \kappa} G_i$, let fact $(a) = \langle a_{i,j} : i < j < \kappa \rangle$ where $a_{i,j} = a_i h_{i,j}(a_j)$. Let Fact $(\mathfrak{A}) = \{fact(a) : a \in \Pi G_i^{\mathfrak{A}}\}$.
- **3.6 Claim** The mapping $a \to fact(a)$ is from $\prod_{i < \kappa} G_i$ into $Gr(\mathfrak{A})$, and is a homorphism. So $Fact(\mathfrak{A})$ is a subgroup of $Gr(\mathfrak{A})$.

3.7 Definition

- (1) $Gs(\mathfrak{A}) = \{\bar{a} \in Gr(\mathfrak{A}) : \text{ for every } \delta < \kappa, \langle a_{i,j} : i < j < \delta \rangle \in Fact(\mathfrak{A} \upharpoonright \delta) \}$
- (2) $E(\mathfrak{A}) = Gr(\mathfrak{A})/Fact(\mathfrak{A}), E^{\circ}(\mathfrak{A}) = Gs(\mathfrak{A})/Fact(\mathfrak{A}).$
- (3) $\mathfrak A$ is called smooth if for every limit $\delta < \kappa$, $E^{\circ}(\mathfrak A \upharpoonright \delta)$ has power 1.

Fact 3.7A Let \mathfrak{A} be a κ -system:

- (1) for every limit δ , Fact($\mathfrak{A} \upharpoonright \delta$) $\subseteq Gs(\mathfrak{A} \upharpoonright \delta) \subseteq Gr(\mathfrak{A} \upharpoonright \delta)$.
- (2) If $\mathfrak A$ is smooth then for every limit $\delta < \kappa_1$, $E(\mathfrak A \dagger \delta)$ has power 1 and, i.e.,

 $Gr(\mathfrak{A} \uparrow \delta) = Fact(\mathfrak{A} \uparrow \delta).$

(3) $Gr(\mathfrak{A}) = Gs(\mathfrak{A})$.

Proof: (1) Easy.

- (2) We prove this by induction on δ . For a given δ , by the induction hypotheses $Gr(\mathfrak{A} \upharpoonright \delta) = Gs(\mathfrak{A} \upharpoonright \delta)$. As \mathfrak{A} is smooth, $E^{\circ}(\mathfrak{A} \upharpoonright \delta) = Gs(\mathfrak{A} \upharpoonright \delta) / Fact(\mathfrak{A} \upharpoonright \delta)$ has power 1, hence $Gs(\mathfrak{A} \upharpoonright \delta) = Fact(\mathfrak{A} \upharpoonright \delta)$; together with the previous sentence we get $Gr(\mathfrak{A} \upharpoonright \delta) = Fact(\mathfrak{A} \upharpoonright \delta)$, hence $E(\mathfrak{A} \upharpoonright \delta) = Gr(\mathfrak{A} \upharpoonright \delta) / Fact(\mathfrak{A} \upharpoonright \delta)$ has power 1.
 - (3) Easy.

3.8 Claim There is \mathfrak{A} , $|\mathfrak{A}| = \mu + \kappa$ and $|E(\mathfrak{A})| \ge \mu$.

Proof: Let G_i be the free Abelian group of order two generated by $W_i = \{a_{i,j}^{\xi}: \xi < \mu, j < \kappa \text{ but } j > i\}$. So we can identify it with the family of finite subsets of W_i , with addition being the symmetric difference.

$$h_{\alpha,\beta}: G_{\beta} \to G_{\alpha}$$
 is defined by

[1]
$$h_{\alpha,\beta}(a_{\beta,\gamma}^{\xi}) = a_{\alpha,\gamma}^{\xi} - a_{\alpha,\beta}^{\xi}$$
.

Check: For $\alpha < \beta < \gamma$ $h_{\alpha,\gamma} = h_{\alpha,\beta} \circ h_{\beta,\gamma}$ as

$$\begin{array}{l} h_{\alpha,\beta}(h_{\beta,\gamma}(a_{\gamma,i}^\xi)) = h_{\alpha,\beta}(a_{\beta,i}^\xi - a_{\beta,\gamma}^\xi) = (a_{\alpha,i}^\xi - a_{\alpha,\beta}^\xi) - (a_{\alpha,\gamma}^\xi - a_{\alpha,\beta}^\xi) \\ = a_{\alpha,i}^\xi - a_{\alpha,\gamma}^\xi = h_{\alpha,\gamma}(a_{\gamma,i}^\xi) \end{array} .$$

Let $a^{\xi} = \langle a_{i,j}^{\xi} : i < j < \kappa \rangle$. Clearly $a^{\xi} \in Gr(\mathfrak{A})$. We want to show $a^{\xi} - a^{\xi} \notin Fact(\mathfrak{A})$ for $\xi \neq \zeta$.

If not there are $w_i \in G_i$

[2]
$$a_{i,j}^{\xi} - a_{i,j}^{\zeta} = w_i - h_{i,j}(w_j).$$

Clearly w_i is nothing but a finite subset of W_i .

Let $G_i^* = \langle \{a_{i,j}^{\xi} : \epsilon \neq \xi, i < j < \kappa \} \rangle$. We can define a projection g_i onto $G_i^* : g_i(x) = x \cap \{a_{i,j}^{\xi} : j < \kappa, j > i\}$. It is easy to check that for $i < j < \kappa, h_{i,j} \circ g_j = g_i \circ h_{i,j}$ and $h_{i,j}$ maps G_j^* into G_i^* . Applying g_i on the equations [2] we get $a_{i,j}^{\xi} = w_i^0 - h_{i,j}(w_j^0)$ when $w_i^0 = g_i(w_i)$. So we get that for some $w_i(i < \kappa)$

[3]
$$a_{i,j}^{\xi} = w_i - h_{i,j}(w_i)$$
.

So there are $n < \omega$ and S, an unbounded subset of κ such that $(\forall i \in S)|w_i| = n$.

Let $\alpha < \beta < \gamma$ be in S, by [3] $a_{\beta,\gamma}^{\xi} = w_{\beta} - h_{\beta,\gamma}(w_{\gamma})$; apply $h_{\alpha,\beta}$ and get $a_{\alpha,\gamma}^{\xi} - a_{\alpha,\beta}^{\xi} = h_{\alpha,\beta}(w_{\beta}) - h_{\alpha,\gamma}(w_{\gamma})$.

$$a_{\alpha,\gamma}^{\xi} + h_{\alpha,\gamma}(w_{\gamma}) = a_{\alpha,\beta}^{\xi} + h_{\alpha,\beta}(w_{\beta})$$
.

So for some $c_{\alpha} \in G_{\alpha}$ for every β , $\alpha < \beta$

$$[4] a_{\alpha,\beta}^{\xi} + h_{\alpha,\beta}(w_{\beta}) = c_{\alpha}.$$

Let $U_{\alpha} = \{i : a_{\alpha,i}^{\xi} \text{ appear in } c_{\alpha}\}$, remember c_{α} is a finite subset of W_{α} , so U_{α} is a finite subset of κ .

W.l.o.g. $\alpha \in S \land \beta \in S \land \alpha < \beta \Rightarrow \beta > Max \ U_{\alpha}$. So if $\alpha < \beta$ are in S, by the equation [4], $h_{\alpha,\beta}(w_{\beta})$ has elements of the form $a_{\alpha,\beta}^{\xi}$ or $a_{\alpha,\gamma}^{\xi}$: $(\gamma < \beta)$ only.

(Clearly $a_{\alpha,\beta}^{\xi}$ does not appears in c_{α} , so it appears in $h_{\alpha,\beta}(w_{\beta})$.) Hence (by $h_{\alpha,\beta}$'s definition) some $a_{\alpha,\gamma}^{\xi}(\gamma > \beta)$ appears in $h_{\alpha,\beta}(w_{\beta})$, but this contradicts the equality.

3.9 Fact Assume $cf \ \kappa > \aleph_0$. If $\mathfrak{A}_{\alpha}(\alpha < \delta)$ is \leq -increasing continuous, $a \in Gr(\mathfrak{A}_0) \subseteq Gr(\mathfrak{A}_{\alpha})$, $a \notin Fact(\mathfrak{A}_{\alpha})$ (for $\alpha < \delta$) then $a \notin Fact(\bigcup_{\alpha \leq \delta} \mathfrak{A}_{\alpha})$.

Proof: Suppose $a = fact(\bar{b})$ $\bar{b} = \langle b_i : i < \kappa \rangle$. For each i there is a minimal $\alpha = \alpha(i) < \delta$, $b_i \in G_i^{\mathfrak{A}_{\alpha(i)}}$.

Now $i < j \Rightarrow \alpha(i) \leq \alpha(j)$, because $a_{i,j} = b_i - h_{i,j}(b_j)$ hence $b_i = a_{i,j} + h_{i,j}(b_j)$ but $a_{i,j} \in G_i^{\mathfrak{A}_{\alpha}(j)}$, and $b_j \in G_i^{\mathfrak{A}_{\alpha}(j)}$. So $b_i \in G_i^{\mathfrak{A}_{\alpha}(j)}$ hence $\alpha(i) \leq \alpha(j)$. If $\langle \alpha(i) : i < \kappa \rangle$ has a bound $\alpha^* < \delta$ then $a \in Fact(\mathfrak{A}_{\alpha})$ contradiction.

Hence $\langle \alpha(i) : i < \kappa \rangle$ converge to δ . So $cf \delta = cf \kappa > \aleph_0$.

Hence for some $\vartheta < \kappa$, $cf \vartheta = \aleph_0$, $\langle \alpha(i) : i < \vartheta \rangle$ is not eventually constant and let $\beta = \bigcup_{i \geq 0} \alpha(i)$.

However, look at 3.2(*), apply to $\mathfrak{A} = \mathfrak{A}_{\beta}$, $\mathfrak{B} = \mathfrak{A}_{\alpha(\vartheta)}$, $j = \beta$, $a = b_{\beta}$, and get contradication.

3.10 Fact There is a smooth \mathfrak{A} , $|\mathfrak{A}| = \mu^{\kappa}$ with $|E(\mathfrak{A})| = \mu$ such that every $h_{i,j}^{\mathfrak{A}}$ is onto $G_i^{\mathfrak{A}}$.

Proof: By 3.8 there is \mathfrak{A}_0 , $||\mathfrak{A}_0|| \le \mu^{\kappa}$, $|E(\mathfrak{A})| \ge \mu$. Let $a_{\xi} + Fact(\mathfrak{A}_0) \in Gr(\mathfrak{A}_0)/Fact(\mathfrak{A}_0)$ be distinct for $\xi < \mu$. We define by induction on $\alpha < \mu^{\kappa} \times \kappa^+$ (ordinal multiplication) \mathfrak{A}_{α} , \le -increasing, continuous $||\mathfrak{A}_{\alpha}|| \le \mu^{\kappa}$, such that $a_{\xi} - a_{\xi} \notin Fact(\mathfrak{A}_{\alpha})$ for $\xi \neq \zeta$. Clearly it is enough to prove [1], [2], [3] below (see later):

[1] if $b \in Gr(\mathfrak{A}_{\alpha}) - \langle Fact(\mathfrak{A}_0), \ldots, a_{\xi}, \ldots \rangle_{\xi < \mu}$, then we can define $\mathfrak{A}_{\alpha+1}$ such that: $b \in Fact(\mathfrak{A}_{\alpha+1})$.

We take care of smoothness similarly. This is done as follows: let $\mathfrak{A}_{\alpha+1} = \langle G_i^{\alpha+1}, h_{i,j}^{\alpha+1} \rangle_{i < j < \kappa}$, where

$$G_i^{\alpha+1} = \langle G_i^{\alpha}, x_i \rangle$$
-free extension (among Abelian satisfying $x + x = 0$)

$$h_{i,j}(x_j) = x_i - b_{i,j}$$

[2] if $i < j < \kappa$, $x \in G_i^{\mathfrak{A}_{\alpha}} - Range \ h_{i,j}^{\mathfrak{A}_{\alpha}}$ we can define $\mathfrak{A}_{\alpha+1}$ such that $x \in Rang \ h_{i,j}^{\mathfrak{A}_{\alpha+1}}$

We let

$$G_{\xi}^{\mathfrak{A}_{\alpha+1}} = \begin{cases} G_{\xi}^{\mathfrak{A}_{\alpha}} & \text{if } \xi \leq i \text{ or } \xi > j \\ \langle G_{\xi}^{\mathfrak{A}_{\alpha}}, x_{\xi} \rangle & \text{if } i < \xi \leq j \end{cases}.$$

 $h_{\zeta,\xi}(x_{\xi}) = x_{\zeta}$ when $i < \zeta < \xi \le j$, $h_{i,\xi}(x_{\xi}) = x$.

[3] if $\delta < \kappa$, $b \in Gr(\mathfrak{A}_{\alpha} \mid \delta)$ then we can define $\mathfrak{A}_{\alpha+1}$ such that $b \in Fact(\mathfrak{A}_{\alpha+1} \mid \delta)$.

This is similar to [1].

Why are [1], [2], [3] enough?

As we can define the \mathfrak{A}_{α} 's such that if $\epsilon = \mu^{\kappa} \times \gamma$, $\epsilon(1) = \mu^{\kappa} \times (\gamma + 1)$ $\epsilon(^*) = \mu^{\kappa} \times \kappa^+$:

(a) for $b \in Gr(\mathfrak{A}_{\mu^k \times \gamma})$ for some $\beta < \epsilon(1)$, $b \in \langle Fact(\mathfrak{A}_{\beta}), \ldots, a_{\xi}, \ldots \rangle_{\xi < \mu}$ (use [1]) hence:

$$b \in \langle Fact(\mathfrak{A}_{\epsilon(1)}), \ldots, a_{\xi}, \ldots \rangle$$

(b) for every $x \in P_i^{\mathfrak{A}_{\xi}}$, $i < j < \kappa$, for some $\beta < \epsilon(1)$

$$x \in \text{Rang}(h_{i,j}^{\mathfrak{A}_{\beta}})$$
 (use [2]) (hence $x \in \text{Rang}(h_{i,j}^{\mathfrak{A}_{\epsilon}(^{\bullet})})$

(c) for every limit $\delta < \kappa$, if $\mathbf{b} \in Gr(\mathfrak{A}_{\epsilon} \mid \delta)$ then for some $\beta < \epsilon(1)$, $\mathbf{b} \in Fact(\mathfrak{A}_{\beta} \mid \delta)$ (see [3]) hence $\mathbf{b} \in Fact(\mathfrak{A}_{\epsilon(*)} \mid \delta)$.

As
$$cf \ \epsilon(^*) > \kappa$$
, $Gr(\mathfrak{A}_{\epsilon(^*)}) = \bigcup_{\beta < \kappa^+} Gr(\mathfrak{A}_{\lambda^{\kappa} \times \beta})$ and $Gr(\mathfrak{A}_{\epsilon(^*)} \upharpoonright \delta) = \bigcup_{\beta < \kappa^+} Gr(\mathfrak{A}_{\lambda^{\kappa} \times \beta} \upharpoonright \delta)$, so $\mathfrak{A}_{\epsilon(^*)}$ is as required.

3.11 Claim For every κ -system $\mathfrak A$ where the $h_{i,j}^{\mathfrak A}$ are onto, there is M, $||M|| = ||\mathfrak A||$, as in Lemma 2.1(b), and we get for M, $\vartheta = |E^{\circ}(\mathfrak A)|$.

Proof: We concentrate on $\vartheta \geq \aleph_0$.

For every $a \in Gr(\mathfrak{A})$ we define a model M_a :

- (i) $|M_a| = \bigcup_{i < \kappa} G_i^{\mathfrak{A}}.$
- (ii) $P_i^{M_a} = G_i^{\mathfrak{A}}$.
- (iii) for every $i < \kappa$, $c \in G_i$ we have a partial function $F_c: P_i^{M_a} \to P_i^{M_a}$:

$$F_c(x) = c + x$$

(iv) for every i < j, we have a partial function $H_{i,j}: P_j^{M_a} \to P_i^{M_a}$

$$H_{i,i}(x) = h_{i,i}(x) + a_{i,i}$$
.

The following series of Facts will prove Claim 3.11.

3.12 Fact $M_a \cong M_b$ iff $a - b \in Fact(\mathfrak{A})$ (the subtraction is in $Gr(\mathfrak{A})$).

Proof: Suppose b - a = fact(d) where $d = \langle d_i : i < \kappa \rangle$. We define an isomorphism $g = g_d$ from M_a onto M_b :

for
$$x \in G_i^{\mathfrak{A}}$$
 let $g(x) = x + d_i$.

Clearly g maps each $P_i^{M_a}$ onto $P_i^{M_b}$ hence it maps $|M_a|$ onto $|M_b|$. Also g is one-to-one.

Now for each $i < \kappa$, $c \in G_i^{\mathfrak{A}}$, $x \in P_i^{M_a} = G_i^{\mathfrak{A}}$

$$g(F_c^{M_a}(x)) = g(c+x) = c+x+d_i = c+g(x) = F_c^{M_b}(g(x))$$

Lastly for i < j, $x \in P_i^{M_a} = G_i^{\mathfrak{A}}$

$$y(H_{i,j}^{Ma}(x)) = g(h_{i,j}(x) + a_{i,j}) = h_{i,j}(x) + a_{i,j} + d_i = h_{i,j}(x) + h_{i,j}(d_j) + b_{i,j} = h_{i,j}(x+d_j) + b_{i,j} = H_{i,j}^{Mb}(x+d_j) = H_{i,j}^{Mb}(g(x))$$
 (the third equality is as $b - a = fact(d)$ and $fact(d)$'s definition.

For the other direction suppose g is an isomorphism from M_a onto M_b . We let

 $d_i = g(x) - x$ for any (some) $x \in P_i^{M_a}$ and $d = \langle d_i : i < \kappa \rangle$, and can check that b - a = fact(d).

3.13 Fact For any M_a , $M_b(a, b \in Gs(\mathfrak{A}))$ player II wins the game of 2.1(b).

Proof: We let (using the notation from the proof of Fact 3.12)

$$\mathfrak{P}_{\alpha} = \{ g_d : d \in \prod_{i \in \alpha} G_i^{\mathfrak{A}}, \ a \mid \alpha - b \mid \alpha = fact(d) \} .$$

By 3.12 and the hypothesis, $\mathfrak{P}_{\alpha} \neq \emptyset$, and by the proof of 3.12, \mathfrak{P}_{α} is a set of isomorphisms from $M_a \upharpoonright \bigcup_{i < \alpha} G_i^{\mathfrak{A}}$ onto $M_b \upharpoonright \bigcup_{i < \alpha} G_i^{\mathfrak{A}}$. The strategy of player II is to use partial isomorphisms from $\bigcup_{\alpha < \kappa} \mathfrak{P}_{\alpha+1}$. The only missing point is: for successor $\alpha < \beta < \kappa$, $g \in \mathfrak{P}_{\alpha}$, there is $g' \in \mathfrak{P}_{\beta}$, $g \subseteq g'$; equivalently, for $d_0 \in \prod_{i < \alpha} G_i^{\mathfrak{A}}$, satisfying $a \upharpoonright \alpha - b \upharpoonright \alpha = fact(d_0)$ there is $d \in \prod_{i < \beta} G_i$, $d_0 = d \upharpoonright \alpha$, and

 $a \mid \beta - b \mid \beta = fact(d)$. We know that for some $d_1, d_2 \in \prod_{i < \beta} G_i^{\mathfrak{A}}$, $a \mid \beta = fact(d_1)$, $b \mid \beta = fact(d_2)$.

Let
$$d_0 = \langle d_i^0 : i < \alpha \rangle$$
, $d_1 = \langle d_i^1 : i < \beta \rangle$, $d_2 = \langle d_i^2 : i < \beta \rangle$.

As $a \mid \alpha = fact(d_1 \mid \alpha)$, $b \mid \alpha = fact(d_2 \mid \alpha)$ and $a \mid \alpha - b \mid \alpha = fact(d_0)$ clearly for every $i < j < \alpha$

$$(d_i^1 - h_{i,j}(d_j^1)) - (d_i^2 - h_{i,j}(d_j^2)) = d_i^0 - h_{i,j}(d_j^0)$$
;

hence,

(a)
$$d_i^1 - d_i^2 - d_i^0 = h_{i,j}(d_j^1 - d_j^2 - d_j^0)$$
.

As $h_{\beta-1,\alpha-1}$ is from $G_{\beta-1}^{\mathfrak{A}}$ onto $G_{\alpha-1}^{\mathfrak{A}}$ (remember α,β are successor ordinals) for some $x \in G_{\beta-1}^{\mathfrak{A}}$:

(b)
$$h_{\alpha-1,\beta-1}(x) = d_{\alpha-1}^1 - d_{\alpha-1}^2 - d_{\alpha-1}^0$$
.

By (a) for every $i < \alpha$:

(c)
$$h_{i,\beta-1}(x) = d_i^1 - d_i^2 - d_i^0$$

Now define for i, $i < \beta$.

(d)
$$d_i = d_i^1 - d_i^2 - h_{i,\beta-1}(x)$$
.

By (c) for $i < \beta$:

(e)
$$d_i = d_i^0$$
.

Let $d = \langle d_i : i < \beta \rangle$, so $d \upharpoonright \alpha = d_0$. We shall show that $a \upharpoonright \beta - b \upharpoonright \beta = fact(d)$ thus finishing the proof of 3.13. For $i < j < \beta$

$$a_{i,j} - b_{i,j} = (d_i^1 - h_{i,j}(d_j^1)) - (d_i^2 - h_{i,j}(d_j^2))$$

$$= (d_i^1 - d_i^2) - h_{i,j}(d_j^1 - d_j^2)$$

$$= (d_i + h_{i,\beta-1}(x)) - h_{i,j}(d_j + h_{j,\beta-1}(x))$$

$$= (d_i - h_{i,j}(d_i)) + (h_{i,\beta-1}(x) - h_{i,j} \circ h_{i,\beta-1}(x)) = d_i - h_{i,j}(d_i)$$

So d is as required and we finish.

3.14 Fact If in the game for (M_a, M) player II wins then $(\exists b)[M \cong M_b \land b - a \in Gs(\mathfrak{A})]$.

Proof: We can use a weaker hypothesis:

(*) For every α , $M
ightharpoonup \bigcup_{i \le \alpha} P_i^M$ is isomorphic to $M_a
ightharpoonup \bigcup_{i \le \alpha} G_i^{\mathfrak{A}}$ and let the isomorphism be g_{α}^{-1} and prove $M \cong M_b$ for some $b \in Gr(\mathfrak{A})$;

by 3.12 (applied to the various $\mathfrak{A} \upharpoonright \delta$), **b** will be as required.

For any $i < j < \kappa$, $(g_i^{-1}g_j) \mid P_i^{M_a}$ is necessarily an automorphism of $M_a \mid P_i^{M_{Ra}}$. So using the functions $F_c(c \in G_i^{\mathfrak{A}})$ clearly for some $d_{i,j} \in G_i^{\mathfrak{A}} g_i^{-1}g_j(x) = x + d_{i,j}$ for every $x \in G_i^{\mathfrak{A}}$).

Using the functions $H_{i,j}^{M\alpha}$ we can check that $d_{\alpha,\gamma} = d_{\alpha,\beta} + h_{\alpha,\beta}(d_{\beta,\gamma})$ for $\alpha < \beta < \gamma < \kappa$ hence $d = \langle d_{\alpha,\beta} : \alpha < \beta < \kappa \rangle \in Gr(\mathfrak{A})$. It is also easy to check that $M_{d+a} \cong M$ (the isomorphism takes $x \in G_i$ to $g_i(x)$), so we finish.

* * *

What about finite μ ? The proof is O.K. for powers of 2. Similarly we can use Abelian group of order p to get power of p, and then sum of models gives us any product.

Alternatively use 1.8.

- 3.15 Claim For every ϑ , there is a κ -system \mathfrak{A} , $\|\mathfrak{A}\| = \kappa + \vartheta$, $\vartheta \leq |E^{\circ}(GA)|$. *Proof:* Just like the proof of 3.10.
- 3.16 Fact For every κ -system \mathfrak{A} , $|E^{\circ}(\mathfrak{A})| \leq |E(\mathfrak{A})| \leq |\mathfrak{A}|^{\kappa}$. Proof: As $|Gr(\mathfrak{A})| \leq |\mathfrak{A}|^{\kappa}$.
- **3.17 Conclusion** If $\aleph_0 < \kappa = cf \ \lambda < \lambda \ \text{and} \ \vartheta \le \lambda \ \text{then} \ \vartheta^{\kappa} \in RSP^{\lambda}_{\lambda,\lambda}$.

Proof: First assume $\vartheta < \lambda$. Let \mathfrak{A} be a system as provided by 3.15. So by 3.16 $\vartheta \leq |E^{\circ}(\mathfrak{A})| \leq \vartheta^{\kappa}$. By 3.11 there is a model M of power $\|\mathfrak{A}\| = \kappa + \vartheta \leq \lambda$, satisfying the conditions of 2.1(b), 2.10 for $\vartheta = |E^{\circ}(\mathfrak{A})|$. So by 2.1, 2.10 $|E^{\circ}(\mathfrak{A})| \in RSP^{\lambda}_{\lambda,\lambda}$; hence, by 1.7, $|E^{\circ}(\mathfrak{A})|^{\kappa} \in RSP^{\lambda}_{\lambda,\lambda}$. However, $\vartheta^{\kappa} \leq |E^{\circ}(\mathfrak{A})|^{\kappa} \leq \vartheta^{\kappa}$. So

$$\vartheta^{\kappa} \in RSP^{\lambda}_{\lambda,\lambda}$$
.

We are left with the case $\vartheta = \lambda$. Let $\lambda = \sum_{i < \kappa} \lambda_i$, $\lambda_i < \lambda$. By what we have already proved $\lambda_i^{\kappa} \in RSP_{\lambda,\kappa}^{\lambda}$ for each $i < \kappa$. By 1.7 $\prod_{i < \kappa} \lambda_i^{\kappa} \in RSP_{\lambda,\kappa}^{\lambda}$ but by easy cardinal arithmetic $\vartheta^{\kappa} = \lambda^{\kappa} = \prod_{i < \kappa} \lambda_i^{\kappa}$.

3.18 Conclusion If $\aleph_0 < \kappa = cf \ \lambda < \lambda$, $\vartheta^{\kappa} \le \lambda$, then $\vartheta \in RSP_{\lambda,\lambda}^{\lambda}$.

Proof: Like the proof of 3.17, using 3.10 instead of 3.15.

REFERENCES

- [1] Chang, C. C., "Some remarks on the model theory of infinitary languages," pp. 36-63 in *The Syntax and Semantics of Infinitary Languages, Lecture Notes in Mathematics*, 72, ed. J. Barwise, Springer, New York, 1968.
- [2] Hiller, H. L. and S. Shelah, "Singular cohomology in L," Israel Journal of Mathematics, vol. 26 (1977), pp. 313-319.
- [3] Nadel, M. and J. Stavi, " $L_{\infty,\lambda}$ -equivalence, isomorphism and potential isomorphism," Transactions of the American Mathematical Society, vol. 236 (1978), pp. 51-74.
- [4] Palyutin, E. A., "Number of models in L_{∞,ω_1} theories III," Algebra I Logika, vol. 16, no. 4 (1977), pp. 443-456. English translation: Algebra and Logic, vol. 16, no. 4 (1977), pp. 299-309.
- [5] Scott, D., "Logic with denumerably long formulas and finite strings of quantifiers," pp. 329-341 in *The Theory of Models*, North Holland, Amsterdam, 1965.
- [6] Shelah, S., "On the number of nonisomorphic models of cardinality λ , L_{∞,λ^-} equivalent to a fixed model," *Notre Dame Journal of Formal Logic*, vol. 22, no. 1 (1981), pp. 5-10.
- [7] Shelah, S., "On the number of nonisomorphic models in $L_{\infty,\lambda}$ when λ is weakly compact," Notre Dame Journal of Formal Logic, vol. 23, no. 1 (1982), pp. 21-26.
- [8] Shelah, S., "The consistency of $Ext(G, \mathbf{Z}) = \mathbf{Q}$," Israel Journal of Mathematics, vol. 39 (1981), pp. 283-288.
- [9] Shelah, S., "A pair of nonisomorphic $\equiv_{\infty,\lambda}$ models of power λ for λ singular with $\lambda^{\omega} = \lambda$," Notre Dame Journal of Formal Logic, vol. 25, no. 2 (1984), pp. 97-104.

Institute of Mathematics The Hebrew University Jerusalem, Israel