The Predicate Modal Logic of Provability

FRANCO MONTAGNA*

Introduction The propositional modal logic of provability $G L$ and its arithmetical interpretations have been studied by various logicians: among others, Boolos, De Jongh, Magari and his school, including the author, Smorynski, Solovay, and Visser. As observed by Boolos in the introduction of [4], the arithmetical interpretation of $G L$ can be extended to its extension to the language of modal predicate calculus, denoted by $Q G L$. By this observation, one might reasonably expect that $Q G L$ can offer a more complete description of the logic of provability. Unfortunately, however, many desirable properties of $G L$ do not extend to its predicate version; for example, in [1], Avron shows that the most natural sequential formulation of $Q G L$ does not admit cutelimination (where a similar sequent calculus for $G L$ does: see [8], [14], and [19]). In this paper, we show that other important results about $G L$ fail to hold for $Q G L$; for example, $Q G L$ is not complete with respect to any class of Kripke frames; moreover, $Q G L$ is not arithmetically complete, and does not enjoy the fixed point property.

In spite of these negative results, we believe that many aspects of the predicate logic of provability are worthy of further investigation; in particular, since $Q G L$ is not arithmetically complete, one could try to find new significant provability principles which are arithmetically valid, but not provable in $Q G L$. In any case, even if most important problems on $Q G L$ have a negative solution, there are also positive results: for example, in [1], Avron shows that $Q G L$ enjoys some closure properties, and that the notion of $P A$ validity satisfies

[^0]some kind of disjunction property. In this paper, other positive results, concerning self-reference, are shown; for example, fixed points, when they exist, are unique up to provable equivalence; moreover, the theorem on uniqueness of fixed points for formulas of $P A$ arising from modal formulas $A(p)$ in which p is modalized can be extended in its full generality to the predicate case.

1 Preliminaries $\quad Q G L$ is the predicate version of the modal logic $G L$; the formulas of $Q G L$ are those of the modal predicate calculus (for simplicity, we assume that our language does not contain constants or function symbols); the axioms are those of the predicate calculus for all formulas of $Q G L$ together with the schemata

$$
\square A \wedge \square(A \rightarrow B) \rightarrow \square B \quad \text { and } \quad \square(\square A \rightarrow A) \rightarrow \square A .
$$

The rules are those of predicate calculus plus the rule $M N$: $\frac{A}{\square A}$, where all assumptions on which A depends are axioms of $Q G L$. As in the propositional case, one can show that $Q G L$ contains the schema $\square A \rightarrow \square \square A$ and is closed under Löb's rule: if $\vdash_{Q G L} \square A \rightarrow A$, then $\vdash_{Q G L} A$.

Let T be an r.e. extension of $P A$, and let us associate with every atomic formula P of $Q G L$ a formula $f P$ of T whose free variables are exactly those occurring in P; assume that f commutes with the operation of substitution of variables; that is, if $f\left(P\left(u_{1}, \ldots, u_{n}\right)\right)=A\left(u_{1}, \ldots, u_{n}\right)$ then $f\left(P\left(v_{1}, \ldots, v_{n}\right)\right)=$ $A\left(v_{1}, \ldots, v_{n}\right)$. (We assume, without loss of generality, that no occurrence of v_{1}, \ldots, v_{n} in A is bound; if it is not the case, we replace each bound variable in A by a variable distinct from v_{1}, \ldots, v_{n}). Then, we define a function \bar{f} from $Q G L$ formulas into $P A$ formulas in the following inductive manner:

1. $\bar{f} P=f P$ if P is atomic
2. \bar{f} commutes with all logical connectives and quantifiers
3. $\bar{f} \square B\left(v_{1}, \ldots, v_{n}\right)=\operatorname{Pr}_{T}\left(\bar{f} B\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right)\right.$, where Pr_{T} is the usual provability predicate for T, and, for every formula $C\left(v_{1}, \ldots, v_{n}\right), \bar{C}\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right)$ denotes a term for the primitive recursive function $\lambda v_{1}, \ldots, v_{n}$. $\left\ulcorner C\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right)\right.$.
$\bar{f} A$ is called "the value of A under the interpretation f ". A is called T-valid iff, for every interpretation $f, \bar{f} A$ is a theorem of T; it is easily seen that every theorem of $Q G L$ is T-valid. If $Q G L^{\prime}$ is an extension of $Q G L$, we say that $Q G L^{\prime}$ is T-complete iff the converse holds too, that is if the theorems of $Q G L^{\prime}$ are exactly the T-valid formulas.

The Barcan Schema (in short: BS) is the schema $\forall u \square A(u, \vec{v}) \rightarrow \square \forall u A(u, \vec{v})$, where \vec{v} denotes a (possibly empty) sequence of variables. $B S$ is not $P A$-valid, because, for every $P A$ sentence ϕ, one has: $\left.\right|_{P A} \forall x \operatorname{Pr}_{P A} \overline{\left.\operatorname{Prf}_{P A}(x, \bar{\phi}) \rightarrow \phi\right)}$, but if $\bigvee_{P A} \phi$, then $\digamma_{\overline{P A}} \operatorname{Pr}_{P A}\left(\overline{\forall x \operatorname{Pr}_{P A}(x, \bar{\phi}) \rightarrow \phi}\right)$ (see [6]). Therefore, we do not add $B S$ to $Q G L$.

2 Some results on model theory for QGL

Definition $1 \quad A$ (predicate) Kripke frame is a system $\left\langle X, R,\left\{W_{x}\right\}_{x \in X}\right\rangle$ such that X is a nonempty set (called "the set of worlds"), R is a binary relation on
X (called "the accessibility relation") and $\left\{W_{x}\right\}_{x_{\epsilon} X}$ is a sequence, indexed with the elements of X, of nonempty sets such that, if $x R y$, then $W_{x} \subseteq W_{y}$.

Definition 2 If $\mathscr{F}=\left\langle X, R,\left\{W_{x}\right\}_{x_{\epsilon} X}\right\rangle$ is a Kripke frame, a (predicate) Kripke model on \mathcal{F} is a system $\left\langle X, R,\left\{W_{x}\right\}_{x_{\epsilon} X}, \Vdash\right\rangle$, where \Vdash is a mapping from the set $\left\{\langle x, A\rangle: A\right.$ is a closed formula with parameters in $\left.W_{x}\right\}$ into $\{T, \perp\}$ such that, writing $x \Vdash A$ for $\Vdash\langle x, A\rangle=\mathrm{T}$, the following conditions hold ${ }^{1}$:
a. $x \Vdash A \vee B$ iff \Vdash is defined on both $\langle x, A\rangle$ and $\langle x, B\rangle$ and either $x \Vdash A$ or $x \Vdash B$
b. $x \Vdash \neg A$ iff \Vdash is defined on $\langle x, A\rangle$ and $x \| A$
c. $x \Vdash \exists u A(u)$ iff for some $\bar{u} \in W_{x} x \Vdash A(\bar{u})$
d. $x \Vdash \square A$ iff for every $y \in X$, if $x R y$, then $y \Vdash A$.

Definition 3 We say that A is valid in the model $\left\langle X, R,\left\{W_{x}\right\}_{x \in X}, \Vdash\right\rangle$ iff, for every $x \in X, x \Vdash A$; we say that A is valid in the frame σ iff A is valid in all Kripke models on σ; we say that a set G of sentences is valid in the model m (respectively: in the frame σ) iff every sentence in G is.
Definition 4 We say that a predicate modal logic L is complete with respect to the class \mathbf{F} of frames (respectively: to the class \mathbf{M} of models) iff the theorems of L are exactly the formulas which are valid in all frames in \mathbf{F} (respectively: in all models in M).
We can easily prove the following facts (see also [4]):
Proposition $1 \quad Q G L$ is valid in the frame $\left\langle X, R,\left\{W_{x}\right\}_{x \in X}\right\rangle$ iff R is transitive and R^{-1} is well-founded.

Proposition 2 If R is a transitive relation on X, then $Q G L$ is valid in the Kripke model $\left\langle X, R,\left\{W_{x}\right\}_{x \in X}, \Vdash\right\rangle$ iff the following condition holds:

Condition (+) For every closed formula A with parameters, if there is an $x \in X$ such that $x \Vdash A$, then there is a y such that $y \Vdash A$ and for every z, if $y R z$, then $z \| A$.

One can prove the following completeness theorem:
Theorem $1 \quad Q G L$ is complete with respect to the class of all transitive Kripke models satisfying Condition (+).

Proof: The proof is quite similar to that given in [7] (pp. 174-176) for the modal predicate calculus, therefore we only sketch it. Assume $\psi_{Q G L} A$; we want to construct a model $m=\left\langle X, R,\left\{W_{x}\right\}_{x \in X}, \mathbb{H}\right\rangle$ of $Q G L$ such that, for some $x_{0} \in X, x_{0} \Vdash \neg A$. In this model, X will be a subset of the set $\omega^{<\omega}$ of all finite sequences of natural numbers; with every $s \in X$, we associate a Henkin-complete extension T_{s} of $Q G L$ by stages, as follows:

Stage 0 : we put the empty sequence ϕ in X and we define T_{ϕ} to be a Henkincomplete extension of $Q G L_{+} \neg A$ (that such an extension exists can be shown as in [7]).
Stage $n+1$: assume that, at Stage n, we have decided which sequences of length $\leqslant n$ belong to X, and we have associated to every such sequence s a suitable

Henkin-complete extension T_{s}, e.g., $Q G L$. Let $s \in X$ be a sequence of length n. If for no closed formula A in the language of T_{s} we have ${T_{T}}_{s} \diamond A$, no sequence extending s is placed in X; otherwise, let U_{s} be the set of all formulas B such that $\overleftarrow{T}_{s} \diamond B$, and let us write U_{s} as $U_{s}=\left\{B_{i}: i<k\right\}(1 \leqslant k \leqslant \omega)$. Then, for all $i<k$, we put the sequence ${ }^{2} s * i$ in X, and we associate to $s * i$ a Henkincomplete extension $T_{s * i}$ of $Q G L \cup\left\{B_{i}\right\} \cup\left\{B: \overleftarrow{T}_{T_{s}} \square B\right\}$. Now we define: $s R t$ iff t properly extends $s ; W_{s}=\left\{a: a\right.$ is a constant in the language of $\left.T_{s}\right\}$; if $B\left(v_{1}, \ldots, v_{n}\right)$ is an atomic formula and a_{1}, \ldots, a_{n} belong to W_{s}, we define $s \Vdash B\left(a_{1}, \ldots, a_{n}\right)$ iff $\vdash_{T_{s}} B\left(a_{1}, \ldots, a_{n}\right)$. (Clearly, this requirement completely determines \mathbb{H}.)

As in [6], we can show that for every $s \in X$ and for every formula B with parameters in W_{s}, we have $s \Vdash A$ iff $\vdash_{T_{s}} A$; then, $Q G L$ is valid in m and $\phi \Vdash \neg A$. Clearly, R is transitive; that Condition (+) holds in m follows from Proposition 2.

Since Condition (+) involves the forcing relation on all formulas, it is, in general, hard to verify; therefore Theorem 1 , which is based on it, does not constitute a satisfactory completeness result; on the other hand, no completeness theorem for $Q G L$ can be expressed only in terms of the accessibility relation; indeed, we can prove the following incompleteness result.

Theorem $2 \quad Q G L$ is not complete with respect to the class of all transitive reversely well-founded frames; therefore by Proposition 1 it is not complete with respect to any class of frames.

Proof: Let A be the formula $\exists u \diamond P(u) \wedge \forall v \exists w \square(P(v) \rightarrow \diamond P(w))$ where P is a unary predicate letter; we wish to show that ${H_{Q G L}}_{\bar{Q}}^{\text {a }}$, but $\neg A$ is valid in all transitive reversely well-founded frames; this claim is contained in the following lemmas:

Lemma 1 Let $m=\left\langle X, R,\left\{W_{x}\right\}_{x_{\in} X}, \mathbb{H}\right\rangle$ be a transitive Kripke model such that, for some $x_{0} \in X, x_{0} \Vdash A$; then, there is a sequence $\left\{x_{n}\right\}_{n \in \omega}$ of elements of X such that, for every $n, x_{n} R x_{n+1}$.
Proof: Assume $x_{0} \Vdash A$; since $x_{0} \Vdash \exists u \diamond P(u)$, there is an $a_{0} \in W_{x_{0}}$ such that $x_{0} \Vdash \diamond P\left(a_{0}\right)$; therefore, there is an x_{1} such that $x_{0} R x_{1}, x_{1} \Vdash P\left(a_{0}\right)$. Now, we argue by induction: assume that, for some n, we have defined two finite sequences $x_{0}, x_{1}, \ldots, x_{n+1}$ and $a_{0}, a_{1}, \ldots, a_{n}$ such that, for all $i \leqslant n, a_{i} \in W_{x_{0}}$, $x_{i} R x_{i+1}$, and $x_{i+1} \Vdash P\left(a_{i}\right)$; since R is transitive, $x_{0} \Vdash \exists w \square\left(P\left(a_{n}\right) \rightarrow \diamond P(w)\right)$ and $x_{n+1} \Vdash P\left(a_{n}\right)$, there is an $a_{n+1} \in W_{x_{0}}$ such that $x_{n+1} \Vdash \diamond P\left(a_{n+1}\right)$, therefore, there is an x_{n+2} such that $x_{n+1} R x_{n+2}, x_{n+2} \|-P\left(a_{n+1}\right)$. This completes the inductive step; then, Lemma 1 follows.

Lemma 2 There is a model $m=\left\langle X, R,\left\{W_{x}\right\}_{x_{\epsilon} X}, \mathbb{H}\right\rangle$ of $Q G L$ such that, for some $x_{0} \in X, x_{0} \Vdash A$.
Proof: Let $\eta=\langle N,+, \cdot, s, 0\rangle$ be a nonstandard model of $P A$; we define the desired model m as follows:
a. $X=N \cup\left\{x_{0}\right\}\left(\right.$ where $\left.x_{0} \notin N\right)$
b. For $x, y \in X$, we define $x R y$ iff either $x=x_{0}$ and $y \neq x_{0}$ or $x, y \neq x_{0}$ and $\sim \vDash y<x$
c. $W_{x}=\left\{\begin{array}{l}N \text { if } x \neq x_{0} \\ \omega \text { if } x=x_{0}\end{array}\right.$
d. If P^{k} is any k-ary predicate symbol different from P, we define $x \Vdash P^{k}\left(a_{1}, \ldots, a_{k}\right)$ for every $x \in X$ and for every $a_{1}, \ldots, a_{k} \in W_{x}$; the forcing relation on x_{0} for formulas of the form $P(a)\left(a \in W_{x_{0}}\right)$ can be defined quite arbitrarily; now, let us consider a nonstandard element b of N; for $x \in X, x \neq x_{0}$ and for $a \in W_{x}$ we define $x \Vdash P(a)$ iff $\eta \vDash x \cdot a>b$.

The forcing relation on elements $x \neq x_{0}$ is definable in χ; more precisely, we can associate with every $Q G L$ formula $B\left(v_{0}, v_{2}, \ldots, v_{2 n}\right)$ containing no variables indexed with odd numbers a formula ${ }^{3} f B\left(v_{1}, v_{0}, v_{2}, \ldots, v_{2 n}\right)$ of $P A$ with parameters in N such that, for all $x, a_{1}, \ldots, a_{n} \in N$, we have $x \Vdash$ $B\left(a_{1}, \ldots, a_{n}\right)$ iff $\sim \vDash f B\left(x, a_{1}, \ldots, a_{n}\right) .(f B$ is defined in an obvious manner if B is atomic; moreover, we require that f commutes with all connectives and quantifiers; lastly, we define $f \square B\left(v_{0}, v_{2}, \ldots, v_{2 n}\right)$ to be the formula $\forall w[w<$ $\left.v_{1} \rightarrow f B\left(w, v_{1}, v_{0}, \ldots, v_{2 n}\right)\right]$, where w is a variable, indexed with an odd number, which does not occur in $f B$.)

Since the induction schema holds in χ, if for some formula of the form $f B\left(v_{1}, v_{0}, v_{2}, \ldots, v_{2 n}\right)$ and for some $a_{1}, \ldots, a_{n} \in N$ there is an $x \in N$ such that o $\vDash f B\left(x, a_{1}, \ldots, a_{n}\right)$, there is a $y \in N$ such that $\sim \mathcal{F} f B\left(y, a_{1}, \ldots, a_{n}\right)$ and for all $z \in N$, if $\nsim \vDash z<y$, then $\mathscr{N} \vDash \neg f B\left(z, a_{1}, \ldots, a_{n}\right)$. Since, for all $x, y \neq x_{0}$, $x R y$ iff $\sim \vDash y<x$, Condition (+) is satisfied; since R is transitive, m is a model of $Q G L$.

Now, let us prove that $x_{0} \Vdash A$; let x be an element of N such that $\eta \vDash x>b$; since $\quad \sim \vDash x \cdot 1>b, x \Vdash P(1)$, therefore $x_{0} \Vdash \exists v \diamond P(v)$; furthermore, if y is an arbitrary element of X such that $x_{0} R y$ and, for some $n \epsilon W_{x_{0}}$, $y \Vdash P(n)$, then $\eta \vDash y \cdot n>b$ therefore y must be nonstandard; so, $\chi \vDash y>$ $n+1$, whence $\chi \vDash(y-1)(n+1)=y \cdot n+y-n-1>y n>b$; this implies that $y-1 \Vdash P(n+1)$. Since $y R y-1$, we can conclude $y \Vdash \diamond P(n+1)$; the arbitrariness of y and n yields $x_{0} \Vdash \forall v \exists w \square(P(v) \rightarrow \diamond P(w))$, therefore the claim follows.

3 Arithmetical incompleteness In [1], Avron asks whether $Q G L$ is $P A$ complete. The analogous problem for $G L$ has been solved affirmatively by Solovay in [18]; on the contrary, we show that, in our case, the problem has a negative solution.

Theorem $3 \quad Q G L$ is not PA complete.
Proof: Let T be a finitely axiomatizable consistent theory such that $\vdash_{P A}$ Con $_{T} \rightarrow$ Con $_{P A+C o n P A}$. (For example, we can choose $T=N G B$.) Let [T] be the conjunction of all axioms of T, and let A denote the formula $\diamond[T] \rightarrow \diamond>T$. (We can assume, without loss of generality, that $Q G L$ contains the language of T.) We claim that A is $P A$ valid, but is not provable in $Q G L$; to see this, let f be any interpretation, and let \bar{T} be the theory whose axioms are exactly those of the form $\bar{f} B: B$ an axiom of T; then, $\bar{f} A$ is provably equivalent to the formula $\operatorname{Con}_{P A+\bar{T}} \rightarrow$ Con $_{P A+C o n P A}$. In order to show that $\bar{f} A$ is a theorem of $P A$, we first prove the following lemma.

Lemma 3 If B_{1}, \ldots, B_{n}, is a proof of B_{n} in T, then $\bar{f} B_{1}, \ldots, \bar{f} B_{n}$, is a proof of $\bar{f} B_{n}$ in \bar{T}.
Proof: We argue by induction on the length of the proof: if B_{i} is a logical axiom, also $\bar{f} B_{i}$ is; if B_{i} is an axiom of $T, \bar{f} B_{i}$ is an axiom of \bar{T}; lastly, every application of any rule of predicate calculus yields an application of the rule itself.

Formalizing the proof of Lemma 3 in $P A$ we obtain, for every \square-free formula C of $Q G L$:

$$
\vdash_{P A} \operatorname{Pr}_{T} \bar{C} \rightarrow \operatorname{Pr} \overline{\bar{T}} \overline{\bar{f} C}
$$

Therefore, $\vdash_{\overline{P A}} \operatorname{Con}_{\bar{T}} \rightarrow \operatorname{Con}_{T}$. Then, we can deduce

$$
\begin{aligned}
\vdash_{P A} \operatorname{Con}_{P A}+\bar{T} & \rightarrow \operatorname{Con}_{\bar{T}} \\
& \rightarrow \operatorname{Con}_{T} \\
& \rightarrow \operatorname{Con}_{P A}+\operatorname{Con}_{P A} .
\end{aligned}
$$

So, A is $P A$ valid.
In order to show that A is not provable in $Q G L$, we consider a model N of T, and we define a Kripke model $m=\left\langle X, R,\left\{W_{x}\right\}_{x \epsilon}, \|\right\rangle$ as follows:
a. $X=\{0,1\}$
b. $x R y$ iff $x=0$ and $y=1$
c. $W_{x}=W_{y}=N$
d. if $B\left(v_{1}, \ldots, v_{n}\right)$ is an atomic formula in language of T, and $a_{1}, \ldots, a_{n} \in N$, we define $i \Vdash B\left(a_{i}, \ldots, a_{n}\right)$ iff $\sim \vDash B\left(a_{1}, \ldots, a_{n}\right)(i=0,1)$;
(the forcing relation can be quite arbitrary on the other atomic formulas). Since $1 \Vdash[T]$ and $0 R 1,0 \Vdash \diamond[T]$; on the other hand, $0 \Vdash \square \square \perp$, therefore $0 \Vdash \neg A$. Clearly, R is transitive and reversely well founded, whence, by Proposition 1, $Q G L$ is valid in m.
Remark: In [18], Solovay shows that the propositional provability logics of all Σ_{1} sound r.e. extensions of $P A$ coincide (indeed, all these logics coincide with $G L$). Also this result cannot be extended to the predicate case. To see this, let us consider a finitely axiomatizable subtheory T of $Z F$, which is strong enough to construct the structure $\eta=\langle\omega,+, \cdot, s, 0\rangle$ and to prove that η is a model of $P A+$ Con $_{P A}$; then $\vdash_{P A} \operatorname{Con}_{T} \rightarrow \operatorname{Con}_{P A+C o n P A}$, therefore the above proof shows that the formula $A=\diamond[T] \rightarrow \infty T$ is $P A$ valid. However, A is not $Z F$ valid; indeed, if f is an interpretation such that $f B=B$ for every atomic formula B in the language of T, the $Z F$ value of A under f is $\operatorname{Con}_{Z F+T} \rightarrow \operatorname{Con}_{Z F+C o n Z F}$; since T is a subtheory of $Z F$, the above formula is provably equivalent to $\operatorname{Con}_{Z F} \rightarrow$ $\operatorname{Con}_{Z F+C o n}^{Z F}$, which is not provable in $Z F$, by Gödel's Second Incompleteness Theorem.

The results proved in this section give only negative information about the provability logic of $P A$, or of related theories; we now formulate two problems whose solution should give also positive information.

1. Is the set of all $P A$ valid formulas recursively enumerable? If it is, find an axiomatization of it.
2. Describe the set of all $Q G L$ formulas which are T valid, for every Σ_{1} sound r.e. extension T of $P A$ (Conjecture: this set coincides with the set of all theorems of $Q G L$).

4 Fixed points For technical purposes, throughout this section, we consider a conservative extension $Q G L^{\prime}$ of $Q G L$, obtained by adding a countable set $\left\{p_{0}, \ldots, p_{n}, \ldots\right\}$ of variables for formulas, and by extending the axioms of $Q G L$ to the formulas of the new language; in the following, p denotes a generic variable for formulas, and $A\left(p_{0}, \ldots, p_{n}\right), B\left(p_{0}, \ldots, p_{n}\right), \ldots$ etc. denote $Q G L^{\prime}$ formulas, whose variables for formulas are exactly p_{0}, \ldots, p_{n}. We say that p is modalized in the $Q G L^{\prime}$ formula $A(p)$ iff every occurrence of p in $A(p)$ is under the scope of \square; if the only variable for formulas in A is p, we say that A is modalized iff p is modalized in A. The fixed point problem for $Q G L$ can be formulated as follows:

Let $A(p)$ be a modalized $Q G L^{\prime}$ formula; is there a QGL formula B, whose free (individual) variables are exactly those of A, such that $\vdash_{Q G L} B \longleftrightarrow A(B)$?

A positive answer to this problem would imply that $Q G L$ is strong enough to prove the modal translation of Gödel's Diagonalization Lemma. On the other hand, by the De Jongh-Sambin Theorem (see [13]), we know that the fixed point problem for $G L$ has an affirmative solution. Unfortunately, the problem has a negative answer in the predicate case.
Theorem $4 \quad$ There is no $Q G L$ sentence B such that $\vdash_{Q G L} B \longleftrightarrow \forall u \exists v \square(B \rightarrow$ $P(u, v)$), where P is any binary predicate letter.
Proof: Let us consider the model $m=\left\langle x, R,\left\{W_{x}\right\}_{x_{\epsilon} X}, \Vdash\right\rangle$ defined as follows:
a. $X=\omega$
b. $x R y$ iff $y<x$
c. $W_{x}=\{y \in \omega: y \geqslant x\}$
d. If P^{k} is any k-ary predicate letter different from P, we define $x \Vdash$ $P^{k}\left(a_{1}, \ldots, a_{k}\right)$ for all $x \in X, a_{1}, \ldots, a_{k} \in W_{x}$. Moreover, for $a, b \in W_{x}$, we define $x \Vdash P(a, b)$ iff either $b=x+1$ and $a \neq x+1$, or $a, b \neq x+1$ and $a<b$; the accessibility relation, and the total orderings induced by $P(u, v)$ in each W_{x} are illustrated in Figure 1.

Figure 1.

Since R is transitive and R^{-1} is well founded, $Q G L$ is valid in m. Moreover, we can prove that the forcing relation \Vdash is definable in the structure $\&=$ $\left\langle\omega,<, \Rightarrow\right.$; more precisely, to every $Q G L$ formula $B\left(v_{0}, v_{2}, \ldots, v_{2 n}\right)$ containing only variables indexed with even numbers, we associate a formula $f B\left(v_{1}, v_{0}\right.$, $\left.v_{2}, \ldots, v_{2 n}\right)$ in the language of $\&$ such that, for all $x \in \omega$ and for all a_{1}, \ldots, $a_{n} \in W_{x}$, we have: $x \Vdash B\left(a_{1}, \ldots, a_{n}\right)$ iff $\& \vDash f B\left(x, a_{1}, \ldots, a_{n}\right) . f B$ is defined by induction on the complexity of B : if B is of the form $P^{k}\left(v_{0}, v_{2}, \ldots, v_{2 k}\right)$, we put $f B\left(v_{1}, v_{0}, \ldots, v_{2 k}\right)=\bigwedge_{i \leqslant k} \prod_{1} \leqslant v_{2 i}$; if $B=P\left(v_{0}, v_{2}\right)$, we define $f B\left(v_{1}, v_{0}, v_{2}\right)$ to be the formula

$$
\begin{aligned}
v_{1} \leqslant v_{0} \wedge v_{1} \leqslant v_{2} \wedge & {\left[\left(v_{2}=v_{1}+1 \wedge \neg v_{0}=v_{1}+1\right)\right.} \\
& \left.\vee\left(\neg v_{2}=v_{1}+1 \wedge \neg v_{0}=v_{1}+1 \wedge v_{0}<v_{2}\right)\right]
\end{aligned}
$$

(where $v_{j}=v_{i}+1$ is an abbreviation for $\exists w\left[w>v_{i} \wedge \forall z\left(z>v_{i} \rightarrow(w<z \vee v=z) \wedge\right.\right.$ $v_{j}=w$); moreover, we require that f commutes with \vee and \exists and we define $f \neg B\left(v_{1}, v_{0}, \ldots, v_{2 n}\right)=\left(X_{i \leqslant n} v_{1} \leqslant v_{2 i}\right) \wedge \neg f B\left(v_{1}, v_{0}, \ldots, v_{2 n}\right)$. Lastly, we define $f\left(\square B\left(v_{0}, \ldots, v_{2 n}\right)\right)=\forall w\left(w<v_{1} \rightarrow f B\left(v_{1}, v_{0}, \ldots, v_{2 n}\right)\right)$, where w is a variable, indexed with an odd number, which does not occur in $f B$.

Then, for every $Q G L$ sentence B, the set $\{x \in \omega: x \Vdash B\}$ is definable in $\&$; by a suitable quantifier elimination method, one can prove that every definable subset of $\&$ is either finite or cofinite (see [12]).

Now, assume, for reductio, that B is a $Q G L$ sentence such that $\vdash_{Q G L} B \longleftrightarrow$ $\forall u \exists v \square(B \rightarrow P(u, v))$; then, since $Q G L$ is valid in m, for all $x \in X, x \Vdash B \leftrightarrow$ $\forall u \exists v \square(B \rightarrow P(u, v))$. Since $0 \Vdash \square \perp, 0 \Vdash B$; moreover, for all $v \in W_{1}, 0 \Vdash$ $\neg P(1, v)$; so, $1 \Vdash \exists u \forall v \diamond(B \wedge \neg P(u, v)$), whence $1 \Vdash \neg B$; now, we argue by induction: assume that, for every $i \leqslant n, 2 i \Vdash B$ and $2 i+1 \Vdash \neg B$; then $2 n+$ $1 \Vdash \neg B$, and, for all $u \in W_{2 n+2}$ and for all $j \leqslant 2 n, j \Vdash P(u, u+1)$; so, for every $u \in W_{2 n+2}$, there is a $v \in W_{2 n+2}$ such that for all j for which $2 n+2 R j$ either $j \Vdash \neg B$ or $j \Vdash P(u, v)$. Then, $2 n+2 \Vdash \forall u \exists v \square(B \rightarrow P(u, v))$, whence $2 n+2 \Vdash B$. Furthermore, for all $v \in W_{2 n+3}, 2 n+2 \Vdash B \wedge \neg P(2 n+3, v)$, therefore $2 n+3 \Vdash$ $\exists u \forall v \diamond(B \wedge \neg P(u, v))$; this implies $2 n+3 \Vdash \neg B$. So, the set $\{x \in X: x \Vdash B\}$ coincides with the set of even numbers, which is neither finite nor cofinite, a contradiction.

At this point, a natural question is: which steps of the De Jongh-Sambin proof do not extend to $Q G L$? As observed by Valentini, each proof of the fixed point theorem for $G L$ is based on a lemma, called "Substitution Lemma" $(S L)$ which fails to hold in the predicate case. $S L$ can be stated as follows:

Let $A(p), B, C, D$, be $G L$ formulas; if $\vdash_{G L} D \rightarrow(B \longleftrightarrow C)$, then
(a) $\vdash_{G L} D \wedge \square D \rightarrow[A(B) \longleftrightarrow A(C)]$
(b) If, in addition, p is modalized in $A p$, then $\vdash_{G L} \square D \rightarrow[A(B) \leftrightarrow A(C)]$.

That $S L$ does not extend to $Q G L$ can be verified as follows: let $A(p)=\forall u \square p$, $B=D=P(u)$ (where P is any unary predicate letter), and $C=\mathrm{T}$; then $\bigvee_{Q G L} D \rightarrow$ $(B \longleftrightarrow C)$, but it is easily seen that $\Pi_{Q G L} \square D \rightarrow(A(B) \longleftrightarrow A(C))$. We can prove, however, that a weaker version of $S L$ does extend to $Q G L$: let us say that the $Q G L^{\prime}$ formula $A(p)$ and the $Q G L$ formula B obey the variable restriction (in
short: $V R$) iff D does not contain free occurrences of (individual) variables having bound occurrences in $A(p)$.

Then, we have:
Lemma 4 An analogue of $S L$ holds for $Q G L$, provided that $A(p)$ and D obey the $V R$.
Let us first prove (a). We argue by induction on the complexity of $A(p)$: if $A(p)$ is atomic, the claim is obvious; the induction steps corresponding to v, \neg, \square, are handled as in the propositional case; now, let $A(p)=\forall u E(u, p)$ and assume that $\vdash_{Q G L} D \wedge \square D \rightarrow[E(u, B) \longleftrightarrow E(u, C)]$. By $G E N$, we obtain $\vdash_{Q G L} \forall u[D \wedge \square D \rightarrow[E(u, B) \longleftrightarrow E(u, C)]]$. Since, by the $V R, u$ has no free occurrences in D, we can easily deduce

$$
\digamma_{Q G L} D \wedge \square D \rightarrow[\forall u E(u, B) \longleftrightarrow \forall u E(u, C)]
$$

that is

$$
\vdash_{Q G L} D \wedge \square D \rightarrow[A(B) \leftrightarrow A(C)]
$$

Now, let us prove (b): we first write $A(p)$ as $F\left(\square E_{1} p, \ldots\right.$, $\left.\square E_{n} p\right)$ where $F\left(p_{1}, \ldots, p_{n}\right)$ is a suitable $Q G L^{\prime}$ formula, and $E_{1}(p), \ldots, E_{n}(p)$ are \square-free; a simple inductive argument shows that for all $i \leqslant n \vdash_{Q G L} D \rightarrow\left[E_{i}(B) \leftrightarrow E_{i}(C)\right]$. So, we obtain

$$
\bigvee_{Q G L} \square D \rightarrow \square\left(E_{i}(B) \longleftrightarrow E_{i}(C)\right) \rightarrow\left[\square E_{i}(B) \longleftrightarrow \square E_{i}(C)\right] .
$$

From this, we can deduce, by induction on the complexity of $F, \digamma_{Q G L} \square D \rightarrow$ $\left[F\left(\square E_{1}(B), \ldots, \square E_{n}(B)\right) \leftrightarrow F\left(\square E_{1}(C), \ldots, \square E_{n}(C)\right)\right]$ (again, the atomic case is trivial, the induction steps corresponding to v, \neg, \square are handled as in the propositional case, and the step corresponding to \forall is handled as in (a)).

Lemma 4 allows us to prove the following results on uniqueness of fixed points:

Theorem 5 For every modalized $Q G L^{\prime}$ formula $A(p)$, and for all $Q G L$ formulas B and C, if $\vdash_{Q G L} A(B) \longleftrightarrow B, \vdash_{Q G L} A(C) \longleftrightarrow C$, then $\vdash_{Q G L} B \longleftrightarrow C$.
Proof: Throughout this proof, for every formula $A, \forall A$ denotes the universal closure of A. Since $\bigvee_{Q G L} \forall(B \longleftrightarrow C) \rightarrow(B \longleftrightarrow C)$ and $A p, \forall(B \longleftrightarrow C)$ obey the $V R$, we can apply Lemma 4 , getting:

$$
\begin{aligned}
\vdash_{Q G L} \square \forall(B \longleftrightarrow C) & \rightarrow A(B) \longleftrightarrow A(C) \\
& \rightarrow B \longleftrightarrow C .
\end{aligned}
$$

By $G E N$, we deduce $\vdash_{Q G L} \forall[\square \forall(B \leftrightarrow C) \rightarrow(B \leftrightarrow C)]$. Since $\square \forall(B \leftrightarrow C)$ is closed, it follows that ${ }_{Q G L} \square \forall(B \longleftrightarrow C) \rightarrow \forall(B \longleftrightarrow C)$. By Löb's rule, we conclude $\digamma_{Q G L} \forall(B \longleftrightarrow C)$, whence the claim follows.
Corollary 1 Fixed points for PA formulas arising from modalized $Q G L^{\prime}$ formulas are unique up to provable equivalence.

Proof: Since $Q G L$ is $P A$ valid and $P A$ is closed under (the arithmetical translation of) Löb's rule, the previous proof works. Clearly, in $P A$, fixed points for such formulas always exist.

Problems

1. Find a procedure for deciding if a modalized formula $A(p)$ has a fixed point in $Q G L$ (or show that this is impossible).
2. Find a procedure for calculating the possible fixed points of any given modalized formula $A(p)$.
3. By Theorem 4, $P A$ has, roughly speaking, more fixed points than $Q G L$; does this fact imply some new provability principles, which are not provable in QGL?
4. Does the fixed point theorem hold for $Q G L+B S$?

NOTES

1. In the following, T denotes any tautology and \perp denotes the negation of T.
2. If l denotes the length of $s, s * i$ defined by: $\operatorname{Dom} s * i=l+1$

$$
(s * i) j=\left\langle\begin{array}{l}
s j \text { if } j<1 \\
i=\text { if } j=1
\end{array}\right.
$$

3. We wish to distinguish variables for worlds from variables for elements of $\bigcup_{x \in X} W_{x}$; so we only consider formulas of $Q G L$ without occurrences of variables indexed with odd numbers; these variables are used in the formulas of the form $f B$ as variables for worlds.

REFERENCES

[1] Avron, A., "On modal systems having arithmetical interpretations," to appear.
[2] Bernardi, C., "The uniqueness of the fixed point theorem in every diagonalizable algebra (The algebraization of theories which express Theor VIII)," Studia Logica, vol. 35 (1976), pp. 335-343.
[3] Boolos, G., "On deciding the truth of certain statements involving the notion of consistency," The Journal of Symbolic Logic, vol. 41 (1976), pp. 779-781.
[4] Boolos, G., The Unprovability of Consistency: An Essay in Modal Logic, Cambridge University Press, Cambridge, 1979.
[5] Boolos, G., "Extremely undecidable sentences," The Journal of Symbolic Logic, vol. 47 (1982), pp. 191-196.
[6] Feferman, S., "Transfinite recursive progressions of axiomatic theories," The Journal of Symbolic Logic, vol. 27 (1962), pp. 259-316.
[7] Hughes, G. E. and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London, 1968.
[8] Leivant, D., "On the proof theory of the modal logic for arithmetic provability," The Journal of Symbolic Logic, vol. 46 (1981), pp. 531-537.
[9] Magari, R., "The diagonalizable algebras," Bolletino della Unione Matematica Italiana, vol. 4, no. 12, Suppl. fasc. 3 (1975), pp. 321-331.
[10] Magari, R., "Modal diagonalizable algebras," Bolletino della Unione Matematica Italiana, vol. 5, no. 15-B (1978), pp. 303-320.
[11] Montagna, F., "On the diagonalizable algebra of Peano Arithmetic," Bolletino della Unione Matematica Italiana, vol. 5, no. 16-B (1979), pp. 795-812.
[12] Rabin, M., "Decidable theories," pp. 595-629 in Handbook of Mathematical Logic, ed., J. Barwise, North Holland, Amsterdam, 1977.
[13] Sambin, G., "An effective fixed point theorem in intuitionistic diagonalizable algebras (The algebraization of theories which express Theor IX)," Studia Logica, vol. 35 (1976), pp. 345-361.
[14] Sambin, G. and S. Valentini, "The modal logic of the provability: The sequential approach," Journal of Philosophical Logic, vol. 11 (1982), pp. 311-342.
[15] Smorynski, C., "The incompleteness theorems," pp. 827-865 in Handbook of Mathematical Logic, ed., J. Barwise, North Holland, Amsterdam, 1977.
[16] Smorynski, C., "Beth's theorem and self-referential sentences," in Logic Colloquium '77, eds., A. MacIntyre, L. Pacholski, J. Paris, North Holland, Amsterdam, 1978.
[17] Smorynski, C., "Fifty years of self-reference in arithmetic," Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 357-374.
[18] Solovay, R., "Provability interpretations of modal logic," Israel Journal of Mathematics, vol. 25 (1976), pp. 287-304.
[19] Valentini, S., "The modal logic of provability: Cut elimination," to appear in Journal of Philosophical Logic.
[20] Visser, A., "Aspects of diagonalization and provability," Dissertation, Utrecht, 1981.

Dipartimento di Matematica
Via del Capitano 15
Siena, Italy 53100

[^0]: *Partially supported by a CNR grant (U.S.-Italy Cooperative Science Program supported by CNR-NSF). I am indebted to E. Mendelson for his kind cooperation, and also wish to thank S. Valentini for his clarificatory observations and for many stimulating ideas on this subject.

