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K0-Cαtegoricity Over α Predicate

ANAND PILLAY

1 Introduction We are concerned here with a condition on a theory T
which says that a model of T is determined in some weak way by its (Λ^o)
relativised reduct, namely that whenever M and N are countable models of
T with the same relativised reduct Mo then M and N are isomorphic over MQ.
In the case that T says that P is empty this reduces to T being N0-categorical,
a situation characterised by Ryll-Nardzewski's theorem. If T says that P is
the whole model, then in fact for any models M and N with the same Lo-
reduct, M and N will be the same, a situation which is characterised by Beth's
definability theorem. Both the Ryll-Nardzewski and Beth characterisations
are syntactic in that they say that T must prove a set of sentences of a
specified kind. Our syntactic condition for T to be N0-categorical o v e r (P>L0)
is rather difficult to state simply. Essentially there will be, for each n < ω,
a fixed collection of Z-formulas which serve to link ^-tuples in models of
T to tuples in the P-part of the models, such that if a e M is so related to
c in PM then the type of a over PM depends uniformly on the type of c over
Mp \ Lo.

A stronger condition that one could place on T is that for all models
M, N of T, if Mp \ LQ = Np \ Lo = Mo then M and N are isomorphic over Mo.
This property (which we call strong categoricity over (P9L0)) corresponds
exactly to Gaifman's single-valued definitions [2]. (Note that if, for example,
P is always empty, then T can have this property if and only if T is the theory
of some finite structure.) To give a syntactic characterisation of strong cate-
goricity would seem much more difficult, although Gaifman has proved, in
unpublished work, that if we assume in addition to strong categoricity that
every model M of T is rigid over PM then every model M of T is explicitly
definable from Mp ϊ Lo in a uniform manner.

Our notation here is standard. I will not be working in a big saturated
model.
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T will denote a theory in a countable language L. We assume that L
contains only relation symbols (so any subset of an L-structure is a substruc-
ture). P will be a fixed unary predicate in L, and Lo will be a sublanguage of L.
If M is an L-structure, then PM denotes the subset of M consisting of those
elements which are in P. Again, if M is an Z,-structure then Mp \ Lo denotes the
L0-structure whose universe is PM and whose L0-relations are obtained from
those of M by restriction. We often refer to Mp ϊ Lo as Mo.

If φ(x) is a formula then φp(x) denotes as usual the formula obtained
from φ by relativising all quantifiers to P. So if M is an L-structure, φ(x) an
lo-formula, and c e PM, then Mo t= φ(c) iff M t= φp(c).

Definition 1 T is said to be ^0-categorical over (P,L0) if, whenever M and N
are countable (including finite) models of T and Mp \ Lo = Np t Lo, then there
is an isomorphism f of M with N such that / [ PM is the identity. (Or, as we
shall say, M and N are isomorphic over Mo, where Mo = Mp t Lo = Np ϊ Lo.)

T is said to be strongly categorical over (P,L0) if T satisfies Definition 1
but without the restriction that M and iV be countable. It is clear that there are
T which are tt0-categorical o v e r (Λ^o) b u t n o t strongly categorical over (P,L0).

2 The main result In this section I give some preliminary definitions and
then state the main result, the easy direction of which can be observed imme-
diately, and the difficult direction of which is proved in later sections.

Definition 2 Let n < ω, and y be any tuple of variables, d is said to be
an n-schema in y over Lo if d is a map from 1-formulas whose free variables
include x 0 , . . ., xn-ι, to Z,0-formulas, where if the Z-formula φ has free variables
x0, . . ., xn-i,z, then dφ has free variables z,y. (In this case dφ is written as

Definition 3 Let M be an I-structure, a an ft-tuple of M, d an ^-schema in
y over Io>

 a n ( i ^ a tuple from Mo (= Mp { Lo) with l(c) = l(y). Then we say that
d(c) defines tp(a/PM) i f jor each I-formula φ(x9z) and b in PM

f M 1= φ(ΰ,b)
if and only if Mo ί= (dφ)(b, c).

Remark 4: Note that d(c) defines tp(a/PM) if and only if for each L-formula
0(3c,z) we have M 1= (Vz e P)(φ(ά, z) *-+ (dφ)p(z, c)).

We will be concerned with formulas which are indexed by members of
trees, where these trees are subsets of ω>ω, i.e., subsets of ω>ω which are
closed under initial segments. If η e ω > ω , then by a successor of η we mean
something of the form T?A</) for some / e ω. The set of successors of η will
be denoted by η+. An endpoint of a tree S C ω>ω is just a member of S, no
successor of which is a member of S. Finally, η e ω>ω will be said to be odd
or even depending on whether l(η) is odd or even.

Definition 5 Let 5 C ω > ω be a tree. S will be said to be good if

(i) S has no infinite branches
(ii) if η e S is odd then either η is an endpoint of S or for all / < ω, T?A</> e S
(iii) if η e S is even then there is k < ω such that [ηA(i) e S if and only if / < k]
(so in particular η cannot be an endpoint of S).
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In what follows x denotes the sequence of variables x0, . . ., xn-v

Theorem 6 Suppose T \~ (Ξx)Px. Λ T is tt0-categoήcal over (P,L0) if and
only if for each n, 1 < n < ω, we have: there is a good tree Sn, and there are for
each odd η e Sn (i) an L-formula oί^x.y^), and (ii) dη, an n-schema in yη over Lo

(where dη actually depends on aη); and for each odd η e S which is not an end-
point there are L0-formulas ψγ]

Λφ(yγ])for / < cυ, such that

1(0 if V is a n endpoint of Sn, then for any M t= T, n-tuple a e M and c e Mo

such thatM 1=^(5,0), dn(jc) defines tp(alPM),
(ii) if η e Sn is odd but not an endpoint of Sn, then for any M 1= T, n-tuple

a e M, and c e Mo such that M \= 0Lη(a,c) and Mo 1= "Ίψrϊ

Λ</>(c) for all
i < co, dn(c) defines tp(ά/PM),

(iii) l~\ψζΛ{i)(y)'.i < ω ! is not equivalent modulo T U Py to any finite subset
of itself (for each odd η e Sn).

II(i) Γh(Vΐ) V (3^eP)αη(xJη)
/(η)»l
r\eSn

(ii) ifηeSn is odd and not an endpoint of Sn then for each i<ωwe have

T h (VJ)(V?η e P)(an(x,yn) Λ ψfrφiyj •* V Gϊr e P){ocτ{x,yr))).
τeSn

τe(ηA<ί»+

For the case n = 1 we also demand that there be, for each odd η e Si an Lo-
formula χη(yn) such that

T h (V^ e P)(/η(yη) *-> Gx^QcJJ).

Note 7: By Definition 5 (iii) the disjuncts in the formulas in II(i) and IΙ(ii) are
finite. Note also by Remark 4 that I(i) and I(ii) are syntactic properties of T
(for each η).

Proof of *= of Theorem 6: Let T satisfy the right-hand side conditions. I first
assert that:

(*) For any model M of T and «-tuρle a from M there are an odd η e Sn

and c e Mo such that M t= aη(a, c) and such that either η is an endpoint of Sn

or Mo 1= ~\ψη*(i>(c) for all i < ω.

Suppose not and let M 1= T and a e M be a counterexample. We will define
ηr e Sn and cr e Mo for 1 < r < ω such that l(ηr) = 2r - 1, ηr+1 is an extension
of ηn and M 1= ̂ ( 5 , cr) for all r. ηj and ~cx are given by II(i). Suppose we have
ηr and cr with Aί 1= anr(a,cr). Then r?r is not an endpoint of Sn, and moreover
for some i < ω, M o 1= ψrϊ

Λ</>(cr). Thus by IΙ(ii) there is r e Sn which is a
successor of ??r

Λ</>, and also c e Mo such that M t= o:τ(α3c). Put c r + 1 = c and
77r+1 = r. Thus such r?r can be defined. But they then define an infinite branch
of Sn, which is impossible, as Sn was good. So (*) is established.

Now let M and N be countable models of T such that Mp \ Lo = Np t Lo =
Mo. We will obtain an isomorphism of M and N over Mo by the standard back-
and-forth argument. First let a be an element of M. Let η e S1 and c e Mo be
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as given by (*). It then follows from I(i) and (ii), that dη(c) defines tp(a/PM).
Moreover Mo t= χn{c). Thus there is b e N such that N t= otη(b,c) (as Mo =
Np [ Lo). If η is not an endpoint of Sx then by (*), Mo t= ~Ίψη

Λ(i)(jc) for all
/ < ω. So by I(i) and (ii) again, dη(c) defines tp(b/PN). So for any Z-formula
0(JC,Z) and d in PM (= PN) we have

Mt=φ(μ,d) iff Mot=(d^)(d,c) iff N \=φ(b,d).

So α and b have the same types over PM = PN in M and N, respectively. Now
suppose that a, b are ^-tuples from M, N respectively with the same types
over PM. Choose any a e M. Again by (*) we find η e Sn+1 and c e Mo

with M \P aη(aΛa,c) and tp(aAa/PM) defined by dη(c). As a and b have the
same types over PM = PN there is b e N such that N \=aη(JbΛb9 c), and so dn(c)
defines tp(bAb/PN). Thus, as above, aΛa and bΛb have the same types over
PM in M and TV, respectively. This argument shows that M and N are isomorphic
over MOi completing the proof.

In the next two sections we develop the material allowing us to prove
the other direction of Theorem 6.

3 Uniform reduction and completeness over (P> Lo)

Definition 7 T is said to be complete over (P, Lo) if whenever M, N are
models of T such that Mp \ Lo = Np \ Lo= Mo then

W 4 e M 0

Ξ W 4 e M 0

Note that if P is always empty then this just says that T is complete,
and if P is always the whole model this says that T implicitly defines the
relations of L - Lo in terms of Lo.

Propositions Let T be #0-categorical over (P,L0). Then T is complete
over (Λ Lo).

Proof: So let M, N be models of T with Mp t Lo = Np t Lo = Mo. We
have to show that (M,ά)a€Mo = (N,a)aeMo> If ^ o i s countable then this follows
immediately from the N0-categoricity of T over (P,L0). So we may assume
that Mo is uncountable. Suppose by way of contradiction that there is an
(Z,-) formula φ(x) and tuple a e Mo such that

M 1= φifl) and N 1= 1φ(μ).

Now we define countable models Mι and Nι for / < ω, such that

(i) (Mι: i <ω) is an ascending chain of elementary substructures of M

(ii) (Nι: i < ω) is a chain of elementary substructures of N
(iii) a e M°
(iv) for each / < ω, PM' C PNl and PN% C P M Z + 1 .

This is easily obtained.
It is then clear that ((Mι)0: i < ω) and (XNι)0: i < ω) are both chains

of elementary substructures of Mo. (Remember that we write (Mι)0 for
(MY t Zo, etc.) Moreover, by (iv) if Mω = | J M* and Nω = | J iV', then

/<co /<ω
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(M ω )o= U (M')o= U ( ^ ' ) o = ( ^ w ) o . and also α e ( M ω ) 0 .
i < ω i<ω

Also M ω , Nω are countable and Mω t= φ(δ) and iVω t= Ίφ(δ). But this is
impossible, for M ω and Nω are isomorphic over (Mω)0 (by ^0-categoricity
over(P,L0)).

So the proposition is proved.

If M is a model of T and 5 e P M , then tpM(j{a) will denote the type of
a over 0 in the model Mo = Mp [ Lo. (So tpMJβ) is a set of L0-formulas.)
tpMiβ) will just denote the type of a (over 0) in M.

Lemma 9 Lei T be complete over (P9 Lo). Lei M be a model ofT, a and b
n-tuples in PM, and suppose that tpM(fβ) = tpMςβ). Then tpM(ά) = tpM(b).

Proof: Let Λ̂  be an elementary extension of M such that No is sufficiently

homogeneous. Clearly Mo < No, and so tpNo(a) = tp^Q(b), whereby there will

be an automorphism / of Λf0 such that f{a) = b. Let N' be an L-structure such

that (/V')o = ^o a n d moreover

(N',fίc))ceNo*{N,c)ceNo.

Thus clearly

^ ' ( & ) = tpN(β).

On the other hand, by the completeness of T over (P,L0) and the facts that

N' \=T and (iV')o = ^o it follows that

tPN'U>) = tpN(b).

Thus rpτv(β) = tpNφ), and so rpM(^) = tpMΦ\

Proposition 10 Let T be complete over (P,L0). Then for any L-formula
φ(x) there is an L0-formula \jj(x) such that for any model M of T and tuple
a in PM we have

M f= φ(a) if and only ifM0 1= φ(a).

Equivalents we could say T \r (V3c e P)(φ(x) <-+ φp(x)).

Proof. This is a standard application of completeness. Given φ(x), an L-
formula, we put Γ = \φ(x) e Lo: T \~ φ(x) Λ P(X) -» ψp(3c)}. Then one shows
that T U \ψp(x): ψ(jc) e Γ ! U {P(3c){ h φ(3c), using Lemma 9. Then by compact-
ness one finds a formula ψQc) e Γ such that T h (V3c)(φ(3c) *-> ψp(3c)).

Proposition 10 is called the uniform reduction theorem and a variant of
it is proved in a more general setting in [ 1 ].

Corollary 11 Let T be ^^categorical over (Λ^o) Then for every formula
φ(x) of L there is a formula φ(x) ofL0 such that

T h (V3c e P)(φ(x) +-> ψp(x)).
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4 Atomicity over P

Definition 12 The L-structure M is said to be atomic over P if for every
tuple a e M9 tpM(a/PM) is isolated (where tpM(β/A) is said to be isolated, if
this type can be a finitely axiomatised modulo Th(M, b\eA).

Lemma 13 Let M<N and a eM. Suppose that tpM(ά/PM) is isolated. Then
tpN(ά/PN) is also isolated.

Proof: Suppose that ~c e PM and the formula a(x,~c) isolates (i.e., axiomatises)
tpM(άlPM). It is then clear that for every formula 0(x, z) the sentence (Vz e P)
((\/x)(a(x,c) -* 0(3c,z)) v (V3c)(α(x,c) -• Ί0(3c,z))) is true in M, and thus also
in N. Thus a(x,c) isolates tpN(a/PN).

Proposition 14 Let T be ^^-categorical over (P,L0). Then every model
of T is atomic over P.

Proof: By Lemma 13 it is clearly enough to show that every countable
model of T is atomic over P. So let M be a countable model of T. Suppose
by way of contradiction that there is a tuple a e M such that tpj^{a/PM) is
not isolated. Let p = tpM(άjPM). Let q(x) = \P(x)} U \χ φ c:c e PM\. Then

by the Omitting types theorem, T' = Th((M,c)CepM) has a countable model
(N,c)C€pM which omits p and q. As this model omits q, we have Λf0 = Mo.
But N and M cannot be isomorphic over Mo, as (N,C)C€MQ omits p. This con-
tradicts the tt0-categoricity of T over (P, Lo), proving the proposition.

Note 15: Let T be N0-categorical o v e r (Λ^o) F i χ a formula a(x,y). Given
an (L-)formula φ(x,z)9 let φa(z9y) denote the formula

(Vjc)(α(3c,y)->0(χ,z)).

Let 040)(z, JO denote an Z0-formula corresponding to φa(z,y) as given by
Corollary 11. So da is an ^-schema in y over Lo (in the sense of Definition 2),
where n = /(3c).

Now let M 1= Γ, α e M and suppose that the formula oc(x9c) isolates
tp(a/PM)(c e PM). It is then easy to see that da(c) defines tp(ά/PM). We will
proceed to show that we can choose such α's "uniformly in Γ" as asserted
in Theorem 6.

Given T and n < ω, we will construct a tree of formulas such that any
infinite branch of this tree gives rise to a model M of T and w-tuple a e M such
that tpM(β/PM) is not isolated. It will follow (from Proposition 14) that if
T is N0-categorical o v e r (Λ^o) then this tree has no infinite branches. This,
together with Note 15 will allow us to prove the left to right direction of
Theorem 6.

Let us now fix n < ω. x will denote the π-tuple of variables (x0, . . ., xn-i)-

Definition 16 Let a(x,~y) and φ(x,z) be L-formulas. By "α(x5<y) is a φ(x, z)-
atom" we mean the formula "(Vf)((V3c)(α(3c,)y) -> 0(3c,z)) v (V3c)(α(5c,JO ->
Ί0(3c, z)))". This is clearly a formula in j7; i.e., a statement about j7.

Let a0,. . ., αw_χ, and Q for / < ω be new constants, and let us write a for
(α0, . . ., α«_i). Let L' be the expansion of L obtained by adjoining these con-
stants. Let Γj be T U {Pc/:/ < ω!. Let us list all L'-sentences as \χr: r < cυi.
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Now we will define, for certain η e ω>ω, L'-sentences θ^ so as to satisfy
the following:

(i) θ< > is 'a = a\
(ϋ) If θ η is defined and η extends r then also Θ r is defined.
(iii) If η is odd, Θη is defined and η extends r then h θ η -» θ r .
(iv) If θη is defined then ίΘηt r: r < l(η)\ is consistent with 7\.
(v) Suppose that l(η) = 2r and θ η is defined. Then θηΛu> is Λ { 0 ^ : $ < 2r\ Λ

~Ίχr if the latter is consistent with Tx. Also Θrϊ

Λ<0> is Λ {θηi^ s < 2r\ Λ χr if
the latter is consistent with Tl9 unless χr is of the form "(3z e P)χ'(z)"
for some χ ' e Z/ in which case, for some c, which does not appear in
ίθη^ s < 2r\, ΘηA<0> is Λ ίθηr/ ^ < 2r\ /\ χ'(Ci). θη*φ is undefined
otherwise.

(vi) Suppose that η is odd, and θ n is defined, and so of the form a(ά, c)
(c a tuple of the q's). If \"a(x,c) is a 0(3c,z)-atom" :0(x,z) e L\ is not
consistent with Tx U Θ η then θ η ^ ^ is 'c = c'. If not, then for some κ<ω,
θηΛ^ ) is defined iff i < K and moreover {ΘηA(/>: i < κ\ = 5"α(x, c) is not a
0(x,z)-atom":0(%z) e Z and "α(x,F) is not a 0(3c,z)-atom" is consistent
with Tχ\ and is not equivalent mod Tx to any proper finite subset of itself.
ΘηΛ<, > is undefined otherwise. (Note in the second case Θ η ^ can be
undefined for all / < ω.)

The Θη can clearly be defined so as to satisfy (i)-(vi) above.
Let S'n be the set of 17 e ω>ω such that Θη is defined.

Lemma 17 Suppose that Sf

n has an infinite branch. Then T has a countable
model M containing an n-tuple a such that tpM(a/PM) is not isolated.

Proof: Let B be an infinite branch of S'n. Let T' = iΘ^'.η e S\. By condition
(v) above, V is complete (in L'). Moreover, by (iv), V is consistent and con-
tains T U [Pci'Λ < ωi. Suppose that the //-sentence (3z e P)y(z) is consistent
with Tf. (3z e P)y{z) will be χr for some r < ω. It is then clear from (v) that
for some / < ω, T' h 7(cz ). It follows from this that Tf has a countable model
which omits the type \Py \U \y φ Ci'Λ < ωi. Let M be such a model. We use
a and c, to denote the interpretations in Λf of these constants. Thus M = M'[ L
is a model of T and moreover P M = {c, : z < ωl.

I assert that tpM(ά/PM) is not isolated. To see this, suppose that M 1= ]3(α,c)
where β(x,y) e L and c e P^. Thus β(α, c) e T' and so for some odd η e B we
have h θ η ->• j3(α, c). We can assume that θ ^ is of the form a{μ,c') where ~c is
a tuple of C/'s which includes c. As 5 is infinite ΘrίA(z) is defined for some
i < ω. Thus by condition (vi) above, "aix,!:') is not a φ(3c,z)-atom" e 7" for
some φ(x,z) e L. It is clear from this and Definition 16 that a(x,~c') does not
isolate tpM(a/PM). Thus neither can β(x,c) isolate tpM(a/PM). As |3(3c,c) was
an arbitrary formula over PM satisfied by a in M, it follows that tpM(ά/PM)
is not isolated. Thus the assertion is proved, and so also the lemma.

Proposition 18 Let T be tt0-categorical over (P,L0). Then for each n, S'n
has no infinite branch.

Proof: By Proposition 14 and Lemma 17.
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5 Proof of the left to right direction of Theorem 6 Here I point out how
the left to right direction of Theorem 6 can be deduced from Proposition 18.
So we assume that T h (3x)Px and that T is N0-categorical o v e r (Λ^o) Let
us fix n < ω (n > 1). We know from Proposition 18 that S'n has no infinite
branch. We will construct from S'n and the attached formulas a tree Sn and
attached formulas satisfying the required conditions. In fact I will just show
how to construct the first two 'levels' of Sm the rest of the construction pro-
ceeding in the same way.

First let Xbe the smallest subset of S'n satisfying ( i ) ( ) e l a n d (ii) if w e X
and w+ Π S'n is finite then w+ ΓιS'nCX.

Lemma 19 X is finite.

Proof: By Konig's Lemma and the fact that S'n has no infinite branches.

Now let X' = {w e X: w+ Π X = 0!. Then we have immediately:

Lemma 20 If w e Xf then w is odd, and either w is an endpoint of S'n or
w+ Π S'n is infinite.

Now let Y = \w e X: w is odd and w+ Π S'n is finite and nonempty, and
ΘWA<Q> is not of the form 'c = c9l Then clearly Y Π X = 0 and 7 U X' is finite.
Let us enumerate 7 U X' as (w,-: / < k) for some k < ω. Then the set of ele-
ments of Sn which have length 1 will be precisely {</>: / < k\. Now we define
the formulas ^</>(3c,p<z >) for / < k. First suppose that wz = w e X'. So Θw is
a formula of the form α(α, c). Let 3/(/ ) be a sequence of variables which has
the" same length as c. Then we put α<, >(jc, j7</>) to be α(3c, J<, >) which is clearly
an I-formula. If w, = w and w e Γ , then let the formula Θ w Λ ί~lθM,Λ</ >: wΛ</> e
5 }̂ be written as α(fl,c). We put α</>(3c,>»</>) to be ^(jc,^/)) for some suitable
sequence y{i). (Let us also assume that !"«<,•>(3c,y<, >) -• P^ for eachj^ in j?<, > and
each / < k.)

Lemma 21

(i) T h(Vx) V 07(i)^)«(/>(xj-(/)).
i<k

(ii) I e / / < k, w = w/ απJ either we Y or w is an endpoint of S'n. Then
T h "α<ι)(5c,;?<,•>) w α φ(x,Ί)-atom" for all φ(x,Ί) e L.

Proof: (i) follows easily from properties (v) and (vi) of the Θη, together with
the fact that T h (3x)Px. For (ii), suppose first that w = w, and w is an end-
point of Sή If Θ w is written as a(ά,c)9 we must have that "α(3c,c) is not a
0(3c,z)-atom" is inconsistent with 7\ for each φ(x,~z) (by property (vi)) of the
Θη). But «</>(*,}></>) is α(x, ?</>), and thus Γ h "αω(3c,^<z>) is a φ(x,I)-atom"
for each φ(x, z) e Z. Now suppose that w = w/ is in Y. Again if we write <x(a, c)
for Θ w then we have by property vi of the Θ^ and the definition of a{i) that
^~oίφ(x,y(i}) -» "α(3c,JJ</>) is a φ(x,z)-atom" whenever "α(3c,J?</>) is not a
0(x,z)-atom" is consistent with Γ. As we also have ha</>(x, y</>) ->• α(3c,y</>),
it follows that Γ h "α< / >(3c,J?</ >) is a φ(3c,z)-atom" for all 0(3c,z) e L. Thus
part ii of the lemma is proved.

Now I define level two of Sn and the attached formulas. Let / < k be such
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that for w = wz , w
+ Π Sn is infinite. Note that w+ C S'n in this case. We then

stipulate that </,/> e S^ for every / < ω. For any other i < k (i.e., for / satis-
fying the hypotheses of Lemma 21(ii)) we stipulate that <ι,/> ή. Sn, for all
/ < ω. Thus if i satisfies the hypotheses of Lemma 21(ii) then </) will be an
endpoint of Sn. Now suppose that </,/> e Sn. So clearly Θ^j) is defined, and is
of the form ψ(c) where c is the tuple of c-constants occurring in θα>. Then
we define ψ<, ,/>( }><,•>) to be ψ(>></>).

Now for each / < k, let da{i) be the ^-schema in y{i) as defined in Note 15.
Let us rebaptise da<i) as dφ.

Lemma 22

(i) Let i < k and (i) be an endpoint of Sn. Then for any M \=T, n-tuple a e M
and c e MQ such that M !=«<,•> (0, c), dφ(c) defines tp(a/PM).
(ii) Let i < k and (i) not be an endpoint of Sn. Then for any M t= Γ, n-tuple
a e M and c e Mo such that M 1= otφ(β,c) and M f= 1φ'aj)(jό) for all j < ω,
dω(c) defines tp(ά/PM).

Proof: As already mentioned, if <ί) is an endpoint of Sn then i satisfies the
hypothesis of Lemma 21(ϋ). Now part i of the lemma follows from Lemma
21 (ii) and Note 15. For part ii let us first note that if </> is not an endpoint
of Sn then ίψ</,/>(J<, >): / < co!= {"α</>(x, J</>) is not a 0(x,z)-atom":0(*,z) e L,
"<X(i)(x,yφ) is not a 0(x,z)-atom" is consistent with T\. Thus if M 1= Γ, α is
an rc-tuple of M, c e Mo, Λί t11 α<, >(ά,c) and M t= "Ίψ</>7 >(c) for all / < ω, then
clearly θίφ(x9c) isolates tp{ajPM). Part ii of the lemma now follows from
Note 15.

For </,/> e Sn, let ΨujyCPu)) t>e a n ^o"f ° r m u l a corresponding to φ'ajyiyφ)
as given by Corollary 11. I now assert that with this definition of the first two
levels of Sn, and with the above choice of oίφ and dφ for </> e Sn and of φaj)
for (/,/) e Sn, that II(i) of Theorem 6 is satisfied, as is I of Theorem 6 (for η of
length 1). The satisfaction of II(i) is given by Lemma 21(i), and the satisfaction
of I by Lemma 22.

This above construction can be repeated to obtain levels 3 and 4, etc., of
Sn and the attached formulas, so as to satisfy the required conditions. The
L0-formulas χη(yn) mentioned in the last part of Theorem 6 can be obtained
from Corollary 11. Thus Theorem 6 is proved.

The problem of characterising theories which are strongly categorical
over (Λ Lo) would seem to be much more difficult. In this connection we
conjecture:

Conjecture 23 T is strongly categorical over (P, LQ) if and only if: (i) T
satisfies the uniform reduction theorem (the conclusion of Proposition 10) and
(ii) if M \= Γ, A C M9 A D PM and a e M then tpM(a/A) is isolated.

Of course even if this were true, there would still remain the task of
obtaining from it a syntactic characterisation of strong categoricity.

Finally I will mention some past literature and work on the subject matter
of this paper. Strongly categorical theories were introduced, in the form of
"single-valued operations" by Gaifman in [2], where he stated the uniform
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reduction theorem as well as a uniform definability theorem for such theories.
Gaifman has also shown, in as yet unpublished work, that if we assume in
addition that each model M of T is rigid over PM, then for each M t= Γ, M is
"explicitly definable" from Mo, uniformly in T. Wilfrid Hodges pointed out
to me several years ago that if T is strongly categorical over (P, Lo), then every
countable model M of T is atomic over PM. Strongly categorical theories also
figure in the author's thesis, where some strengthenings of results mentioned
in this paragraph were proved.
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