$\boldsymbol{\aleph}_{0}$-Categoricity Over a Predicate

ANAND PILLAY

1 Introduction We are concerned here with a condition on a theory T which says that a model of T is determined in some weak way by its (P, L_{0}) relativised reduct, namely that whenever M and N are countable models of T with the same relativised reduct M_{0} then M and N are isomorphic over M_{0}. In the case that T says that P is empty this reduces to T being \aleph_{0}-categorical, a situation characterised by Ryll-Nardzewski's theorem. If T says that P is the whole model, then in fact for any models M and N with the same $L_{0^{-}}$ reduct, M and N will be the same, a situation which is characterised by Beth's definability theorem. Both the Ryll-Nardzewski and Beth characterisations are syntactic in that they say that T must prove a set of sentences of a specified kind. Our syntactic condition for T to be \aleph_{0}-categorical over $\left(P, L_{0}\right)$ is rather difficult to state simply. Essentially there will be, for each $n<\omega$, a fixed collection of L-formulas which serve to link n-tuples in models of T to tuples in the P-part of the models, such that if $\bar{a} \in M$ is so related to \bar{c} in P^{M} then the type of \bar{a} over P^{M} depends uniformly on the type of \bar{c} over $M^{P} \upharpoonright L_{0}$.

A stronger condition that one could place on T is that for all models M, N of T, if $M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}=M_{0}$ then M and N are isomorphic over M_{0}. This property (which we call strong categoricity over (P, L_{0})) corresponds exactly to Gaifman's single-valued definitions [2]. (Note that if, for example, P is always empty, then T can have this property if and only if T is the theory of some finite structure.) To give a syntactic characterisation of strong categoricity would seem much more difficult, although Gaifman has proved, in unpublished work, that if we assume in addition to strong categoricity that every model M of T is rigid over P^{M} then every model M of T is explicitly definable from $M^{P} \upharpoonright L_{0}$ in a uniform manner.

Our notation here is standard. I will not be working in a big saturated model.
T will denote a theory in a countable language L. We assume that L contains only relation symbols (so any subset of an L-structure is a substructure). P will be a fixed unary predicate in L, and L_{0} will be a sublanguage of L. If M is an L-structure, then P^{M} denotes the subset of M consisting of those elements which are in P. Again, if M is an L-structure then $M^{P} \upharpoonright L_{0}$ denotes the L_{0}-structure whose universe is P^{M} and whose L_{0}-relations are obtained from those of M by restriction. We often refer to $M^{P} \upharpoonright L_{0}$ as M_{0}.

If $\psi(\bar{x})$ is a formula then $\psi^{P}(\bar{x})$ denotes as usual the formula obtained from ψ by relativising all quantifiers to P. So if M is an L-structure, $\psi(\bar{x})$ an L_{0}-formula, and $\bar{c} \in P^{M}$, then $M_{0} \vDash \psi(\bar{c})$ iff $M \vDash \psi^{P}(\bar{c})$.
Definition $1 \quad T$ is said to be \aleph_{0}-categorical over $\left(P, L_{0}\right)$ if, whenever M and N are countable (including finite) models of T and $M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}$, then there is an isomorphism f of M with N such that $f \upharpoonright P^{M}$ is the identity. (Or, as we shall say, M and N are isomorphic over M_{0}, where $M_{0}=M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}$.)
T is said to be strongly categorical over $\left(P, L_{0}\right)$ if T satisfies Definition 1 but without the restriction that M and N be countable. It is clear that there are T which are \aleph_{0}-categorical over (P, L_{0}) but not strongly categorical over (P, L_{0}).

2 The main result In this section I give some preliminary definitions and then state the main result, the easy direction of which can be observed immediately, and the difficult direction of which is proved in later sections.

Definition 2 Let $n<\omega$, and \bar{y} be any tuple of variables. d is said to be an n-schema in \bar{y} over L_{0} if d is a map from L-formulas whose free variables include x_{0}, \ldots, x_{n-1}, to L_{0}-formulas, where if the L-formula ϕ has free variables $x_{0}, \ldots, x_{n-1}, \bar{z}$, then $d \phi$ has free variables \bar{z}, \bar{y}. (In this case $d \phi$ is written as $(d \phi)(\bar{z}, \bar{y})$.

Definition $3 \quad$ Let M be an L-structure, \bar{a} an n-tuple of M, d an n-schema in \bar{y} over L_{0}, and \bar{c} a tuple from $M_{0}\left(=M^{P} \upharpoonright L_{0}\right)$ with $l(\bar{c})=l(\bar{y})$. Then we say that $d(\bar{c})$ defines $\operatorname{tp}\left(\bar{a} / P^{M}\right)$ if for each L-formula $\phi(\bar{x}, \bar{z})$ and \bar{b} in $P^{M}, M \vDash \phi(\bar{a}, \bar{b})$ if and only if $M_{0} \vDash(d \phi)(\bar{b}, \bar{c})$.
Remark 4: Note that $d(\bar{c})$ defines $t p\left(\bar{a} / P^{M}\right)$ if and only if for each L-formula $\phi(\bar{x}, \bar{z})$ we have $M \vDash(\forall \bar{z} \in P)\left(\phi(\bar{a}, \bar{z}) \leftrightarrow(d \phi)^{P}(\bar{z}, \bar{c})\right)$.

We will be concerned with formulas which are indexed by members of trees, where these trees are subsets of ${ }^{\omega>} \omega$, i.e., subsets of ${ }^{\omega>} \omega$ which are closed under initial segments. If $\eta \epsilon^{\omega>} \omega$, then by a successor of η we mean something of the form $\eta^{\wedge}\langle i\rangle$ for some $i \in \omega$. The set of successors of η will be denoted by η^{+}. An endpoint of a tree $S \subset{ }^{\omega>} \omega$ is just a member of S, no successor of which is a member of S. Finally, $\eta \epsilon{ }^{\omega>} \omega$ will be said to be odd or even depending on whether $l(\eta)$ is odd or even.

Definition $5 \quad$ Let $S \subset{ }^{\omega>} \omega$ be a tree. S will be said to be good if
(i) S has no infinite branches
(ii) if $\eta \epsilon S$ is odd then either η is an endpoint of S or for all $i<\omega, \eta^{\wedge}\langle i\rangle \epsilon S$
(iii) if $\eta \in S$ is even then there is $k<\omega$ such that $\left[\eta^{\wedge}\langle i\rangle \in S\right.$ if and only if $i \leqslant k$] (so in particular η cannot be an endpoint of S).

In what follows \bar{x} denotes the sequence of variables x_{0}, \ldots, x_{n-1}.
Theorem 6 Suppose $T \vdash(\exists x) P x$. $\wedge T$ is \aleph_{0}-categorical over $\left(P, L_{0}\right)$ if and only if for each $n, 1 \leqslant n<\omega$, we have: there is a good tree S_{n}, and there are for each odd $\eta \in S_{n}$ (i) an L-formula $\alpha_{\eta}\left(\bar{x}, \bar{y}_{\eta}\right.$), and (ii) d_{η}, an n-schema in \bar{y}_{η} over L_{0} (where d_{η} actually depends on α_{η}); and for each odd $\eta \in S$ which is not an endpoint there are $L_{0}-$-formulas $\psi_{\eta^{\wedge}\langle i\rangle}\left(\bar{y}_{\eta}\right)$ for $i<\omega$, such that

I (i) if η is an endpoint of S_{n}, then for any $M \vDash T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\eta}(\bar{a}, \bar{c}), d_{\eta}(\bar{c})$ defines $t p\left(\bar{a} / P^{M}\right)$,
(ii) if $\eta \in S_{n}$ is odd but not an endpoint of S_{n}, then for any $M \vDash T$, n-tuple $\bar{a} \in M$, and $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\eta}(\bar{a}, \bar{c})$ and $M_{0} \vDash \neg \psi_{\eta^{\wedge}\langle i\rangle}(\bar{c})$ for all $i<\omega, d_{\eta}(\bar{c})$ defines $\operatorname{tp}\left(\bar{a} / P^{M}\right)$,
(iii) $\left\{\neg \psi_{\eta^{P}\langle i\rangle}^{P}(\bar{y}): i<\omega\right\}$ is not equivalent modulo $T \cup P \bar{y}$ to any finite subset of itself (for each odd $\eta \in S_{n}$).
II(i) $T \vdash(\forall \bar{x}) \underset{\substack{l(\eta)=1 \\ \eta \in S_{n}}}{ }\left(\exists \bar{y}_{\eta} \in P\right) \alpha_{\eta}\left(\bar{x}, \bar{y}_{\eta}\right)$
(ii) if $\eta \in S_{n}$ is odd and not an endpoint of S_{n} then for each $i<\omega$ we have

$$
T \vdash(\forall \bar{x})\left(\forall \bar{y}_{\eta} \in P\right)\left(\alpha_{\eta}\left(\bar{x}, \bar{y}_{\eta}\right) \wedge \psi_{\eta^{\wedge}\langle i\rangle}^{P}\left(\bar{y}_{\eta}\right) \rightarrow \bigvee_{\substack{\tau \in S_{n} \\ \tau \in\left(\eta^{\wedge}\langle i\rangle\right)^{+}}}\left(\exists \bar{y}_{\tau} \in P\right)\left(\alpha_{\tau}\left(\bar{x}, \bar{y}_{\tau}\right)\right)\right)
$$

For the case $n=1$ we also demand that there be, for each odd $\eta \in S_{1}$ an L_{0} formula $\chi_{\eta}\left(\bar{y}_{\eta}\right)$ such that

$$
T \vdash\left(\forall \bar{y}_{\eta} \in P\right)\left(\chi_{\eta}^{P}\left(\bar{y}_{\eta}\right) \leftrightarrow(\exists \bar{x}) \alpha_{\eta}\left(\bar{x}, \bar{y}_{\eta}\right)\right) .
$$

Note 7: By Definition 5(iii) the disjuncts in the formulas in II(i) and II(ii) are finite. Note also by Remark 4 that $\mathrm{I}(\mathrm{i})$ and $\mathrm{I}(\mathrm{ii})$ are syntactic properties of T (for each η).

Proof of \Leftarrow of Theorem 6: Let T satisfy the right-hand side conditions. I first assert that:
(*) For any model M of T and n-tuple \bar{a} from M there are an odd $\eta \in S_{n}$ and $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\eta}(\bar{a}, \bar{c})$ and such that either η is an endpoint of S_{n} or $\left.M_{0} \vDash\right\urcorner \psi_{\eta^{\wedge}\langle i\rangle}(\bar{c})$ for all $i<\omega$.

Suppose not and let $M \vDash T$ and $\bar{a} \in M$ be a counterexample. We will define $\eta_{r} \in S_{n}$ and $\bar{c}_{r} \in M_{0}$ for $1 \leqslant r<\omega$ such that $l\left(\eta_{r}\right)=2 r-1, \eta_{r+1}$ is an extension of η_{r}, and $M \vDash \alpha_{\eta_{r}}\left(\bar{a}, \bar{c}_{r}\right)$ for all $r . \eta_{1}$ and \bar{c}_{1} are given by II(i). Suppose we have η_{r} and \bar{c}_{r} with $M \vDash \alpha_{\eta_{r}}\left(\bar{a}, \bar{c}_{r}\right)$. Then η_{r} is not an endpoint of S_{n}, and moreover for some $i<\omega, M_{0} \vDash \psi_{\eta^{\wedge}\langle i\rangle}\left(\bar{c}_{r}\right)$. Thus by II(ii) there is $\tau \epsilon S_{n}$ which is a successor of $\eta_{r} \wedge\langle i\rangle$, and also $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\tau}(\bar{a}, \bar{c})$. Put $\bar{c}_{r+1}=\bar{c}$ and $\eta_{r+1}=\tau$. Thus such η_{r} can be defined. But they then define an infinite branch of S_{n}, which is impossible, as S_{n} was good. So (${ }^{*}$) is established.

Now let M and N be countable models of T such that $M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}=$ M_{0}. We will obtain an isomorphism of M and N over M_{0} by the standard back-and-forth argument. First let a be an element of M. Let $\eta \in S_{1}$ and $\bar{c} \in M_{0}$ be
as given by (*). It then follows from $\mathrm{I}(\mathrm{i})$ and (ii), that $d_{\eta}(\bar{c})$ defines $t p\left(a / P^{M}\right)$. Moreover $M_{0} \vDash \chi_{\eta}(c)$. Thus there is $b \in N$ such that $N \vDash \alpha_{\eta}(b, \bar{c})$ (as $M_{0}=$ $N^{P} \upharpoonright L_{0}$). If η is not an endpoint of S_{1} then by (${ }^{*}$), $M_{0} \vDash \neg \psi_{\eta^{\wedge}\langle i\rangle}(\bar{c})$ for all $i<\omega$. So by I(i) and (ii) again, $d_{\eta}(\bar{c})$ defines $t p\left(b / P^{N}\right)$. So for any L-formula $\phi(x, \bar{z})$ and \bar{d} in $P^{M}\left(=P^{N}\right)$ we have

$$
M \vDash \phi(a, \bar{d}) \quad \text { iff } M_{0} \vDash\left(d_{\eta} \phi\right)(\bar{d}, \bar{c}) \text { iff } N \vDash \phi(b, \bar{d}) .
$$

So a and b have the same types over $P^{M}=P^{N}$ in M and N, respectively. Now suppose that \bar{a}, \bar{b} are n-tuples from M, N respectively with the same types over P^{M}. Choose any $a \in M$. Again by (*) we find $\eta \in S_{n+1}$ and $\bar{c} \in M_{0}$ with $M \vDash \alpha_{\eta}\left(\bar{a}^{\wedge} a, \bar{c}\right)$ and $\operatorname{tp}\left(\bar{a}^{\wedge} a / P^{M}\right)$ defined by $d_{\eta}(\bar{c})$. As \bar{a} and \bar{b} have the same types over $P^{M}=P^{N}$ there is $b \in N$ such that $N \vDash \alpha_{\eta}\left(\bar{b}^{\wedge} b, \bar{c}\right)$, and so $d_{\eta}(\bar{c})$ defines $\operatorname{tp}\left(\bar{b}^{\wedge} b / P^{N}\right)$. Thus, as above, $\bar{a}^{\wedge} a$ and $\bar{b}^{\wedge} b$ have the same types over P^{M} in M and N, respectively. This argument shows that M and N are isomorphic over M_{0}, completing the proof.

In the next two sections we develop the material allowing us to prove the other direction of Theorem 6 .

3 Uniform reduction and completeness over (P, L_{0})

Definition $7 \quad T$ is said to be complete over $\left(P, L_{0}\right)$ if whenever M, N are models of T such that $M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}=M_{0}$ then

$$
(M, a)_{a \in M_{0}} \equiv(N, a)_{a \in M_{0}}
$$

Note that if P is always empty then this just says that T is complete, and if P is always the whole model this says that T implicitly defines the relations of $L-L_{0}$ in terms of L_{0}.
Proposition 8 Let T be \aleph_{0}-categorical over $\left(P, L_{0}\right)$. Then T is complete $\operatorname{over}\left(P, L_{0}\right)$.
Proof: So let M, N be models of T with $M^{P} \upharpoonright L_{0}=N^{P} \upharpoonright L_{0}=M_{0}$. We have to show that $(M, a)_{a \in M_{0}} \equiv(N, a)_{a \in M_{0}}$. If M_{0} is countable then this follows immediately from the \aleph_{0}-categoricity of T over (P, L_{0}). So we may assume that M_{0} is uncountable. Suppose by way of contradiction that there is an (L-) formula $\phi(\bar{x})$ and tuple $\bar{a} \in M_{0}$ such that

$$
M \vDash \phi(\bar{a}) \text { and } N \vDash\urcorner \phi(\bar{a}) .
$$

Now we define countable models M^{i} and N^{i} for $i<\omega$, such that
(i) $\quad\left(M^{i}: i<\omega\right)$ is an ascending chain of elementary substructures of M
(ii) $\left(N^{i}: i<\omega\right)$ is a chain of elementary substructures of N
(iii) $\bar{a} \in M^{0}$
(iv) for each $i<\omega, P^{M^{i}} \subset P^{N^{i}}$ and $P^{N^{i}} \subset P^{M^{i+1}}$.

This is easily obtained.
It is then clear that $\left(\left(M^{i}\right)_{0}: i<\omega\right)$ and $\left(\left(N^{i}\right)_{0}: i<\omega\right)$ are both chains of elementary substructures of M_{0}. (Remember that we write $\left(M^{i}\right)_{0}$ for $\left(M^{i}\right)^{P} \upharpoonright L_{0}$, etc.) Moreover, by (iv) if $M^{\omega}=\bigcup_{i<\omega} M^{i}$ and $N^{\omega}=\bigcup_{i<\omega} N^{i}$, then

$$
\left(M^{\omega}\right)_{0}=\bigcup_{i<\omega}\left(M^{i}\right)_{0}=\bigcup_{i<\omega}\left(N^{i}\right)_{0}=\left(N^{\omega}\right)_{0} \text {, and also } \bar{a} \epsilon\left(M^{\omega}\right)_{0} .
$$

Also M^{ω}, N^{ω} are countable and $M^{\omega} \vDash \phi(\bar{a})$ and $N^{\omega} \vDash \neg \phi(\bar{a})$. But this is impossible, for M^{ω} and N^{ω} are isomorphic over $\left(M^{\omega}\right)_{0}$ (by \aleph_{0}-categoricity over (P, L_{0})).

So the proposition is proved.
If M is a model of T and $\bar{a} \in P^{M}$, then $t p_{M_{0}}(\bar{a})$ will denote the type of \bar{a} over ϕ in the model $M_{0}=M^{P} \upharpoonright L_{0}$. (So $t p_{M_{0}}(\bar{a})$ is a set of L_{0}-formulas.) $t p_{M}(\bar{a})$ will just denote the type of \bar{a} (over ϕ) in M.

Lemma 9 Let T be complete over $\left(P, L_{0}\right)$. Let M be a model of T, \bar{a} and \bar{b} n-tuples in P^{M}, and suppose that $t p_{M_{0}}(\bar{a})=t p_{M_{0}}(\bar{b})$. Then $t p_{M}(\bar{a})=t p_{M}(\bar{b})$.

Proof: Let N be an elementary extension of M such that N_{0} is sufficiently homogeneous. Clearly $M_{0}<N_{0}$, and so $t p_{N_{0}}(\bar{a})=t p_{N_{0}}(\bar{b})$, whereby there will be an automorphism f of N_{0} such that $f(\bar{a})=\bar{b}$. Let N^{\prime} be an L-structure such that $\left(N^{\prime}\right)_{0}=N_{0}$ and moreover

$$
\left(N^{\prime}, f(c)\right)_{c \in N_{0}} \cong(N, c)_{c \in N_{0}} .
$$

Thus clearly

$$
t p_{N^{\prime}}(\bar{b})=t p_{N}(\bar{a})
$$

On the other hand, by the completeness of T over $\left(P, L_{0}\right)$ and the facts that $N^{\prime} \vDash T$ and $\left(N^{\prime}\right)_{0}=N_{0}$ it follows that

$$
t p_{N^{\prime}}(\bar{b})=t p_{N}(\bar{b})
$$

Thus $t p_{N}(\bar{a})=t p_{N}(\bar{b})$, and so $t p_{M}(\bar{a})=t p_{M}(\bar{b})$.
Proposition 10 Let T be complete over $\left(P, L_{0}\right)$. Then for any L-formula $\phi(\bar{x})$ there is an L_{0}-formula $\psi(\bar{x})$ such that for any model M of T and tuple \bar{a} in P^{M} we have

$$
M \vDash \phi(\bar{a}) \text { if and only if } M_{0} \vDash \psi(\bar{a}) .
$$

Equivalently we could say $T \vdash(\forall \bar{x} \in P)\left(\phi(\bar{x}) \leftrightarrow \psi^{P}(\bar{x})\right)$.
Proof: This is a standard application of completeness. Given $\phi(\bar{x})$, an L formula, we put $\Gamma=\left\{\psi(\bar{x}) \in L_{0}: T \vdash \phi(\bar{x}) \wedge P(\bar{x}) \rightarrow \psi^{P}(\bar{x})\right\}$. Then one shows that $T \cup\left\{\psi^{P}(\bar{x}): \psi(\bar{x}) \in \Gamma\right\} \cup\{P(\bar{x})\} \vdash \phi(\bar{x})$, using Lemma 9 . Then by compactness one finds a formula $\psi(\bar{x}) \in \Gamma$ such that $T \vdash(\forall \bar{x})\left(\phi(\bar{x}) \leftrightarrow \psi^{P}(\bar{x})\right)$.

Proposition 10 is called the uniform reduction theorem and a variant of it is proved in a more general setting in [1].

Corollary 11 Let T be \aleph_{0}-categorical over $\left(P, L_{0}\right)$. Then for every formula $\phi(\bar{x})$ of L there is a formula $\psi(\bar{x})$ of L_{0} such that

$$
T \vdash(\forall \bar{x} \in P)\left(\phi(\bar{x}) \leftrightarrow \psi^{P}(\bar{x})\right)
$$

4 Atomicity over P

Definition 12 The L-structure M is said to be atomic over P if for every tuple $\bar{a} \in M, t p_{M}\left(\bar{a} / P^{M}\right)$ is isolated (where $t p_{M}(\bar{a} / A)$ is said to be isolated, if this type can be a finitely axiomatised modulo $\left.T h(M, b)_{b \in A}\right)$.
Lemma $13 \quad$ Let $M<N$ and $\bar{a} \in M$. Suppose that $t p_{M}\left(\bar{a} / P^{M}\right)$ is isolated. Then $t p_{N}\left(\bar{a} / P^{N}\right)$ is also isolated.
Proof: Suppose that $\bar{c} \in P^{M}$ and the formula $\alpha(\bar{x}, \bar{c})$ isolates (i.e., axiomatises) $t p_{M}\left(\bar{a} / P^{M}\right)$. It is then clear that for every formula $\phi(\bar{x}, \bar{z})$ the sentence $(\forall \bar{z} \in P)$ $((\forall \bar{x})(\alpha(\bar{x}, \bar{c}) \rightarrow \phi(\bar{x}, \bar{z})) \vee(\forall \bar{x})(\alpha(\bar{x}, \bar{c}) \rightarrow \neg \phi(\bar{x}, \bar{z})))$ is true in M, and thus also in N. Thus $\alpha(\bar{x}, \bar{c})$ isolates $t p_{N}\left(\bar{a} / P^{N}\right)$.
Proposition 14 Let T be \aleph_{0}-categorical over $\left(P, L_{0}\right)$. Then every model of T is atomic over P.
Proof: By Lemma 13 it is clearly enough to show that every countable model of T is atomic over P. So let M be a countable model of T. Suppose by way of contradiction that there is a tuple $\bar{a} \in M$ such that $t p_{M}\left(\bar{a} / P^{M}\right)$ is not isolated. Let $p=t p_{M}\left(\bar{a} / P^{M}\right)$. Let $q(x)=\{P(x)\} \cup\left\{x \neq c: c \in P^{M}\right\}$. Then by the Omitting types theorem, $T^{\prime}=T h\left((M, c)_{c \in P} M\right)$ has a countable model $(N, c)_{c \in P} M$ which omits p and q. As this model omits q, we have $N_{0}=M_{0}$. But N and M cannot be isomorphic over M_{0}, as $(N, c)_{c \in M_{0}}$ omits p. This contradicts the \aleph_{0}-categoricity of T over $\left(P, L_{0}\right)$, proving the proposition.

Note 15: Let T be \aleph_{0}-categorical over (P, L_{0}). Fix a formula $\alpha(\bar{x}, \bar{y})$. Given an (L-) formula $\phi(\bar{x}, \bar{z})$, let $\phi_{\alpha}(\bar{z}, \bar{y})$ denote the formula

$$
(\forall \bar{x})(\alpha(\bar{x}, \bar{y}) \rightarrow \phi(\bar{x}, \bar{z})) .
$$

Let $\left(d_{\alpha} \phi\right)(\bar{z}, \bar{y})$ denote an L_{0}-formula corresponding to $\phi_{\alpha}(\bar{z}, \bar{y})$ as given by Corollary 11. So d_{α} is an n-schema in \bar{y} over L_{0} (in the sense of Definition 2), where $n=l(\bar{x})$.

Now let $M \vDash T, \bar{a} \in M$ and suppose that the formula $\alpha(\bar{x}, \bar{c})$ isolates $\operatorname{tp}\left(\bar{a} / P^{M}\right)\left(\bar{c} \in P^{M}\right)$. It is then easy to see that $d_{\alpha}(\bar{c})$ defines $\operatorname{tp}\left(\bar{a} / P^{M}\right)$. We will proceed to show that we can choose such α 's "uniformly in T " as asserted in Theorem 6.

Given T and $n<\omega$, we will construct a tree of formulas such that any infinite branch of this tree gives rise to a model M of T and n-tuple $\bar{a} \in M$ such that $t p_{M}\left(\bar{a} / P^{M}\right)$ is not isolated. It will follow (from Proposition 14) that if T is \aleph_{0}-categorical over (P, L_{0}) then this tree has no infinite branches. This, together with Note 15 will allow us to prove the left to right direction of Theorem 6.

Let us now fix $n<\omega$. \bar{x} will denote the n-tuple of variables $\left(x_{0}, \ldots, x_{n-1}\right)$.
Definition 16 Let $\alpha(\bar{x}, \bar{y})$ and $\phi(\bar{x}, \bar{z})$ be L-formulas. By " $\alpha(\bar{x}, \bar{y})$ is a $\phi(\bar{x}, \bar{z})$ atom" we mean the formula " $(\forall \bar{z})((\forall \bar{x})(\alpha(\bar{x}, \bar{y}) \rightarrow \phi(\bar{x}, \bar{z})) \vee(\forall \bar{x})(\alpha(\bar{x}, \bar{y}) \rightarrow$ $7 \phi(\bar{x}, \bar{z})))^{\prime}$. This is clearly a formula in \bar{y}; i.e., a statement about \bar{y}.

Let a_{0}, \ldots, a_{n-1}, and c_{i} for $i<\omega$ be new constants, and let us write \bar{a} for $\left(a_{0}, \ldots, a_{n-1}\right)$. Let L^{\prime} be the expansion of L obtained by adjoining these constants. Let T_{1} be $T \cup\left\{P c_{i}: i<\omega\right\}$. Let us list all L^{\prime}-sentences as $\left\{\chi_{r}: r<\omega\right\}$.

Now we will define, for certain $\eta \epsilon{ }^{\omega>} \omega, L^{\prime}$-sentences Θ_{η} so as to satisfy the following:
(i) $\Theta_{\langle \rangle}$is ' $\bar{a}=\bar{a}$ '.
(ii) If Θ_{η} is defined and η extends τ then also Θ_{τ} is defined.
(iii) If η is odd, Θ_{η} is defined and η extends τ then $\vdash \Theta_{\eta} \rightarrow \Theta_{\tau}$.
(iv) If Θ_{η} is defined then $\left\{\Theta_{\eta i r}: r \leqslant l(\eta)\right\}$ is consistent with T_{1}.
(v) Suppose that $l(\eta)=2 r$ and Θ_{η} is defined. Then $\Theta_{\eta \wedge(1)}$ is $\wedge\left\{\Theta_{\eta i s}: s \leqslant 2 r\right\} \wedge$ $\neg \chi_{r}$ if the latter is consistent with T_{1}. Also $\Theta_{\eta}{ }^{\wedge}\langle 0\rangle$ is $\wedge\left\{\Theta_{\eta \mid s}: s \leqslant 2 r\right\} \wedge \chi_{r}$ if the latter is consistent with T_{1}, unless χ_{r} is of the form " $(\exists z \in P) \chi^{\prime}(z)$ " for some $\chi^{\prime} \in L^{\prime}$ in which case, for some c_{i} which does not appear in $\left\{\Theta_{\eta \mid s}: s \leqslant 2 r\right\}, \Theta_{\eta^{\wedge}(0)}$ is $\wedge\left\{\Theta_{\eta \mid s}: s \leqslant 2 r\right\} \wedge \chi^{\prime}\left(c_{i}\right)$. $\Theta_{\eta^{\wedge}(j)}$ is undefined otherwise.
(vi) Suppose that η is odd, and Θ_{η} is defined, and so of the form $\alpha(\bar{a}, \bar{c})$ (\bar{c} a tuple of the c_{i} 's). If $\{$ " $\alpha(\bar{x}, \bar{c})$ is a $\phi(\bar{x}, \bar{z})$-atom" : $\phi(\bar{x}, \bar{z}) \in L\}$ is not consistent with $T_{1} \cup \Theta_{\eta}$ then $\Theta_{\eta^{\wedge}(0)}$ is ‘ $\bar{c}=\bar{c}$ '. If not, then for some $\kappa \leqslant \omega$, $\Theta_{\eta^{\wedge}\langle i\rangle}$ is defined iff $i<\kappa$ and moreover $\left\{\Theta_{\eta^{\wedge}\langle i\rangle}: i<\kappa\right\}=\{$ " $\alpha(\bar{x}, \bar{c})$ is not a $\phi(\bar{x}, \bar{z})$-atom" $: \phi(\bar{x}, \bar{z}) \in L$ and " $\alpha(\bar{x}, \bar{c})$ is not a $\phi(\bar{x}, \bar{z})$-atom" is consistent with $\left.T_{1}\right\}$ and is not equivalent $\bmod T_{1}$ to any proper finite subset of itself. $\Theta_{\eta^{\wedge}\langle i\rangle}$ is undefined otherwise. (Note in the second case $\Theta_{\eta^{\wedge}\langle i\rangle}$ can be undefined for all $i<\omega$.)

The Θ_{η} can clearly be defined so as to satisfy (i)-(vi) above.
Let S_{n}^{\prime} be the set of $\eta \epsilon{ }^{\omega>} \omega$ such that Θ_{η} is defined.
Lemma 17 Suppose that S_{n}^{\prime} has an infinite branch. Then T has a countable model M containing an n-tuple \bar{a} such that $t_{p_{M}}\left(\bar{a} / P^{M}\right)$ is not isolated.

Proof: Let B be an infinite branch of S_{n}^{\prime}. Let $T^{\prime}=\left\{\Theta_{\eta}: \eta \in S\right\}$. By condition (v) above, T^{\prime} is complete (in L^{\prime}). Moreover, by (iv), T^{\prime} is consistent and contains $T \cup\left\{P c_{i}: i<\omega\right\}$. Suppose that the L^{\prime}-sentence $(\exists z \in P) \gamma(z)$ is consistent with $T^{\prime} .(\exists z \in P) \gamma(z)$ will be χ_{r} for some $r<\omega$. It is then clear from (v) that for some $i<\omega, T^{\prime} \vdash \gamma\left(c_{i}\right)$. It follows from this that T^{\prime} has a countable model which omits the type $\{P y\} \cup\left\{y \neq c_{i}: i<\omega\right\}$. Let M^{\prime} be such a model. We use \bar{a} and c_{i} to denote the interpretations in M^{\prime} of these constants. Thus $M=M^{\prime} \upharpoonright L$ is a model of T and moreover $P^{M}=\left\{c_{i}: i<\omega\right\}$.

I assert that $t p_{M}\left(\bar{a} / P^{M}\right)$ is not isolated. To see this, suppose that $M \vDash \beta(\bar{a}, \bar{c})$ where $\beta(\bar{x}, \bar{y}) \in L$ and $\bar{c} \in P^{M}$. Thus $\beta(\bar{a}, \bar{c}) \in T^{\prime}$ and so for some odd $\eta \in B$ we have $\vdash \Theta_{\eta} \rightarrow \beta(\bar{a}, \bar{c})$. We can assume that Θ_{η} is of the form $\alpha\left(\bar{a}, \bar{c}^{\prime}\right)$ where \bar{c}^{\prime} is a tuple of c_{i} 's which includes c. As B is infinite $\Theta_{\eta^{\wedge}\langle i\rangle}$ is defined for some $i<\omega$. Thus by condition (vi) above, " $\alpha\left(\bar{x}, \bar{c}^{\prime}\right)$ is not a $\phi(\bar{x}, \bar{z})$-atom" ϵT^{\prime} for some $\phi(\bar{x}, \bar{z}) \in L$. It is clear from this and Definition 16 that $\alpha\left(\bar{x}, \bar{c}^{\prime}\right)$ does not isolate $t p_{M}\left(\bar{a} / P^{M}\right)$. Thus neither can $\beta(\bar{x}, \bar{c})$ isolate $t p_{M}\left(\bar{a} / P^{M}\right)$. As $\beta(\bar{x}, \bar{c})$ was an arbitrary formula over P^{M} satisfied by \bar{a} in M, it follows that $t p_{M}\left(\bar{a} / P^{M}\right)$ is not isolated. Thus the assertion is proved, and so also the lemma.

Proposition 18 Let T be \aleph_{0}-categorical over $\left(P, L_{0}\right)$. Then for each n, S_{n}^{\prime} has no infinite branch.

Proof: By Proposition 14 and Lemma 17.

5 Proof of the left to right direction of Theorem 6 Here I point out how the left to right direction of Theorem 6 can be deduced from Proposition 18. So we assume that $T \vdash(\exists x) P x$ and that T is \aleph_{0}-categorical over $\left(P, L_{0}\right)$. Let us fix $n<\omega(n \geqslant 1)$. We know from Proposition 18 that S_{n}^{\prime} has no infinite branch. We will construct from S_{n}^{\prime} and the attached formulas a tree S_{n} and attached formulas satisfying the required conditions. In fact I will just show how to construct the first two 'levels' of S_{n}, the rest of the construction proceeding in the same way.

First let X be the smallest subset of S_{n}^{\prime} satisfying (i) $\rangle \in X$ and (ii) if $w \in X$ and $w^{+} \cap S_{n}^{\prime}$ is finite then $w^{+} \cap S_{n}^{\prime} \subset X$.

Lemma $19 \quad X$ is finite.
Proof: By Konig's Lemma and the fact that S_{n}^{\prime} has no infinite branches.
Now let $X^{\prime}=\left\{w \in X: w^{+} \cap X=\phi\right\}$. Then we have immediately:
Lemma 20 If $w \in X^{\prime}$ then w is odd, and either w is an endpoint of S_{n}^{\prime} or $w^{+} \cap S_{n}^{\prime}$ is infinite.

Now let $Y=\left\{w \in X: w\right.$ is odd and $w^{+} \cap S_{n}^{\prime}$ is finite and nonempty, and $\Theta_{w^{\wedge}(0)}$ is not of the form ' $\left.\bar{c}=\bar{c} ’\right\}$. Then clearly $Y \cap X^{\prime}=\phi$ and $Y \cup X^{\prime}$ is finite. Let us enumerate $Y \cup X^{\prime}$ as $\left\langle w_{i}: i<k\right\rangle$ for some $k<\omega$. Then the set of elements of S_{n} which have length 1 will be precisely $\{\langle i\rangle: i<k\}$. Now we define the formulas $\alpha_{i i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$ for $i<k$. First suppose that $w_{i}=w \in X^{\prime}$. So Θ_{w} is a formula of the form $\alpha(\bar{a}, \bar{c})$. Let $\bar{y}_{\langle i\rangle}$ be a sequence of variables which has the same length as \bar{c}. Then we put $\alpha_{(i)}\left(\bar{x}, \bar{y}_{(i)}\right)$ to be $\alpha\left(\bar{x}, \bar{y}_{(i)}\right)$ which is clearly an L-formula. If $w_{i}=w$ and $w \in Y$, then let the formula $\Theta_{w} \wedge\left\{7 \Theta_{w^{\wedge}\langle j\rangle: w^{\wedge}\langle j\rangle \epsilon}\right.$ $\left.S_{n}^{\prime}\right\}$ be written as $\alpha(\bar{a}, \bar{c})$. We put $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$ to be $\alpha\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$ for some suitable sequence $\bar{y}_{\langle i\rangle}$. (Let us also assume that $\vdash \alpha_{i j}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right) \rightarrow P y$ for each y in $\bar{y}_{\langle i\rangle}$ and each $i<k$.)

Lemma 21

(i) $T \vdash(\forall \bar{x}) \bigvee_{i<k}\left(\exists \bar{y}_{\langle i\rangle} \in P\right) \alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$.
(ii) Let $i<k, w=w_{i}$ and either $w \in Y$ or w is an endpoint of S_{n}^{\prime}. Then $T \vdash$ ' $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{(i\rangle}\right)$ is a $\phi(\bar{x}, \bar{z})$-atom" for all $\phi(\bar{x}, \bar{z}) \in L$.
Proof: (i) follows easily from properties (v) and (vi) of the Θ_{η}, together with the fact that $T \vdash(\exists x) P x$. For (ii), suppose first that $w=w_{i}$ and w is an endpoint of S_{n}^{\prime}. If Θ_{w} is written as $\alpha(\bar{a}, \bar{c})$, we must have that ' $\alpha(\bar{x}, \bar{c})$ is not a $\phi(\bar{x}, \bar{z})$-atom" is inconsistent with T_{1} for each $\phi(\bar{x}, \bar{z})$ (by property (vi)) of the $\left.\Theta_{\eta}\right)$. But $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$ is $\alpha\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$, and thus $T \vdash$ " $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$ is a $\phi(\bar{x}, \bar{z})$-atom" for each $\phi(\bar{x}, \bar{z}) \in L$. Now suppose that $w=w_{i}$ is in Y. Again if we write $\alpha(\bar{a}, \bar{c})$ for Θ_{w} then we have by property vi of the Θ_{η} and the definition of $\alpha_{\langle i\rangle}$ that $\vdash \alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{(i)}\right) \rightarrow$ " $\alpha\left(\bar{x}, \bar{y}_{(i)}\right)$ is a $\phi(\bar{x}, \bar{z})$-atom" whenever " $\alpha\left(\bar{x}, \bar{y}_{(i)}\right)$ is not a $\phi(\bar{x}, \bar{z})$-atom" is consistent with T. As we also have $\vdash \alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{(i)}\right) \rightarrow \alpha\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)$, it follows that $T \vdash$ " $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{(i)}\right)$ is a $\phi(\bar{x}, \bar{z})$-atom" for all $\phi(\bar{x}, \bar{z}) \in L$. Thus part ii of the lemma is proved.

Now I define level two of S_{n} and the attached formulas. Let $i<k$ be such
that for $w=w_{i}, w^{+} \cap S_{n}^{\prime}$ is infinite. Note that $w^{+} \subset S_{n}^{\prime}$ in this case. We then stipulate that $\langle i, j\rangle \in S_{n}$ for every $j<\omega$. For any other $i<k$ (i.e., for i satisfying the hypotheses of Lemma 21 (ii)) we stipulate that $\langle i, j\rangle \notin S_{n}$, for all $j<\omega$. Thus if i satisfies the hypotheses of Lemma 21 (ii) then $\langle i\rangle$ will be an endpoint of S_{n}. Now suppose that $\langle i, j\rangle \in S_{n}$. So clearly $\Theta_{\langle i, j\rangle}$ is defined, and is of the form $\psi(\bar{c})$ where \bar{c} is the tuple of c-constants occurring in $\Theta_{(i\rangle}$. Then we define $\psi_{\langle i, j\rangle}^{\prime}\left(\bar{y}_{\langle i\rangle}\right)$ to be $\psi\left(\bar{y}_{\langle i\rangle}\right)$.

Now for each $i<k$, let $d_{\alpha_{\langle i\rangle}}$ be the n-schema in $\bar{y}_{\langle i\rangle}$ as defined in Note 15. Let us rebaptise $d_{\alpha_{(i\rangle}}$ as $d_{\langle i\rangle}$.
Lemma 22
(i) Let $i<k$ and $\langle i\rangle$ be an endpoint of S_{n}. Then for any $M \vDash T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\langle i\rangle}(\bar{a}, \bar{c}), d_{(i)}(\bar{c})$ defines tp $\left(\bar{a} / P^{M}\right)$.
(ii) Let $i<k$ and $\langle i\rangle$ not be an endpoint of S_{n}. Then for any $M \vDash T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_{0}$ such that $M \vDash \alpha_{\langle i\rangle}(\bar{a}, \bar{c})$ and $M \vDash \neg \psi_{\langle i, j\rangle}^{\prime}(\bar{c})$ for all $j<\omega$, $d_{\langle i\rangle}(\bar{c})$ defines $t p\left(\bar{a} / P^{M}\right)$.

Proof: As already mentioned, if $\langle i\rangle$ is an endpoint of S_{n} then i satisfies the hypothesis of Lemma 21 (ii). Now part i of the lemma follows from Lemma 21 (ii) and Note 15. For part ii let us first note that if $\langle i\rangle$ is not an endpoint of S_{n} then $\left\{\psi_{\langle i, j\rangle}^{\prime}\left(\bar{y}_{\langle i\rangle}\right): j<\omega\right\}=\left\{" \alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{\langle i\rangle}\right)\right.$ is not a $\phi(\bar{x}, \bar{z})$-atom": $\phi(\bar{x}, \bar{z}) \in L$, " $\alpha_{\langle i\rangle}\left(\bar{x}, \bar{y}_{(i)}\right)$ is not a $\phi(\bar{x}, \bar{z})$-atom" is consistent with $\left.T\right\}$. Thus if $M \vDash T, \bar{a}$ is an n-tuple of $M, \bar{c} \in M_{0}, M \vDash \alpha_{\langle i\rangle}(\bar{a}, \bar{c})$ and $M \vDash \neg \psi_{(i, j\rangle}^{\prime}(\bar{c})$ for all $j<\omega$, then clearly $\alpha_{\langle i\rangle}(\bar{x}, \bar{c})$ isolates $\operatorname{tp}\left(\bar{a} / P^{M}\right)$. Part ii of the lemma now follows from Note 15.

For $\langle i, j\rangle \in S_{n}$, let $\psi_{\langle i, j\rangle}\left(\bar{y}_{\langle i\rangle}\right)$ be an L_{0}-formula corresponding to $\psi_{\langle i, j\rangle}^{\prime}\left(\bar{y}_{\langle i\rangle}\right)$ as given by Corollary 11. I now assert that with this definition of the first two levels of S_{n}, and with the above choice of $\alpha_{\langle i\rangle}$ and $d_{\langle i\rangle}$ for $\langle i\rangle \in S_{n}$ and of $\psi_{\langle i, j\rangle}$ for $\langle i, j\rangle \in S_{n}$, that II(i) of Theorem 6 is satisfied, as is I of Theorem 6 (for η of length 1). The satisfaction of II(i) is given by Lemma 21(i), and the satisfaction of I by Lemma 22 .

This above construction can be repeated to obtain levels 3 and 4, etc., of S_{n} and the attached formulas, so as to satisfy the required conditions. The L_{0}-formulas $\chi_{n}\left(\bar{y}_{\eta}\right)$ mentioned in the last part of Theorem 6 can be obtained from Corollary 11 . Thus Theorem 6 is proved.

The problem of characterising theories which are strongly categorical over (P, L_{0}) would seem to be much more difficult. In this connection we conjecture:

Conjecture $23 \quad T$ is strongly categorical over (P, L_{0}) if and only if: (i) T satisfies the uniform reduction theorem (the conclusion of Proposition 10) and (ii) if $M \vDash T, A \subset M, A \supset P^{M}$ and $a \in M$ then $t p_{M}(a / A)$ is isolated.

Of course even if this were true, there would still remain the task of obtaining from it a syntactic characterisation of strong categoricity.

Finally I will mention some past literature and work on the subject matter of this paper. Strongly categorical theories were introduced, in the form of "single-valued operations" by Gaifman in [2], where he stated the uniform
reduction theorem as well as a uniform definability theorem for such theories. Gaifman has also shown, in as yet unpublished work, that if we assume in addition that each model M of T is rigid over P^{M}, then for each $M \vDash T, M$ is "explicitly definable" from M_{0}, uniformly in T. Wilfrid Hodges pointed out to me several years ago that if T is strongly categorical over $\left(P, L_{0}\right)$, then every countable model M of T is atomic over P^{M}. Strongly categorical theories also figure in the author's thesis, where some strengthenings of results mentioned in this paragraph were proved.

REFERENCES

[1] Feferman, S., "Two notes on abstract model theory. I. Properties invariant on the range of definable relations between structures," Fundamenta Mathematica, vol. 82 (1974), pp. 153-165.
[2] Gaifman, H., "Operations on relational structures, functors and classes," pp. 21-39 in Proceedings of the Tarski Symposium, American Mathematical Society, Providence, Rhode Island, 1974.

Department of Mathematics

McGill University
Montreal, Canada

