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The Simple Consistency of a
Set Theory Based on the
Logic CSQ

ROSS T. BRADY*

This paper proves the simple consistency of the set theory CST. CST has
the Generalized Comprehension Axiom (GCA), (y)(Vx)(x € y <> A), and the
Extensionality Rule, x =y = x e w <>y € w, where x = y =4 (Vz)(z € x <
z € y). CST is based on a logic CSQ, which is semantically described below.

CSQ Primitives

1. ~,&,—,V (connectives and quantifier)
2. f.gh f', ... (predicate constants)
3. x, ¥ z x',...(individual variables)
4. a,, a,, as, d,, . . . (individual constants).

CSQ Formulas

1.  An individual variable or constant is a term.

2. Ifty, ... t, are terms and f is a predicate constant, then f¢,... ¢, is an
atomic formula.

3. If A and B are formulas and x is an individual variable then ~4, A & B,
A = B and (Vx)A are formulas.

A sentence is a formula with no free variables.

A CSQ model structure (CSQ m.s.) consists of ordered triples (T, K, R),
such that K is a set, T is a member of K, and R is a two-place relation on K,
with the following postulates holding: For a € K,

*[ acknowledge help from a referee of this Journal in choosing the logic CSQ, in using the
abstract {xy: A}, in setting out the proof of Lemma 4, and in defining and using G(4(a)).
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pl RTa.

p2 If Raac thenax=T.

p3 If J C K and J # ¢ then, for some a € J, for all 8 ¢ J, if o« # 3 then Rf«
and not Rog.

A valuation V on the CSQ m.s. M is a function assigning one value, 1, 3, or

0, to each atomic sentence, for each member o of K. [In symbols,
V(fay...ay,0)=1, % 0r0.]

Each valuation is inductively extended to all sentences, as follows:

Forae K,

(i) V(~A4, @)= 1iff V(4, o) = 0.

V(~4, ) =0iff V(4, o) = 1.

(ii) V(A &B,o)=1iff V4, ) =1and V(B, @) = 1.
V(A &B, a)=0iff V(4, ) =0 or V(B, @) = 0.

(i) V(A —B,o)=1iff, forall e K, if Raf then V(4 7 B, f) = 1.
V(4 = B, a) = 0 iff, for some § € K, Raf and V(4 7> B, §) = 0.

(iv) V((Vx)A, o) = 1 iff, for all individual constants a, V(A4 %x, o) = 1.
V((Vx)4, ) = 0 iff, for some individual constant a, V(4 %x, a) = 0.

The connective ‘7> is introduced here to simplify (iii), and is evaluated as
follows:

W) Vi Z>B, o)=1iff V4, &) < V(B, o).
V(i Z>B, o) =0iff V(4, ®)=1and V(B, &) =0.

A formula A with free variables x, . . ., x,, is valid in a CSQ m.s. M iff, for
each valuation V on M, for all individual constants ay, . . ., a,, V(A4 %1/x; . . .
M T)= 1.

A formula A is valid in this CSQ semantics iff, A is valid in all the CSQ
model structures.

As can be seen, CSQ is an intensionalized Pukasiewicz three-valued
predicate logic, with substitutional quantification. The above semantics is ab-
stracted from the model structure of MC of Section 2, which is used to prove
the simple consistency of the set theory CST. The semantics is used in Section 1
to establish axioms and rules of logics for which the simple consistency result
applies.

Let us fit this result into the context of the previous work on the
consistency of the axioms of comprehension and extensionality. Let us consider
the Comprehension Axiom in the form:

*) @Y)(Vx)(x € y <> A(x)), where y is not free in A(x).

Previous work has concentrated on two logics, the Lukasiewicz infinitely valued
predicate logic, LoQ, and the Lukasiewicz three-valued predicate logic, L;Q.
Using L.Q, Skolem [9] showed the consistency of (*), where A(x)
contains no quantifiers. Then, using the same logic, Chang [6] showed the
consistency of (*), where A(x) has at most the variable x free, and also of (*),
where each bound variable u in 4(x) is restricted to occur only in the second
place in atomic formulas of the form v € w. This latter result is a strengthening
of Skolem’s result. Again, using Lo.Q, Fenstad [8] showed the consistency of
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(*), with the free variable x of 4(x) being allowed to occur only in the first
place in atomic formulas of the form v e w in A(x). Chang [7] points out that
the restriction on (*) that y not occur free in A(x) can be removed for these
four consistency results. Then, more recently, White [12] strengthened these
four results by showing the consistency of (*) using L..Q, retaining the restric-
tion that y not occur free in A(x). White also shows that the Axiom of
Extensionality in the form (Vz2)(z e x <>z e ») > (WW)(x e w <>y e w)
cannot be consistently added to (*), and suggests replacing the main connective
‘=’ by a new connective =’ of Loo.

Using L;Q, Skolem, in [10] and [11], showed the consistency of (*), with
A(x) not containing any quantifier nor any occurrence of ‘>’. He also showed
that the Axiom of Extensionality in the form (Vz)(z e x <>z € y) e (Vw)(x €
w <y € w) could be consistently added, A ey being defined as 4 - A = B.
In [2], the present author, using L3Q, strengthened Skolem’s result by showing
the consistency of (*), with A(x) not containing any occurrence of ‘=, and also
showing that the above form of the Axiom of Extensionality can be con-
sistently added.

The result of the present paper strengthens the Comprehension Axiom (*)
to the generalized form, GCA, where A(x) may have y occurring free, includes
the Extensionality Rule in place of an axiom, and replaces the logic by CSQ.
Moreover, it should be possible to convert the Extensionality Rule to an axiom
of the form (Vz)(z € x <= z € y) 7 (Yw)(x e w <>y e w), where P’ is a
suitable new connective, similar to White’s ‘=’ of L, but I leave this for now.

The method of proof is similar to the method adopted in [4] for the proof
of the nontriviality of a dialectical set theory. The three-valued logic RM3Q is
replaced by L;Q, and a transfinite sequence of transfinite sequences of L3Q
model structures is employed:

M, <M, 1< ... SM; ), <... for countable ordinals 7.

It is shown that {MO’AO,. oo My a3, with k satisfying My x, = Mysqn,p 152
model structure for CST.

1 The logic CTQ and the set theory CST I show that the following system
CTQ is a subsystem of CSQ, in order to establish a system of axioms and rules,
for which the ensuing consistency proof works.

CTQ Primitives: As for CSQ.

CTQ Definitions. A v B =3 ~(~A & ~B); A <> B =4 (A > B) & (B > A);
04 =4 (A > A) > A; 04 =df ~0O~A4; 3x)A =4 ~(Vx)~A.

Axioms

1. A->A.

2. O0A—>B)=>B->C—>. A—~C.

3. dA4A—->B)»>.C~>A~> C—B.

4. A&B—A.

5. A&B—B.

6. A>B)&A~>C)> A->B&C.
7. AABvC)>(A&B)v (4 &C).
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8. A>~B—> B—~>~A.

9. ~~4->A.

10. A>B—~>.C—>.A~B.

11. OA—>.B—>A.

12. OOA —»>. A—->B~—~>0B.

13. 04 & OB ~>0(A4 & B).
14. OA »B)—~>.0A ~>0OB.
15. (V¥x)A = A Vx, where y is free for x in A.

16. (Vx)(A > B)—>. A = (Vx)B, where x is not free in A.
17. (Vx)(A vB)—>Av (Vx)B, where x is not freein A.

Rules

1. A, A->B=B.

2. A, B=A&B.

3. CvA,Cv(A—>B)=CvB
4. CvA=>CvOA.

5. A=(Vx)4.

In showing that the axioms of CTQ are valid in the CSQ semantics and the
rules of CTQ preserve validity in the semantics, the following five notes are of

assistance.

(D

It suffices, in order to show the validity of a formula A, to consider

only its sentential substitution instances. It also suffices, in order to show the
preservation of validity of a rule, to consider only sentential substitution
instances, except for Rule 5, where x is considered free in A.

(2

©))

4

(5)

For sentences A and B, fora e K,

V(A = B, o) = 1 iff, for all 8 € K such that Rof, if
V(4, B)=1then V(B, B) = 1,and if V(4, B) = 1 or % then
V(B,B)=1or i

V(A = B, a) = 1 or § iff, for all § € K such that Rog, if
V(4, )= 1 then V(B, /) = 1 or L.

V(A —=>B, T)=1Iiff, forallfe K,if V(4, f) =1 then V(B, ) =1,
and V(4, B) =1 or 4 then V(B, f) =1 or 3.

V(A —~>B,T)=1or1iff, forall e K, if V(4, f) = 1 then
VB, B =1 or% [due to pl1].

For a sentence 4, for a € K|

V(OA, a) =1 iff, for all 8 € K such that RagB, V(4, B) = 1.

V(OA, @) =1 or 3 iff, for all B € K such that Rag, V(4, B) =1 or 3
V(CA4, o) = 1 iff, for some f € K such that Rof, V(4, B) = 1.

V(04, o) = 1 or 1 iff, for some B € K such that RoaB, V(4, f) = 1 or 1.

For sentences 4 and B, forx € K,
VAVB a)=1iff VA, ®)=10or VB, a)=1.
VAVB, a)=0iff V(4, ) =0and V(B, o) = 0.

Fora, B, v € K, if Rof and RBy then Rory [due to p3].
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Theorem 1 For all formulas A, if A is a theorem of CTQ then A is valid in
the semantics for CSQ.

Proof: Let A, B, and C be sentences. Let « € K. We test the following sample
of axioms and rules of CTQ. The remainder follow by the same techniques.

(A2) () Let V(@A — B), o) = 1. Then, for all 8 ¢ K such that Rag,

(A8)

(i)

()

(ii)

(A10) (i)

(R1)

(R4)

(R3)

(ii)

VA—->B,p=1.

(@) Let V(B = C, f) =1 and RoaB. Then, for all v such that Ry, if
V(B,v) = 1 then V(C,v) = 1, and if V(B,v) = 1 or 3 then
V(C,v) =1 or 4. Since V(4 > B, ) = 1, if V(4, v) = 1 then
V(C, v) = 1, and if V(4,v) = 1 or 4 then V(C,v) =1 or 4.
Hence, V(A ~>C, 8) = 1.

(b) Let V(B —>C, B) =1 or 3 and Raf. Then, for all y such that RSy,
if V(B,v) = 1 then V(C, y) = 1 or L. Since V(4 = B, p) = 1, if
V(4, y) =1 then V(C, v) =1 or 3. Hence, V(4 > C, ) =1 or 4.
By (a) and (b), VB>C—~> A>C, a)=1.

Let V(@O(4 = B),®) = 1 or 4. Then, for all § such that Raf, V(4 ~>

B, B)=1 or 3. Let V(B > C, §) = 1 and Rap. Then, for all y such that

RpBy, if V(B,v) =1 or 3 then V(C, v) = 1 or 1. Hence, if V(4, v) = 1

then V(C,y) = 1 or 4, and V(4 ~> C,B) =1 or 3. So, V(B > C —.

A->C a)=1or3.

Let V(4 = ~B, o) = 1. Then, for all 8 such that Rag, if V(4, f) =1
then V(~B, B) =1, and if V(4, B) =1 or % then V(~B, ) =1 or -21;
Hence, if V(B, B) =1 then V(~A4, f) = 1, and if V(B, B) = 1 or 4 then
V(~4,B8 =1or % So, V(B> ~A,a)=1.

Let V(A > ~B, o) = 1 or 4. Then, for all § such that Rap, if
V(4,B) =1 then V(~B,B) = 1 or 4. Hence, if V(B, ) = 1 then
V(~A,B)=1or+. So,V(B>~A4, ®)=1or 3.

Let V(4 = B, «) = 1. Then, for all v such that Rary, if V(4, v) =1

then V(B, v) = 1, and if V(4, v) = 1 or 4 then V(8, v) =1 or 4.

(@ Let V(C, B = 1 and RoaB. Let Rfy. Then, since Ray,
V(4 ~>B, p)=1.

(b) Let V(C, B) =1 or 3 and Rop. As for (a), V(4 > B, B) =1 or -;—
By (a) and (b),(C>.A—>B, o) =1,

Let V(A ~ B, @) =1 or 1. Then, for all ¥ such that Rary, if V(4, y) = 1

then V(B, y) =1 or 4. Let V(C, B) = 1 and Rory. Let RBy. Then, since

Roy,V(A—>B,B)=1or%. So,V(C>.A~>B,a)=1or7.

Let VA, T) =1 and V(A —~>B,T) = 1. Then if V(4, ) = 1 then
V(B, o) = 1, for all « € K. Hence, if V(4, T) =1 then V(B, T) = 1,
andsoV(B, T)=1.

Let V(CVA, T)=1.ThenV(C, T)=1lorVA, T)=1.1fV(4, T)=1
then, since RTT, V(®A, T)=1. Hence, V(C, T)=10orV(®A, T) =1,
andso V(CvOA4, T)=1.

Let A be a formula with at most the variable x free. Let V(4 %x, T) =
1 for all constants a. Then V((Vx)A4, T) = 1.
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Some Theorems and Derived Rules of CTQ

A—->B-0(—>B)
A->B->B->C—>A4~>C
A->B=>C—>A—->C—B
04 - 0O0A.

A =04
0OA4A=4
CvOA=CvA.

It should be noted that all theorems of CTQ are theorems of the
tukasiewicz infinitely valued logic L.Q, and that all rules of CTQ are derived
rules of LoQ.

A quantified relevant subsystem RCTQ of CTQ can be obtained as
follows:

RCTQ =CTQ - Ax.10 — Ax.11 + Ax.18, where Ax.18 is:
18. A—-B—->0(4 —~B).

RCTQ is a subsystem of the quantified relevant logic RWQ + Rule 3, and RCTQ
properly contains the system TWQ. In fact,

TWQ =RCTQ - Ax.2 — Ax.3 -~ Ax.12 - Ax.13 - Ax.14 — Rule 3 - Rule 4
+ Ax.19 + Ax.20, where the additional axioms are:

19. A>B—>B>C—~> A~>C
200 A>B—>. C>A~> C—B.

TWQ is singled out as being reasonably ‘“‘deductively stable”, as it does not
contain the rather incongruous Axioms 2, 3, 12, 13, and 14 and Rules 3
and 4. The system TWQ is in fact obtained by dropping(4 >~ A >B)—> A > B
and A > ~4 = ~A from the system T and by adding the usual quantifica-
tional axioms and rule. Note that A > ~A4 = ~A4 is dropped as for the system
RW, where it is deductively equivalent to (4 > A >B)—> A > B.

The system CST of set theory is formally set out as follows:

CST Primitives

. ~ &= 7, V (connectives and quantifier)
2. t, f, n (sentential constants)

3. x,¥, 2z x',...(set variables)
4. € (membership relation).
CST Formation Rules

1.  Where ¢, and ¢, are set variables or terms, ¢, € ¢, is an initial formula, and
so also a formula.

2. A sentential constant, ¢, f, or n, is an initial formula, and so also a formula.

3. If A and B are initial or admissible formulas and x is a set variable, then
~A, (A & B), and (Vx)A are admissible formulas, and so also formulas.
Thus all initial formulas are also admissible formulas.

4. If A is an admissible formula and x and y are distinct set variables then
{xy: A} is a term.
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5. If A and B are admissible formulas then A = B is an initial formula, and so
also an admissible formula and a formula.

6. If A and B are formulas and x is a set variable then ~4, (4 & B), (4 7B,
and (Vx)A are formulas.

As usual, a sentence is a formula with no free variables. Admissible and initial
formulas are distinguished for the same purposes as in [3] and [4]. That is,
admissible formulas are those that can be put on the right hand side of the GCA
and hence can be used to form the terms {xy: A}, and initial formulas are those
that cannot be evaluated using the valuation conditions of the connectives

~, &, 7, and the quantifier, V, of the Lukasiewicz three-valued logic, L;Q.

CST Definitions

AVB =g ~(~A &~B),A<>B=g(A>B)& (B> A), A< B=¢y (AP B &
B A), 3x)A =g ~(Vx)~A, ix: A} =gr {xy: A}, where y is not free in 4,
x=y =g (Vz)(zex<>zey).

The set of logically valid formulas are those of CSQ' and the rules are those that
preserve validity in each model structure of CSQ’', where CSQ' is CSQ as set
out in the introduction, but with the following adjustments which are needed
to deal with the above set-theoretic formulas:

1. The connective P’ is formally introduced, for the reason given in the
introduction.

2. The sentential constants, 7, f, and » are added.

3. The predicate constants are replaced by the single membership
predicate, ‘e’.

4. The individual variables are construed as set variables.

5. The individual constants are construed as constant terms of the form
{xy: A}, where 4 has at most the variables x and y free. (Use the
symbols: a, b, ¢, . . ., to refer to these constant terms.)

6. The above formation rules apply.

7. Each valuation V assigns 1 to ¢, 4 to n, and O to f, for each v e K.

CST has the following set-theoretical axiom and rule:

(GCA') (Generalized Comprehension Axiom) z € {xy: A} <> A %A,
where y and z are distinct variables.

(ER) (Extensionality Rule) x=y=xew<>yew.

The existential form of the Generalized Comprehension Axiom, i.e.,
(GCA) 3y)(¥x)(x € y < A), can be derived from GCA'.
Substitution of Identity takes the form of a rule:

(SI) x =y =A < B, where B is A with any number of free occurrences of x
in A replaced by y (where y is free for x in A).

The GCA' provides the motivation and interpretation for the two-variable
set abstract {xy: A}. The extra variable y in A gives those argument places in 4
where the set {xy: A} is substituted on the right hand side of the GCA’, thus
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enabling the GCA to be established in cases where y is free in A. Clearly {xy: A}
reduces to {x: A}, when y is not free in 4. {xy: A} is then a set of all elements
x such that A{Xy:A}/y. Note that such a set need not be unique, as can be shown
by putting x € y for A.

2 The determination of the model structure MC for the set theory CST
The model structure MC consists of a transfinite sequence of L;Q model
structures {Mo g, My, - - o Mia, ), where M, =M"”\n for all n > k. Each of
these L3Q model structures M, ,_is obtained as a fixed point of L3;Q model
structures, Mo, M.y, ..., My, . . ., in the same manner as in [4]. All admis-
sible sentences of the form 4 — B are given a fixed L;Q value over each
T-sequence, My o, . . ., My, - . - That MC is a model structure for the set theory
CST is proved in a similar manner to the proof that MD is a model structure for
DST in [4].

Let us proceed with the determination of MC. Similarly to [3] and [4],
L;0Q model structures, called structures, are introduced. Each structure M is
specified by a valuation V [M] which assigns the L;Q values 1 to ¢, 4 to n, and
0 to f, and exactly one of the values 1, %, and O to every other initial sentence.

Each valuation V[M] is extended from initial sentences to all sentences in
accordance with the matrices for L, and the valuation rules for the quantifier
V as follows:

~ | &t 40 L]t o
s1lo 1|1 L 0o *1|1 4 0
7037 3|3 30 3113
01 olo o o of1 1 1

VIM]((Vx)A) = 1iff V[M](A 9,) = 1 for all constant terms a.
VIM]((¥x)A) = 0 iff V[M](A 9,) = 0 for some constant term a.
VIM]((Vx)A4) = 1 otherwise.

The matrices of the defined connectives ‘v’ and ‘7_)’ are:

vil to L1 1o
11 1 1 *1 {1 10
117 1 1 111 711
2 2 2 2 12 42
0j1 1 0 0]0 11

The valuation rules for 3 are:

VIM]((3x)A) = 1iff V[M]1(4 %) = 1 for some constant term a.
VIMI((3x)A) = 0iff V[M](A %) = 0 for all constant terms a.
VIM]((3x)A4) = { otherwise.

A formula A with free variables x,, . . ., x,, is valid in a structure M iff, for
all constant terms ay, . . ., a,, the valuation V[M] specifying the structure M is
such that V[M1(A “Vx, “x, . . . “Mx,) =1,i.e., A “Vx, ... “Mx, takes the desig-
nated value. Such a formula A is invalid in a structure M otherwise, i.e.,
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VIMI(A Yy .. ) =1 or 0, for some constant termsa,, . . ., a,. In particu-
lar, a sentence A is valid in M iff V[M](A4) =1, and is invalid in M iff V[M](4) =
Loro0.

2

The following ordering relation is defined for structures, as in [3] and [4].
For structures M, and M,, M, < M, =4 for all initial sentences A4, if V[M,](4) =
1 then V[M,](A4) = 1, and if V[M,]1(4) = 0 then V[M,](4) = 0. <is a partial
ordering on structures, identity for structures being defined as follows:
M, = M, =4 for all initial sentences 4, V[M,;](4) = V[M,](4).

Similarly to [3] and [4], we can show that the ordering preserves the
valuations 1 and O for admissible sentences.

Lemma 1 Let M, < M, for structures M, and M,. Then, for all admissible
sentences A, if VIM1(A) = 1 then V[M,1(A) = 1, and if VIM,]1(4) = 0 then
V[Mz](A) =0.

Proof: The proof is as for Lemma 2 of [3] with 1 replacing ¢ and O replacing f.

We next determine the following transfinite sequence of transfinite
sequences of structures, which are used to establish the model structure MC for
CST:

Moo <Moy<...<Mo,<...<Mgy,<...
Myo<Mp,<...<M,<...<M, <...

M o <M, <...<M,, <...<M,, <...

This well-ordering of the sequences in (S) is established by Lemma 2. The
ordinals A,, for each ordinal 7, are established by Lemma 3. The sequence of
sequences, (S), is defined by double transfinite induction, in conjunction with
the proofs of Lemmas 2 and 3 to follow. It is required then to define
\Y [MT,,,] (A4), for all initial sentences A other than sentential constants, for all 7,
for all v. The double induction is divided into four cases:

Case 1. For the structure M, o, there are two subcases:
a. For all admissible sentences A4 and B, V[M,o1(4 = B) = 1.
b. For all admissible formulas 4, with at most the variables x and y free,
and all constant terms a, V [Mg o] (a € {xy: A}) = 3.

Case 2. For the structure M, o, for 7> 0, there are two subcases:
a. For all admissible sentences 4 and B,
VIM, o1(A = B) = 1iff V[Mp,}\p] (ApB)=1forallp<r,
VIM, o1(A ~>B)=0iff V [Mp,)\p] ApB)= 0 for some p <.
b. For all admissible formulas 4, with at most the variables x and y
free, and all constant termsa, V [M,,ol (aefxy: A}) = %
Case 3. For the structures M, ,, for any 7 and for » a successor ordinal, there
are two subcases:
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a. For all admissible sentences A and B,
VIM, ,1(A = B)=VIM, ,](A = B).

b. For all admissible formulas 4, with at most the variables x and y
free, and all constant terms q,
VIM, )@ € txy: A}) = [M,,,41(4 %bvidlly),

Case 4. For the structures M, ,, for any 7 and for » a limit ordinal, there are two

subcases:

a. For all admissible sentences A and B,
VIM, ,1(4 = B)=VIM, (A~ B).

b. For all admissible formulas 4, with at most the variables x and y
free, and all constant termsq,
VIM, l(aeixy: A}) = 1iff VM, ,1(a € {xy: A}) = 1 for some p <v,
VIM, l(@aefxy: A} =0iff VM, ,1(a e {xy: A}) = 0 for some p <.

In the above definition, Lemma 2 was assumed for earlier pairs of struc-
tures in Subcase 4b, and Lemma 3 was assumed for earlier sequences of
structures in Subcase 2a.

Let A be an admissible formula, with at most the variables x and y free,
and let a be a constant term. Define the corresponding admissible sentence,
Cla € {xy: A}), of a e {xy: A} as A 94*7:4}/, Note that for successor ordinals »,
forany 7, VM, ,](a e{xy: A}) =VIM, ,_;1(Cla e {xy: A})).

Lemma 2 For all ordinals T, M, , <M, ,», whenever v <V'.

Proof: The proof is similar to that of Lemma 3 of [3], given that initial
sentences of the form A — B have a fixed value for each 7-sequence.

Lemma 3 (Fixed Point Lemma) For each T sequence, M; o <M, <. .. <
M,, < ... there is a countable ordinal N\, such that: (i) for all ordinals
w2 N, M, =M,y , and (i) for all ordinals p <N\, Mr , F M p41.

Proof: The proof is as given for Lemma 3 of [4], which in turn follows the

proof of Lemma 4 of [3].

Corollary For each ordinal 7, the ordinal \, of Lemma 3 is a denumerable
limit ordinal.

Proof: The proof is similar to that of the corollary to Lemma 4 of [3].

Lemma 4 There is a countable ordinal k such that: () My x, = M1,y a0d
(ii) for all ordinals p <k, M,,’Ap *+ Mp+1,}\p+1-

Proof: As can be seen from the construction (S§) of each 7-sequence, M, o <
M, <...<M,, ... the 7-sequences are distinguished entirely by their
valuations of the initial sentences of the form, A = B, where A and B are
admissible, in the structure M, ,. Hence,

(a) Mp,)\p =Mn,>\n, if VIM,0l(A = B) = [M,,](4 ~> B), for all admissible
sentences A and B. It is also clear from the construction (S) that if p <7 then,

(b) if VM, ,1(A ~ B) =0 then V[M,(](A~>B)=0,and
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(¢) if VM, 4](A ~B) =0 or % then V[M,,](4 ~>B)=0or 4,

for all admissible sentences 4 and B.

Let S9(S9!/?) be the set of initial sentences of the form A - B (4 and B
admissible) such that V[M,,1(4 = B) =0 (= 0 or ). Then if p <n then, by
(b), S C S9 and, by (c), S22 C SH1/2 Also, by (a), it is clear that if S9=S9
and Sp1/? = Sp1/% then My, = My, Since there are denumerably many
sentences of the form A = B (4 and B admissible), there are only countably
many distinct sets S9 and only countably many distinct sets S'!/2. Hence, there
are countably many distinct pairs, (S9, S91/?, for ordinals p. So, there are
ordinals p and 7 such that p <n and (S, Sp:1/? = (S9, S%1/%), and hence S = S9
and $91/2 = §%1/2 For such p and 7, let p < v < 7. Then, since S CSYC S?
and Sp1/2 C SP2 C S/ 89 = 89 = 5% and SP1/2 = §P12 = §)1/2 So, there is
an ordinal p such that (S5 S1/? = (S, S%Y?, and hence Mo, = Mper gy
Let k be the least ordinal such that M, \, = M4 ,,,- Then, for all ordinals
o < K, Mp,)\p +* Mpﬂ,)\pﬂ, establishing (ii). Further, for all ordinals p < «k,
(89, SP1/2) £ (S9,,, S%Y/?, and hence, for all distinct ordinals p <k and n <k,
(89, §91/2) # (8% 8212, Since there are only countably many distinct pairs
(89, $$1/2), for ordinals p, k is a countable ordinal.

The following corollaries of Lemma 4 are not needed in the proof of
consistency of CST but are added as a matter of interest.

Corollary 1 For ordinal « satisfying Lemma 4, M, ), = Mp,,\p, for all
ordinals p 2 k.

Proof: The proof is by transfinite induction on all ordinals p such that x < p.
The case for p = k + 1 is trivial. Let p be greater than x + 1 and let the corollary
hold for all ordinals » such that k < v < p. It suffices to show that
VM, 0l (A~ B)=V[My,0] (A~ B), for all admissible sentences 4 and B.

VIMpol(A—>B)=1 <>V[M,, (47 B)=1foralle <p.
= VM (A 7 B)=1forallo<«.
<= V[My+1,0l(4~>B)=1.

V[Mp,O] 4—->B)=0 <=V [M,,,)\a] (A4 ?B) =0 for some 0 < p.
=V [Mo,x(,] A4 ?B) =0 for some 0 < k.
== V[M41,0](4>B)=0.

Hence, VIM,o)(4 = B) = VIMui,o(A > B), Mys, = Meip,,, and
M"Q\K = Ml’)}‘p‘

Corollary 2 Let k be an ordinal satisfying Lemma 4. Then Kk is a limit
ordinal.

Proof: Let k = 0. Then My, =M, ,,, by Lemma 4. However, VM, 1(t 7 /)=
0 and hence V[M,;, 1(r=>f) = 0. Then V[My,,1(¢ = f) = 0, which is a contra-
diction. Hence k > 0.

Let k be a successor ordinal. It suffices to show that V[M,_; o1(4 = B) =
VM, 01(A = B), for all admissible sentences A and B.
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VIMy-1,0](A=>B)=1=V[M, 1(ApB)=1forall p<k-1.

=VI[M,o](A~>B)=1forallT<k-1.

=>VI[M; ,JA—>B)=1forallt<k -1

=>V[M,>\ 1(A>Ap A—>B)=1forallT<«k -1, since
V[MT;\ 14 —>A)— 1 forallr<k - 1.

=>V[MK,0](A 4> A->B)=1.

= V[My41,0](A>A > A—>B)=1,since
MK)\K MK+17\K+

=>V[Mp JA>Ap A>B)=1.

=V[MK0](A—>B)—1

VIMol(A=>B)=1 =V[M,, |(ApB)=1forallp<k.
= V[M,),1(4pB)=1forallp<k- 1.
=>V[M,yol(4A=>B)=1.

VIiMyol(A=>B)=0 =V[M ) 1(A>A7 A~>B)=0.
=>VIMup]A>A> A>B)=0.
=>V[M,<,\](A->A—>.A->B)=0,since

My, = MK+1>\,<+
=>V[M,,)\](A->A—>A->B) 0 for some p <k.
=>V[M,,>\p](A—>B) 0 for some p <k.
=>V[MMA](A—>B) 0 for some u <k — 1.
=V[MK10](A—>B) 0.

VI[M-1,01(A=>B)=0=VI[M, ,\p](A B)=0 forsome p <k — 1.
=>V[M,,A](A B) =0 for some p <k.
= V[M, 0f(A—>B)—

Hence, V[M,-101(4 > B) = VM, 01(A > B) and M-y 5,_, = My, contradict-
ing Lemma 4. Hence « is not a successor ordinal and must be a limit ordinal.

Thus, the sequence of structures { Mgy, Mya;s - - -» My}, obtained by
the above construction of (S), furnishes the model structure MC for CST.

A formula A with free variables x,, . . ., x, is valid in MC iff A4 is valid in
My, 1.e., for all constant termsay, . . ., ay, V [M,x 1(4 “Vx; . . a"/x,,) =1. Such
a formula A is invalid in MC iff V[MK A J(A Y Ve oo ) = 1 or 0 for some
constant terms a,;, . . ., a,. In partlcular a sentence A is va11d in MC iff
VM, J(A) =1, and is invalid in MC iff V [MK,;\K] A4)= % or 0. Validity in MC
can be determined in terms of the structures in MC in accordance with the
construction of (S). Those structures of (S) which are outside MC are essen-
tially used as a means of obtaining the structures in MC and are not part of the
valuation procedure for showing validity of formulas in MC.

It remains to show that the valid formulas of CSQ' and the axiom GCA'
are valid in MC, and that the rules of CTQ and the rule ER preserve validity in
MC. The consistency of CST can then easily be shown.

3 The soundness of CST with respect to MC In order to show that
the valid formulas of CSQ' are valid in MC, I show that MC is a model struc-
ture of the CSQ' semantics and that its valuations V on its structures con-
stitute a valuation on such a model structure. MC will consist of the ordered



SET THEORY BASED ON THE CSQ 443

triple (7, K, R) where K = {Moxg Myng, -, Mip 3, T = M, ), and R
consists of all the ordered pairs (M, _, M, ), where 7 > 0 and » <, or
7 = v = k. This definition of R satisfies pl, p2, and p3. The valuations
V[M; ] on the structures M, , , for 0 <7 < Kk, comprise a valuation V on the
above CSQ m.s. Note that the relation R determines the precise set of struc-
tures needed for the evaluation of A = B at Mg, M; 5, (0 <7<k) and My ,,.
Note also that the effect of the identity M, x, = M,4+1x,,,, is built into the eval-
uation of 4 > B at M, by requiring that:

VIMp 14— B)=1iff V[Mp,)\p](A 7B)=1forallp<«k
Y [MK,;\K] (4 = B) = 0iff V[Mp,kp] A7B)= 0 for some p < k.

This avoids the need for reference to M4y, and allows K to be restricted to
Mopg - - My A

The rules that preserve validity in each CSQ' m.s. preserve validity in MC
since MC is a CSQ' m.s. It is also clear that the axioms of CTQ are valid in MC,
since again MC is a CSQ' m.s.

The following lemma enables the validity in MC of GCA' and hence GCA,
to be shown.

Lemma 5 For all admissible formulas A, with at most the variables x and y
free, and for all constant terms a, a € {xy: A} <> A g, bxy ’A}/y is valid in M » ,
forallT.

Proof: VM, ) 1aetxy: A}) =VIM, ) s 1@ eixy: A}) = VM, 1(4 g lxy:dfyy
and hence VM, 1(a € {xy: A} <—>A "/x{"y Aly = 1.

Theorem 2 The GCA' and GCA are valid in MC.

Proof: By Lemma 5, for all admissible formulas 4, with at most x and y free,
for all constant terms a, V[M; ), 1(aetxy: 4} <—>A gl dxy: A}/y) = 1, for all
7 < k. Hence, V[M,, J(a € {xy: 4} <> A4 gl A /) = 1 and the GCA’,

{xy: A} <> A 75y A*/y, is valid in MC. Also, V [M,, ] ((¥x)(x € {xy: A}

A txy:4Y/)y = 1 and hence V (M J(@EP)Ix)(x €y <—>A)) 1. Thus the GCA
is valid in MC.

We now proceed to show that the ER preserves validity in MC. We show
that if V[MK’)\K]((VZ)(Z €a<>zeb))=1 then ViMp Jaed<—bed)=1,
for all constant termsa, b, and d. We let V [M,,,\T](c ca)=V [MT,M](C € b), for
constant terms c, for all 7 <k, for the above constant terms a and . We prove
VIM, , Jaed)=V [MW\T] (b € d), for all 7 < k, by transfinite induction, with
the induction hypothesis, V [M,,,M] (aed)=VIM,, 1 ed), forall v <r, for
7> 0.

Hence, we will generally consider a T-sequence, My o, My 1, .. s Myn s ooy
for some 7 <k, and, as in [3] and [4], analyse the process by which admissible
sentences obtain a value 1 or O in MT,AT. As in [3] and [4], we also require the
concepts of determining set and the general determining set for admissible
sentences.

Let A be an admissible sentence such that VIM; 5 1(A) = 1 or 0. Let
(1, A) be defined to be the least ordinal o such that V[M, ,](4) =1 or 0.
Consider the set /(4) of all maximal initial subformulas of 4, the maximality
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being with respect to subformula containment. Note that A can be constructed
from its maximal initial subformulas by using ~, &, and V. Form the set S(4)
of all sentential substitution instances of the initial formulas in /(A4), obtained
by substituting constant terms for each of the free variables in the initial
formulas. Call the set D(4) of all sentential substitution instances in S(4)
which take the value 1 or 0 in M, ,(; 4), the determining set of A.

For any admissible sentence A and any constant term a, we can give
special consideration to a subset of the occurrences of a in A. Let such a subset
of occurrences of a in 4 be called the set of designated occurrences of a in A.
For an admissible sentence 4 with a set of designated occurrences of the
constant term a, we use the symbolization ‘4(a)’. If the constant term b is
substituted for each of the designated cccurrences of a in A(a), we obtain
A(b/z) with a set of designated occurrences of » which occur at exactly the same
argument places as the designated occurrences of a in A(a).

As in [3] and (4], the point of introducing designated occurrences of
constant terms is to trace these specified occurrences through the determining
sets and general determining sets for admissible sentences and corresponding
admissible sentences for initial sentences, thus enabling one to trace these
occurrences through the process by which admissible sentences obtain a value 1
orOinM,, .

The method of tracing designated occurrences of A(a) through to the
members of the determining set D(A(a)) of A(a) is as follows: Let
VIM; x,1(A@@) = 1 or 0. Then, for any initial sentences B(a) of D(A(a)), the
designated occurrences of a in B(a) are those occurrences of a which are in the
maximal initial subformula of I(4(a)) of which B(a) is a sentential substitution
instance, and which are designated occurrences of 4(a).

The following lemma gives the basic property of determining sets of
admissible sentences:

Lemma 6 Let A(a) be an admissible sentence with a set of designated
occurrences of a, such that V[MT’)\T](A(a)) = 1 or 0. If, for all B(a) € D(A(a)),
VM, 5 1(BCla)) = VM, 5 1B@), then V [M, 5 1(A(/)) = V [M,  1(A(a)).

Proof: The proof is as for Lemma 5 of [3], with M. ,_replacing My, and 1 and
0 replacing ¢ and f.

Let A(e) be an initial sentence with a set of designated occurrences of a,
such that A(a) is of the form b € {xy: B}(a), with B having at most the variables
x and y free, and with {xy: B} not being a designated occurrence of a.

Define the corresponding admissible sentence of A(a), C(A(a)), as
B b/x{xy:B}/y .

Note that, for successor ordinals v, V[M, ,]1(A(a)) = VM, ,-1]1(C(A(a))).
Hence, if V[M,,)\T] (4@)) = 1 or O then V [MT,;\T“](A(a)) =1 or 0 and
VIM; ) 1(C(A(a))) = 1 or 0.

For all admissible sentences A(a) with a set of designated occurrences of
a, such that V[M;, 1(4(a)) = 1 or 0, we define the general determining set
G(A(a)) for each of these admissible sentences A(a) by recursion on »(7, A(a))
as follows:

G(A(a)) = (D(A(a) =~ D'(A(a))) V u G(C(B())),
B(@)eD'(4(@))
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where D'(4(a)) = {B(a) € D(A(a)): B(a) contains a designated occurrence of a
and is of the form ¢ € {xy: C}(a), with C having at most the variables x and y
free, and with {xy: C} not being a designated occurrence of a}.

Note that all members of G(A(a)) are initial sentences, as can be shown by
induction on »(7, A(a)).

In order to show that G(A(a)) is well-defined, we need to show that, for
all B(a) e D'(A(a)), V (M, 1(C(B(@)) =1 or 0 and v(r, C(B(a))) <u(7, A(a)).
Lemma 7 gives these results.

Lemma 7 Let A(a) be an admissible sentence with a set of designated
occurrences of a, such that V [MT,AT] (A(a@)) =10r 0. Let B(a) € D'(A(a)). Then
\ [M,’}\T] (C(B(a))) = 1 or Oand v(r, C(B(a))) <v(r, A(a)).

Proof: Note that B(a) is an initial sentence of the correct form for C(B(a)) to
be defined. Since B(a) € D(A(a)), VIM, 4@yl (B(@) =1 or 0, and hence
VM, 1(B(@) =1o0r0. Then VM, ] (C(B(a))) = 1 or 0, as required. Also, by
the construction (S), it is clear that (7, B(a)) is a successor ordinal and that
v(r, C(B(@))) = v(r, B(a)) — 1. Since v(7, B(a)) < v(r, A(a)), v(r, C(B(a))) <
v(7, A@a)).

The following lemma provides a property of members of general deter-
mining sets that is needed for Lemma 12.

Lemma 8 Let A(a) be an admissible sentence with a set of designated
occurrences of a, such that V[MT,,\T](A(a)) = 1 or 0. Then, for all C(a) €
G(A(a)), V M, 1(C)) = 1 or 0 and v(1, C(a)) < v(r, A(a)).

Proof: The proof is by transfinite induction on »(r, 4(a)). (i) Let C(a) €
D(A(a)) — D'(A(a)). Then C(a) € D(A(a)) and the lemma holds by definition of
D(A(a)). (ii) Let C(a) € G(C(B(a))), for some B(a) € D'(A(a)). By Lemma 7,
v(r, C(B(a))) < v(r, A(@)), and, hence, by the induction hypothesis,
VIM; ) 1(C@) = 1 or 0 and »(r, C(a)) < »(7, C(B(a))). So »(7, Ca)) <
v(r, A(a)), as required.

The following lemma shows for general determining sets, the basic
property given in Lemma 6 for the determining sets of admissible sentences.

Lemma 9 Let A(a) be an admissible sentence with a set of designated
occurrences of a, such that V[MMT](A(a)) =1 or 0. Then, if for all B(a) €
G(A@), VM p 1BCl)) = VM, 1(B@)), then VM., 1(A(%k)) = VM, ]
(A(a)).

Proof: The proof is by transfinite induction on the ordinals »(7, A(a)). Let
V[M,’;\T](B(b/a)) = VM, _1(B(a)), for all B(a) € G(A(a)). Let B'(a) e D'(A(a)).
Then V [MT,)\T](B(b/a)) =V [M;x, 1(B(a)), for all B(a) € G(C(B'(a))). By Lemma 7
and the induction hypothesis, the lemma holds for all admissible sentences
C(B'(a)) such that B'(a) € D'(4(a)), and therefore V[MT,AT](C(B'(a))(b/a)) =
VM, 1(C(B'(a))), for each B'(a) € D'(A(a)). Since B'(a) has the form c €
{xy: Ci(a), with at most the variables x and y free, C(B'(a))(%a) is
C c/x{xy:C}/y(b/a), with b substituted for the designated occurrences of a in ¢ and
C C(B'(%)) is also C%>:CYy(¥,), with same substitution, and hence
C(B'(@))%a) = C(B'(Y)). Then VM., 1(C(B'¢la))) = VM, 1(C(B'(a))), and
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by the definition of C(B'()), V [M; s 4] (B'(%a)) = V [Mr,+11(B'(a)) and hence
V[MT,AT](B'(b/a)) = V[M,,, 1(B'(a)). Since VM, 1(B(%)) = VM, 1(B(@)),
for all B(a) € D(A(a)) — D'(A(a)), it follows that V[MT,AT](B(b/a)) =
V[MT,M](B(a)), for all B(a) € D(A(a)). By Lemma 6, V[MT,;\T](A(b/a)) =
VM, 1(A@).

The next lemma gives the essential existential property for general deter-
mining sets, which enables V[M,, 1(a € d) = V[M,,_ 1(b € d) to be shown by
succeeding lemmas.

Lemma 10 Let A(a) be an admissible sentence with a set of designated
occurrences of a, such that V[MT,,\T](A(a)) =1 or 0. Then all the initial
sentences of G(A(a)) that contain a designated occurrence of a are of one of
the two forms:

() (cea)a), where the displayed occurrence of a is designated
or

(II) B(a) — C(a), where B and C are admissible sentences.

Proof: The proof is by transfinite induction on v(r, A(a)).

(i) Let B(a) € D(A(a)) - D'(A(a)) with B(a) containing a designated
occurrence of a. Then, by the definition of D'(A4(a)), B(a) is not of the form
¢ € {xy: C}(a), with C having at most the variables x and y free, and with
{xy: C} not being a designated occurrence of 4. Such an initial sentence B(a)
can only take one of the two forms (I) and (II) above, thus satisfying the
lemma.

(ii) Let B(a) e G(C(B'(a))), for some B'(a) € D'(A(a)). By Lemma 7 and
the induction hypothesis, the lemma holds for C(B'(a)), and hence B(a) takes
one of the forms (I) and (II), thus satisfying the lemma.

We proceed to deal with the substitution of b for a into initial sentences
of form (II) of Lemma 10.

Lemma 11 Let A(a) be an initial sentence with a set of designated occur-
rences of a, such that A(a) is of the form B(a) = C(a) and V [M,, 1(A(a)) =1 or
0.If >0, let VM, l(aed)=V [M,,,,\v](b € d), for all constant terms d, for
ally<t. Then, VM, ] AGL) =V (M, 1(A(@)).

Proof: Let 7 = 0. Then V[M;x,1(B(a) > C(@)) = 1 and V[MT,)\T](B(”/a) -
C(Ya)) = 1. Hence, V[M,,M](A(b/a)) = VI[M; ), 1(A()). So let 7> 0. We first
prove the following:

(+) For all admissible sentences B(a), for all v < 7, V[M,,’}\v](B(b/a)) =
VIM,\,1(B(@)).

Since VM, 1(a ed)=VIM,,, 1(bed), for all constant terms d, ViM, ), lae
{z: BEa)}) =V (M5, 10 efz: B(%a)}), where B(a) is an admissible sentence with
a set of designated occurrences of a, and z does not occur in B(a). Hence,
VIMyp 1@ € {z: B(72)}) = VM, 4,1(b € {z: B(%2)}) and V[M,,,1(B(a)) =
VM, 1(B(%%)).
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(i) Let V[M,x 1(B(a) > C(a)) = 1. Then, for all » < T it VM, ,1(B(a)) = 1
then V[M,,A ](C(a)) =1, and if VM, 1(B@) =1 or3 L then V[M,,)\ 1(C(a)) =
1 or 4. By (+) for all v < T, 1fV[M,,>\ ](B(b/a)) =1 then VIM,», ](C(b/a)) =1,
and if V[M,,, 1(B(®%%)) = 1 or % then V[M,,1(C¢k)) = 1 or %+ Hence,
VM, 1(BEa) > ) = 1 and V[M,, 1(ACR)) = VM, ] (A(@)).

(i) Let VM, Ar 1(B(a) > C(a)) = 0. Then, for some v <7, V[M,,,\ 1B@)) =
1 and V[M,, ](C(a)) = 0. By (+), for some v <7, V[M,,, ](B(b/a)) =1 and
VIM,,, 1(C®L)) = 0. Hence, VIM, 5 1(B(®a) = C(%a)) = 0 and V[M,A 1(AGh)) =
VM, 1(A(@)).

We can now proceed to deal with the substitution of b for a into initial
sentences of form (I) of Lemma 10.

Lemma 12 Let A(a) be an initial sentence with a set of designated occur-
rences of a, such that A(a) is of the form (c € a)(a), with the displayed
occurrence of a designated, and such that V [M,_1(A(a)) = 10r0.1f 7> 0, let
VIMyp,(aed)=VIM,,, 1(b ed), for all constant terms d, for all v <7. Also,
let VM) 1(e€a) =VI[M.y 1(ee€b), for all constant terms e. Then V[M,, ]
(A%a)) = V [M, . 1(A@)).

Proof: The proof follows that of Lemma 12 of [4] and is by transfinite
induction on v(7, A(a)). It is clear from the construction (S) that v(7, A(a)) is a
successor ordinal. For the purposes of the applications of Lemmas 8, 9, 10,
and 11 in this proof, we consider the set of designated occurrences of a in 4 as
just those in ¢. We call A with this set of designated occurrences, A(a)'. By
Lemma 10, all the initial sentences of G(A(a)’) that contain a designated
occurrence of a are of one of the two forms: (I) (¢, € a)(a), with the displayed
occurrence of a designated, or (II) B(a) = C(a), where B and C are admissible
sentences. For initial sentences D(a) of form (II), by Lemma 11, V[MT,)\T]
D)) =V M, Ar 1(D(a)). We now consider initial sentences (c; € a)(a) of form
(I). Since A(a)’ € D (A@)",

caa@)=_ U ceday

B(@)eD'(A(@)")
and

(¢, e a)a) € G(C(B(a)))

for some B(a) € D'(A(a)"). By Lemma 8, (1, (¢, € a)(a)) < v(1, C(B(a))), for
some B(a) € D'(4(a)’). By Lemma 7, v(r, C(B(a))) < v(r, A(a)') and hence
v(r, (c; € a)(@)) < v(r, A(a)"). By the induction hypothesis, V[M,, 1((c;€
a)%)) = V[MM 1((c, € a)a)), for the initial sentences (c, € a)(a) of form M.
Hence, for all D(a) e G(A@)"), V (Mrx, 1(D(%%)) = VIM,, 1(D(a)). By Lemma 9,
VMo JAGR)) = VM JA@), de., VM) (elh) € a) = VIM,,]
(c(a) € a), where c(a) indicates that the constant term ¢ has a set of designated
occurrences of a, and c(®s) is ¢ with b substituted for the designated occur-
rences of a in c(a) By the condition of the lemma, V[M”\ 1) ea) =
V[MT,K 1(c(®4) € b), and hence VIM;a, 1(c(®) € b) = V[MT’AT](c(a) €a), i.e.,
v [MT,AT](A(b/a)) =VI[M,, 1(A(a)), as requlred
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The following lemma sets out what is required for the FR to preserve
validity in MC.

Lemma 13 Let a and b be constant terms. Then, if V [Mr,x,] (eea) =
V[MT,;\T](e € b), for all constant terms e, for all T < k, then V [MMT] (aed)=
\Y [M,’M] (b € d), for all constant terms d, forall T <k. ’

Proof: We prove V [M,,)\T](a ed) = V[MT,}\T](b e d), for all d, by transfinite
induction on 7. For 7 > 0, as induction assumption, let VIM, ), l(@aed) =
VM, 1(bed), forallv <, foralld.

(o) Let V[MT,AT](a ed) =1 or 0. Let (a € d)(@) have the set of designated
occurrences of a consisting of just that occurrence on the left of ‘¢’. By
Lemma 10, all the initial sentences of G((a € d)(a)) which contain a designated
occurrence of a, are of one of the two forms:

(I)  (c € a)(a), with the displayed occurrence of a designated
or
(1) B(a) > C(a).

By Lemma 8, V[M,, 1(B(a) > C(a)) = 1 or 0. Hence, by Lemma 11,
\ [MT’}\T] B> CO))=V [M,,AT] (B(a) = C(a)), for all these initial sentences
of form (II). By Lemma 8, V [MT,}\T]((c €a)(@)) =1 or 0. Hence, by Lemma 12,
V[MT’XT]((C e€a)®,)) = VM, 1((c € a)a)), for all these initial sentences of
form (I). Hence, for all B(a) € G((a € d)(a)), VM, 1(B(¥,)) =V M), ] (B(a)).
Then, by Lemma 9, VM, 1((a € d)(¥,)) = VM) 1((a € d)(a)), ie., VM, ]
(bed)=VIM, laed)=1or0.

B) Let V[MT,AT](b ed) =1 or 0. Let (b € d)(b) have the set of designated
occurrences of b consisting of just that occurrence on the left of ‘e’. Apply
Lemmas 10, 8, 11, 12, and 9, as in (&), but substitute a for the designated
occurrences of b, rather than vice versa. Then, VM, 1(aed) = V[M;, ]
(bed)=1or0.

By («) and (8), we have shown that V [MT,M] (aed)=V [MT,)\T] (b ed), for
all constant terms d. Thus, by transfinite induction, V[M., l(aed) =
VM, 1(b e d), forall d, forall T <«k.

Theorem 3 The Extensionality Rule ER preserves validity in MC.

Proof: Let V[M,) 1((Vz)(z € a <> z € b)) = 1. Then V[M,, I(e € a <
e € b) =1, for all constant terms e, and hence V (M) (e ea)=VIM,, 1(ee€b),
for all e, for all 7 < k. By Lemma 13,V [MT,)\T] (@aed)=VIM) 1(bed), forall
d, for all 7 < k. Hence, V[M, ) l(aed <> bed)=1.

Theorems 1, 2, and 3 enable simple consistency to be established for CST,
as given by the following theorem.

Theorem 4 CST is simply consistent.

Proof: In the beginning of Section 3, it was shown that the valid formulas of
CSQ' are valid in MC and that the rules that preserve validity in each CSQ' m.s.
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preserve validity in MC. By Theorem 2, the GCA' is valid in MC and by Theo-
rem 3, the rule ER preserves validity in MC. Hence MC is a model structure of
CST, in which all the theorems of CST are valid. Let 4 be a theorem of CST,
Then, V[M, (A “lxy, .., “"x,) =1, for all constant terms a,, . . ., a,
and V[M,, 1(~4 ... "Mx,) =0, for all constant terms a,, . . ., a,. Hence,
~A4 is invalid in MC and is not a theorem of CST. So, CST is simply consistent,
as required.

It is worth noting that if the logic CSQ' is replaced by CTQ or TWQ, with
the same formulas as for CSQ’, then the resulting set theory is also simply
consistent.
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