The Axiom of Choice in Topology

NORBERT BRUNNER*

1 Introduction and definitions In this paper we are concerned with soft

 applications of the axiom of choice $(A C)$ in general topology. We define 16 properties which hold in $Z F$ for each T_{2} space, if and only if $A C$ is true, and we investigate what implications between these axioms are provable without $A C$ (in the presence of $A C$ there is nothing to prove). Our results are summarized in two diagrams. In Figure 1 the 61 valid implications are listed. Counterexamples in three models prove 188 of the possible implications to depend on the axiom of choice, as is shown in Figure 2. Some problems remain open.Our positive results are proved in $Z F^{\circ}$, Zermelo-Fraenkel set theory without the axioms $A C$ and foundation. Our counterexamples are constructed in models of $Z F$ ($={ }_{d f} Z F^{\circ}+$ foundation). We shall use Levy's axiom $M C$ of multiple choice: If F is a family of nonempty sets, there is a mapping f on F, such that $\phi \neq f(x) \subseteq x$ and $f(x)$ is finite for each x in F. Rubin's axiom $P W$ asserts that the power set $P(x)$ of each well-orderable set x is well-orderable. In $Z F^{\circ}, A C$ implies $M C$ which implies $P W$, and there are permutation models which show that in $Z F^{\circ}$ the implications cannot be reversed. But $A C$, $M C$, and $P W$ are equivalent in $Z F$. Similar axioms are studied in [6].

If P and Q are topological properties, $A(P)$ is the assertion that each T_{2} space is P and $A(P, Q)$ says that each T_{2} space which is P also satisfies Q. While for the properties P defined below we do understand the position of $A(P)$ in the hierarchy of choice principles, the same questions for $A(P, Q)$ remain unanswered in many cases, although as we have already noticed $A(P, Q)$ depends on $A C$ in general.

[^0]X is a space, \underline{X} its topology; $f^{\prime}(X)=\{f(x): x \in X\}$. We abbreviate "wellordered" and "well-orderable" by w.o. and Dedekind-finite by D-finite. "Space" always means T_{2} space.

W1: X is w.o.
$W 2: \bar{X}$ is w.o.
$D 1$: X is covered by a w.o. family of closed, discrete sets.
$D 2$: X is covered by a w.o. family of discrete sets.
B1: X has a w.o. base.
B2: There is a function $f: X \times W \rightarrow \underline{X}$ such that W is w.o. and $f^{\prime}\{x\} \times W$ is a neighborhood base at x.
B3: There is a mapping $f: X \times W \rightarrow \underline{X}$ such that W is w.o. and $\{x\}=\cap f^{\prime}(\{x\} \times$ W).
L1: Each open cover of X has a w.o. subcover.
L2: Each open cover of X has a w.o. refinement.
S : $\quad X$ has a dense, w.o. subset.
C : Each family $O \subseteq \underline{X}$ of pairwise disjoint sets is w.o.
A1: If $O \subseteq X$ covers X, there is a mapping $f: X \rightarrow O$ such that $x \in f(x)$.
A2: If $O \subseteq \underline{X}$ covers X, there is a mapping $f: X \rightarrow \underline{X}$ such that $x \in f(x)$ and $f^{\prime} X$ refines O.
$H 1: X$ is hereditarily $A 1$.
$H 2$: X is hereditarily $A 2$.
$F: \quad X$ is a continuous finite-to-one image of an $A 1$ space.
$B 1, L 1, S$, and C naturally appear in the study of cardinal functions in the sense of Juhász in $Z F^{\circ}$. The introduction of $L 2$ is motivated by a result, due to Jech (Pennsylvania), that \mathbf{R} is not Lindelöf, but \mathbf{R} obviously is $L 2$.

Topologically most interesting is $A 2$, which is both a weakening of metacompact and w.o. local weight. The following theorem was proved by Fritsch (München): A $C W$-complex is paracompact if and only if it is $A 2$. But it should be noted that none of the properties defined in the section imply any classical topological notion. D2 is a weakening of $W 2$. Rubin (Purdue) proved $A(D 2) \Rightarrow P W$. Another natural consequence of $W 2$ is $K: X=U W$ where W is a w.o. family of compact sets. We do not study K, since it has no applications. For the same reason we consider $B 2, B 3$ instead of $B 2^{\prime}$: Each point has a w.o. local base and $B 3^{\prime}$: Each singleton is an intersection of a w.o. family of open sets. We mention some further properties. $B_{3 a}$: There is a mapping $f: X \times W \rightarrow$ \underline{X}, W w.o., such that $\{x\}=\bigcap_{w \in W} f(x, w)^{-} . K^{\prime}: X=\cup W$, where W is a w.o. family of compact sets, such that each compact set is contained in some $V \in W$.

2 Equivalents to $A C \quad$ We start with the observation that if $P^{\prime} \Rightarrow P, Q \Rightarrow Q^{\prime}$ $A(P, Q) \Rightarrow A\left(P^{\prime}, Q^{\prime}\right)$. If P is hereditary, $A(P, A i) \Leftrightarrow A(P, H i) . P W$ implies $A(P, Q)$ for $P \in\{W 1, W 2, B 1, S\}$, since P-spaces are $W 1$ in $Z F^{\circ}+P W$ (c.f. [2]). Moreover we note that $A C^{w o}$ ($A C$ for w.o. families) implies $A(L 2, L 1) .{ }^{1}$

2.1 Lemma In $Z F^{\circ}$ the implications of Figure 1 hold.

Proof: Let X be $W 1$. Since X is $T_{1},\{X \backslash\{x\}: x \in X\}$ is w.o. and so X is $W 2$.

Figure 1. Implications.
$B 1$ and $L 1$ are clear and we shall prove below $A(L 1, A 1)$ thus yielding H1. $A(W 2, S)$ and $A(W 2, D 1)$ are obvious. So are $A(D 1, D 2), A(L 1, L 2)$, $A(H i, A i), A(A 1, F), A(A 1, A 2), A(H 1, H 2)$, and-using $T_{1}-A(B 2, B 3)$.

If X is $D 1$, there is a w.o. covering W by closed, discrete sets. Since $w \backslash\{x\}$ is closed for each $w \in W, f: X \times W \rightarrow \underline{X}$,

$$
f(x, w)=X \backslash(w \backslash\{x\})
$$

is a $B 3$-mapping.
Let X be $B 1$ and W be a w.o. base. We define a $B 2$-mapping through $f(x, w)=X$ if $x \notin w$ and $f(x, w)=w$ otherwise. If $O \subseteq \underline{X}$ covers X,

$$
P=\{w \in W: w \subseteq o \in O\}
$$

is a w.o. refinement; i.e. $L 2$. Fix a well-ordering $<$ of W. If A is a family of nonempty, pairwise disjoint open sets,

$$
f(a)=\min \{w \in(W,<): \phi \neq w \subseteq a\}
$$

is one-to-one, whence A is w.o. So $A(B 1, C)$ and similarly $A(S, C)$.
Let $f: X \times W \rightarrow \underline{X}$, where W is w.o., be a function assured by $B 2$. If O is an open cover, $w(x)=\min \{w \in W: f(x, w) \subseteq Q \in O\}$ is well defined, since $f^{\prime}\{x\} \times W$ is a neighborhood base at x, whence $f(x, w(x))$ is an A2mapping. $A(B 2, H 2)$ follows.

If X is $L 1$ and O is an open cover of X, a w.o. subcover defines a mapping as required for $A 1$. If X is $L 2$, we similarly may conclude that X is $A 2$.

It remains to prove $A(F, A 2)$: Let $f: Y \rightarrow X$ be continuous, onto and finite-to-one, where Y is $A 1$ and let O cover $X, O \subseteq \underline{X}$. Then $f^{-1}(O)$ is an open cover of Y, and $g: Y \rightarrow f^{-1}(O)$ an $A 1$-mapping; $g(y)=f^{-1}(V)$ for some $V \in O$ such that $f(y) \in V$. As f is onto, $f \circ f^{-1}(V)=V$, and so because $f^{-1}(x)$ is finite, $G(x)=\left\{f \circ g(y): y \in f^{-1}(x)\right\}$ is a finite subset of O, such that $x \in \cap G(x) \in X$. Therefore $h(x)=\cap G(x)$ is an A2-mapping.

We note for later use that in $Z F^{\circ}+A C_{\text {fin }}$ ($A C$ for families of finite sets) $A(F, A 1)$ holds. Moreover, orderable covers of F-spaces have $A 1$-mappings.
2.2 Lemma In $Z F^{\circ}, A(P, W 1) \Leftrightarrow P W$ for $P \in\{W 2, B 1, S\}$ and $A(C, W 1) \Rightarrow$ $P W$.

Proof: In view of the remarks at the beginning of this chapter, it suffices to prove $A(P, W 1) \Rightarrow P W$. Let X be w.o. and let \underline{X} be the discrete topology. Then X is $W 2, B 1, S$, and C, and if X is $W 1, \underline{X}=P(X)$ is w.o.
2.3 Lemma In $Z F^{\circ}, A(P, Q) \Leftrightarrow A C$, when $P \in\{D 1, D 2, B 2, B 3, H 2, A 2\}$, $Q \in\{W 1, W 2, B 1, L 1, L 2, S, C\}$.

Proof: Let X be a set, $\underline{X}=P(X) .(X, \underline{X})$ is P and if (X, \underline{X}) is Q, X is w.o., thus yielding the well-ordering theorem.
2.4 Lemma In $Z F^{\circ}, A(P, Q) \Leftrightarrow A C$, where $P \in\{L 1, L 2, H 2, A 1, F, A 2\}$, $Q \in\{W 1, W 2, B 1, S, C\}$.

Proof: Let X be a set with the discrete topology and $X^{+}=X \cup\{X\}$ its one-point-compactification. Then X^{+}is $L 1$ and since each subspace is Y^{+}or discrete, X^{+}is $H 2$. If X^{+}is $C, A=\{\{x\}: x \in X\}$ is w.o. and so X is w.o. This and 2.1 conclude the proof.
2.5 Lemma In $Z F^{\circ}, A(P, Q) \Leftrightarrow A C$, where $P \in\{D 1, D 2, B 2, B 3, H 2, A 2\}$, $Q \in\{H 1, A 1\}$.

Proof: Let F be a family of nonempty sets. We construct a choice function c. We set

$$
X=F \cup(\cup F)
$$

and give it the discrete topology. X is P. If X is $A 1$, the cover

$$
O=\{\{x, V\}: x \in V \in F\}
$$

has an Al-mapping f. We set

$$
\{c(V)\}=f(V) \backslash\{V\} .
$$

Then $c(V) \in V$.
2.6 Corollary In $Z F^{\circ}, A(P, H 1) \Leftrightarrow A C, P \in\{L 1, L 2, A 1, F\}$.

Proof: Let X be the space of 2.5 . Then X^{+}is P and if X^{+}is $H 1, X$ is $A 1$ and F has a choice function.
$M W$ is the assertion that each set is covered by w.o. family of finite sets. As was shown in [9], $M W$ is equivalent to $M C$ in $Z F^{\circ}$.
2.7 Lemma In $Z F^{\circ}+M C, A(P)$ holds, $P \in\{D 1, D 2, B 2, B 3, H 2, A 2\}$.

Proof: In virtue of 2.1 we need only prove D1 and B2. D1 is immediate from T_{1} and $M W$. $B 2$ follows from an application of $M W$ to \underline{X}, where $\underline{X}=\cup W$, and W is a w.o. family of finite sets $(E \cap F=\phi$ when $E \neq F)$. If $E \epsilon W, x \in \cup E$, we set

$$
f(x, E)=\cap\{V \in E: x \in V\}
$$

and $f(x, E)=X$ otherwise. If $x \in O \in Z$, there is an $E \in W$ containing O, whence $x \in f(x, E) \subseteq O$, proving $B 2$.
2.8 Lemma In $Z F^{\circ}, M C \Leftrightarrow A(P, Q)$, where $P \in\{D 2, L 1, L 2, H 2, A 1, F, A 2\}$, $Q \in\{D 1, B 2, B 3\}$.

Proof: " \Rightarrow " follows from 2.7. Let X be an infinite set with the discrete topology and X^{+}its one-point-compactification. We show that X satisfies $M W$ if X^{+}is Q. Clearly X^{+}is P (for $H 2$ c.f. 2.4).

If W is a w.o. family of open sets such that $\{X\}=\cap W$, then

$$
X=\cup\{X \backslash V: V \in W\}
$$

and each set $X \backslash V$ is finite. Hence $A(P, B 3) \Rightarrow M W$.
If X^{+}is $D 1$, there is a w.o. family W of closed, discrete sets covering X^{+}. Since X^{+}is compact, each $D \in W$ is finite, proving $M W$.

2.9 Lemma In $Z F^{\circ}, A(D 2, Q) \Leftrightarrow M C, Q \in\{H 2, A 2\}$.

Proof: Let G be a family of nonempty sets. We construct an $M C$ function. Obviously we may assume that each $g \in G$ is infinite, and that $g \neq g^{\prime}$ implies $g \cap g^{\prime}=\phi$ (otherwise consider $G^{\prime}=\{g \times\{g\}: g \in G\}$). Let

$$
g^{+}=g \cup\{g\}
$$

be the Alexandroff compactification of the discrete topology on g and

$$
X=\cup\left\{g^{+}: g \in G\right\}
$$

be the topological sum which is locally compact. G and $\cup G$ are discrete and $X=\cup\{G, \cup G\}$, so X is $D 2$.
$O=\left\{g^{+} \backslash\{p\}: p \in g \in G\right\}$ is an open cover of X. If f is an A2-mapping for O, then: (i) $g \in f(g) \in \underline{X}$ and (ii) $f(g) \subseteq h^{+} \backslash\{p\}$ for some $p \in h \in G$. It follows from (i) that $M(g)=g \backslash f(g)$ is finite. As $g \in f(g)$ and $h=g$ in (ii), $p \in M(g)$ and M is the desired $M C$-function.
2.10 Corollary In $Z F^{\circ}$, the following assertions hold
(i) $A(P, H 2) \Leftrightarrow M C, P \in\{L 1, L 2, A 1, F, A 2\}$
(ii) $A(P, F) \Rightarrow M C, P \in\{D 1, D 2, B 2, B 3, H 2, A 2\}$.

Proof: Let X be the space of $2.9, \underline{X}$ its topology.
(i) Since X is locally compact, we may form the one-point extension X^{+}. It is $L 1$ and if it is $H 2, G$ has an $M C$-function.
(ii) Consider the discrete space $(X, P(X))$ which is P. If it is F, then (X, \underline{X}) is F, since the identity is continuous, and therefore (X, \underline{X}) is $A 2$ (2.1) and G has an $M C$-function.

It follows from the proof of 2.10 (ii) that $M C$ is equivalent to: Continuous one-to-one images of $B 2$ spaces are $A 2$. A similar argument in 2.8 shows $M C$ is equivalent to: Continuous one-to-one images of $B 2$-spaces are $B 3$. In contrast, continuous images of $L i$-spaces are $L i$ and as in 2.1 continuous one-to-one images of $A 1$ spaces are $A 1$ in $Z F^{\circ}$.
2.11 Lemma In $Z F^{\circ}, A(P, Q) \Rightarrow P W$,

$$
P \in\{B 1, B 2, B 3, S, C, L 2, H 2, A 2\}, Q \in\{W 1, W 2, D 1, D 2\} .
$$

Proof: Parts of 2.11 are covered by the simple 2.2. Let X be w.o. and consider the product topology on 2^{X}. For $x \in X$ and $f \in 2^{X}$ we set $p_{x}(f)=f(x)$. A subbase for the topology is given by $\left\{p_{x}^{-1}\{0\}, p_{x}^{-1}\{1\}: x \in X\right\}$ which is w.o., whence 2^{X} is $B 1 . D$ is the set of all $f \in 2^{X}$ such that $f^{-1}\{1\}$ is finite: D is dense and w.o. and so 2^{X} is S. Hence P holds. We next show that, if 2^{X} is $D 2$, it is w.o., thus proving $A(P, Q) \Rightarrow P W$. If D is discrete and $d \in D$, there is a finite $E \subseteq X$ such that $\{d\}=\left\{f \in D: p_{x}(f)=p_{x}(d), x \in E\right\}$. Let $E(d, D)$ be the least such E in the lexicographic w.o. Assume that $2^{X}=\cup W, W$ a w.o. family of discrete sets. For $f \in 2^{X}$ we let $D(f)$ be the least $D \in W$ containing f and $G(f)=(D(f), E(f, D(f))) . G$ is one-to-one and so it induces a w.o. of 2^{X}.

Considering Figure 2, we observe that 132 statements $A(P, Q)$ are equivalent to $A C$ in $Z F$ and 61 statements are provable in $Z F^{\circ}$. The remaining 63 assertions are investigated in Section 5. We next summarize our results for $A(P)$.

2.12 Theorem

(i) In $Z F, A(P) \Leftrightarrow A C, P \epsilon$ Fig. 1
(ii) In $Z F^{\circ}, A(P) \Leftrightarrow A C$, for $P \in\{W 1, W 2, B 1, L 1, L 2, S, C, H 1, A 1\}$
(iii) In $Z F^{\circ}, A(P) \Leftrightarrow M C$, for $P \in\{D 1, B 2, B 3, H 2, A 2\}$
(iv) In $Z F^{\circ}, A C \Rightarrow A(F) \Rightarrow M C \Rightarrow A(D 2) \Rightarrow P W$.

The next two sections deal with $D 2$ and F.
3 The position of $\boldsymbol{A}(\mathrm{D} 2)$ It follows from the results of the preceding chapter that in $Z F^{\circ}, M C \Rightarrow A(D 2) \Rightarrow P W$. We show that in $Z F^{\circ} A(D 2)$ does not

-		W2	D1	D2	B1	B2	B3	L1	L2	S	C	H1	H2	A1	F	A2
		\rightarrow		\rightarrow	\rightarrow	\rightarrow						\rightarrow				\rightarrow
W2	PW	\rightarrow	\rightarrow	\rightarrow	?	?	\rightarrow	9^{2}	?	\rightarrow	\rightarrow	9	?	9	9	?
D1	$A C$	$A C$	\rightarrow	\rightarrow	$A C$	8	\rightarrow	$A C$	8	$A C$	MC	8				
D2	$A C$	$A C$	MC	\rightarrow	$A C$	MC	MC	$A C$	MC	$A C$	MC	MC				
B1	PW	PW	PW	PW	\rightarrow	\rightarrow	\rightarrow	6	\rightarrow	6	\rightarrow	6	\rightarrow	6	6	\rightarrow
B2	$A C$	$A C$	PW	PW	$A C$	\rightarrow	\rightarrow	$A C$	$A C$	AC	$A C$	$A C$	\rightarrow	$A C$	MC	\rightarrow
B3	$A C$	$A C$	PW	PW	$A C$	7	\rightarrow	$A C$	7	$A C$	MC	7				
L1	$A C$	$A C$	MC	5	$A C$	MC	MC	\rightarrow	\rightarrow	$A C$.	$A C$	$A C$	MC	\rightarrow	\rightarrow	\rightarrow
L2	$A C$	$A C$	MC	PW	$A C$	MC	MC	6	\rightarrow	$A C$	$A C$	$A C$	MC	6	6	\rightarrow
S	PW	PW	PW	$P W$	7	7	?	7	7	\rightarrow	\rightarrow	7	7	7	7	7
C	PW	PW	PW	PW	4	4	4	4	4	4	\rightarrow	4	4	4	4	4
H1	1	1	2	?	1	2	2	1	1	1	1	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
H2	$A C$	$A C$	MC	PW	$A C$	MC	MC	$A C$	\rightarrow	$A C$	MC	\rightarrow				
A1	$A C$	$A C$	MC	5	$A C$	MC	MC	1	1	$A C$	$A C$	$A C$	MC	\rightarrow	\rightarrow	\rightarrow
F	$A C$	$A C$	MC	5	$A C$	MC	MC	1	1	$A C$	$A C$	$A C$	MC	3	\rightarrow	\rightarrow
A2	$A C$	$A C$	MC	PW	$A C$	MC	MC	$A C$	MC	$A C$	MC	\rightarrow				

Figure 2. $A(P, Q)$ in $Z F^{\circ}$.
imply $M C$ and that $A(D 2)$ is not provable in $Z F^{\circ}+P W$. We work in standard permutation models of $Z F^{\circ}$ in this section.
M_{1} is the Fraenkel-Halpern model, determined by a set U_{1} of urelements (which is countable in the real world), the group G_{1} of all bijective mappings on U_{1} and the ideal I_{1} of all finite subsets of $U_{1} . \dot{M}_{2}$ is the Mostowski model, where U_{2} is ordered by $<$ like \mathbf{Q}, G_{2} is the group of order-preserving permutations and I_{2} is the ideal of finite sets. We refer to [5] and [7] for more information. $\Delta(e)=\{x: \operatorname{sym} x \supseteq f i x e\}$ is the class of sets supported by e, $\operatorname{supp}(x)$ is the least support for $x ; p \operatorname{supp}(x)=\operatorname{supp}(p x)$. Counterexamples are transferred to $Z F$-models with similar properties.

3.1 Lemma In $Z F^{\circ}$, if X is $D 2$ and $P(X)$ is D-finite, then X has isolated points.

Proof: The assumptions imply that X is a finite union of discrete $D_{i}, i \in n$. We apply induction on n. If $n=1, X$ is discrete. If $X=\bigcup_{i \in n+1} D_{i}$, we choose $x \in D_{n}, O \in \underline{X}$, such that $O \cap D_{n}=\{x\}$. If $O=\{x\}$, we are finished. Otherwise $O \backslash D_{n}$ is an open subset (in X) of $\bigcup_{i \in n} D_{n}$ which has an isolated point by the inductive hypothesis.
3.2 Example $\quad A(L 1, D 2)$ is provable neither in $Z F$ nor in $Z F^{\circ}+P W$. Hence $P W$ does not imply $A(D 2)$.
Proof: In M_{2} a closed interval $X=[a, b], a<b$, of urelements with the order topology is compact and so $L 1$. Since $P(X)$ is D-finite but X has not isolated points, X is not $D 2$ by 3.1.

3.3 Theorem In $Z F^{\circ}, A(D 2)$ does not imply $M C$.

Proof: We show that $A(D 2)$ holds in M_{1}, where $M C$ is known to fail. Let e be a support of the T_{2} space (X, \underline{X}). Since

$$
X=\cup\{\text { orb } x: x \in X\}
$$

where

$$
\text { orb } x=\{p x: p \in f i x e\} \in \Delta(e)
$$

X is D_{2}, if each orb x is discrete. We prove this fact.
We set for $x \in X a(x)=\operatorname{supp}(x) \backslash e$. When $a(x)=\phi$, orb $x=\{x\}$ is finite. If $a(x)=\left\{a_{i}: i \in n\right\} \neq \phi$, we set $\left.f=\left\{p\left(\left(a_{i}\right)_{i \in n}, x\right)\right): p \in f i x e\right\} \in \Delta(e)$. We observe that f is a function since if $p\left(\left(a_{i}\right)_{i \in n}\right)=q\left(\left(a_{i}\right)_{i \in n}\right), q^{-1} p \in f i x(e \cup a(x))$, i.e., $p x=q x$. Since $\operatorname{Im} f=o r b x, \operatorname{dom} f \subseteq U^{n+1}$, and $P\left(U^{n+1}\right)$ is D-finite (c.f. [11]), $P(o r b x)$ also is D-finite.

We now prove by induction on $|a(x)|$, that orb x is discrete. We assume that orb x is discrete whenever e supports (X, \underline{X}) and $|a(x)| \leqslant n$ and we assume ($n=0$ is trivial) on the contrary, that orb x is not discrete for some $x \in X$ such that $|a(x)|=n+1$.

If $O \in \underline{X}$ lorb x is nonempty ($\underline{X} \mid$. is \underline{X} relativized to.) and $f \supseteq e$ supports O, there is a $\bar{y} \in O$, such that supp $y \cap f \subseteq \bar{e}$.

Otherwise (supp $y \backslash e$) $\cap f \neq \phi$ for $y \in O$. As $f \supseteq e, \mid$ supp $y \backslash f \mid<$
\mid supp $y \backslash e|=|a(y)|$ and since $y \in$ orb $x,|a(y)|=|a(x)|$. Hence $|$ supp $y \backslash f \mid \leqslant n$ and

$$
o(y)=\{p y: p \in f i x f\} \in \Delta(f)
$$

is discrete by the inductive assumption. Since

$$
O=\cup\{o(y): y \in O\}
$$

O is D2. Therefore, by Lemma 3.1, it has isolated points. Hence orb x has isolated points and since fix e fixes \underline{X}, orb x is discrete, contradicting our assumption.

We next derive a contradiction to T_{2}. If $O_{i}, i \in 2$, are nonempty open subsets of orb $x, O_{0} \cap O_{1} \neq \phi$.

Let $f \supseteq e$ support O_{i}. There are $p_{i} \in$ fix e such that $\operatorname{supp}\left(p_{i} x\right) \cap f \subseteq e$ and $p_{i} x \in O_{i}$, as follows from the above remark. We define $q: \operatorname{supp}\left(p_{0} x\right) \cup f \rightarrow$ U_{1} by $q(t)=t$ for $t \in f$ and $q\left(p_{0}(t)\right)=p_{1}(t)$ otherwise. As $p_{i} \in$ fix e and $f \cap p_{i}(\operatorname{supp}(x) \backslash e)=\phi, q$ is injective and so can be extended to a bijective \bar{q} on U_{1}. Then $\bar{q} \in$ fix f and $\bar{q} p_{0}(t)=p_{1}(t)$ for $t \in \operatorname{supp} x$. Therefore, $\bar{q}\left(p_{0} x\right)=$ $p_{1} x$ and $p_{1} x \in \bar{q} O_{0} \cap O_{1}=O_{1} \cap O_{1}$.

We note without a proof that if X is a D-finite T_{2} space in M_{1}, X is covered by a countable family of discrete sets.

4 The cardinality of A i-spaces \quad In M_{1}, U_{1} is amorphous: Infinite subsets are cofinite. U_{1} with the discrete topology is not P for $P \epsilon\{B 1, L 1, L 2, S, C$, $W 1, W 2\}$. Also U_{1}^{+}is amorphous and since U_{1} is not $M W$ (if $P(X)$ is D-finite and X is infinite, X is not $M W$), U_{1}^{+}is not P, for $P \in\{B 2, B 3, D 1\}$ (c.f. the proof of 2.8). More interesting are $A 1$ and $A 2$. We shall prove that amorphous spaces are $A 1$ and if $P(X)$ is D-finite, X is $A 2$. We also give an application of this result, demonstrating the use of $A 2$. The cardinality behavior of $A i$-spaces depends on the model. In M_{2} there is a space with a D-finite power set, which is not $A 2$. When G is the family of all two-element subsets of U_{1}, which is known to have no choice function, the construction of 2.5 yields a space with a D-finite power set which is not $A 1$. The construction of 2.9 applied to the family of infinite subsets of U_{1} gives a D-finite space which is not $A 2$. So our results on the cardinality of $A i$-spaces in M_{1} cannot be improved.
4.1 Theorem Let X be a space in M_{1}. If X is amorphous, X is Al and if $P(X)$ is D-finite, X is $A 2$.

Proof: Let e be a support of $X, \underline{X}, \underline{O}$, where \underline{O} is open cover of X. If X is amorphous, there is a mapping $m: \overline{U_{1}} \backslash e \rightarrow X$, such that $X \backslash \operatorname{Im}(m)$ is finite [3]. Hence we may assume $X=U_{1}$. Because $P\left(U_{1}\right)$ is D-finite, the mapping $n(a)=$ $\min \{|\operatorname{supp}(V)|: a \in V \in \underline{O}\}, a \in U_{1}$, which is in the model, has an upper bound $N . f \supseteq e$ is a subset of U_{1} with $|e|+N+1$ elements. Consider the mapping $G \in \Delta(f)$, defined through $G(a)=\{V \in \underline{O}: a \in V \in \Delta(f \cup\{a\})\}$.

We show: $G(a) \neq \phi$. For, let $a \in V \in \underline{O}$ and $|\operatorname{supp} V|=n(a)$. As

$$
|e \cup \operatorname{supp}(V)| \leqslant|f|
$$

there is a permutation $p \in f i x e \cup\{a\}$, such that $p \operatorname{supp}(V) \subseteq f \cup\{a\}$, whence
$a=p a \in V \in \underline{O}=p \underline{O}$ and

$$
p V \in \Delta(f \cup\{a\})
$$

Thus $p V \in G(a)$. We now apply a lemma from [6], p. 116, and get:
There is a function $g \in \Delta(f)$ such that $g(a) \in G(a)$. Since this means $a \in g(a) \in \underline{O}$, g is an $A 1$-mapping.

If $P(X)$ is D-finite, we define $n(x)$ as above and there is a $N \epsilon \omega$, such that always $|\operatorname{supp} x|+|n(x)|<N$. When $f \supseteq e$ is a subset of U with $N+|e|$ elements, as above $G(x)=\{V \in \underline{O}: x \in V \in \Delta(f \cup \operatorname{supp} x)\}$ is nonempty. Since $P(X)$ is D-finite and $G(x)$ is w.o., $G(x)$ is finite and $f(x)=\cap G(x)$ is open. f is the desired $A 2$-function.

We note that the following improved result holds: If Y is a subspace of $X, P(Y)$ is D-finite, and $\underline{O} \subseteq \underline{X}$ covers Y (\underline{X} the X-open sets), there is a mapping $f: Y \rightarrow \underline{X}$, such that $x \in f(x)$ and $f^{\prime} Y$ refines \underline{O}. The proof uses [6], which provides us with an $O\left(R_{x}\right) \in G(x)$ for each ordering R_{x} of supp x and $f(x)=\bigcap_{R_{x}} O\left(R_{x}\right)$. A similar improvement is valid, if Y is amorphous.

It follows that U_{1} and U_{1}^{+}are $H 1$. The following application of 4.1 is less obvious:
4.2 Example A discrete F-space in M_{1} which is not $A 1$.

Proof: Let $Y=(U \cup\{U\})^{2}$ be discrete. As in $4.1 Y$ is $A 1$.

$$
X=U \cup\{U\} \cup\{\{a, b\}: a \neq b \text { in } U\}
$$

with the discrete topology is not $A 1$, as follows from the proof of 2.5 . But X is F, since $f: Y \rightarrow X$, where $f(U, U)=U, f(a, U)=f(U, a)=f(a, a)=a$, $a \in U, f(a, b)=f(b, a)=\{a, b\}, a \neq b$ in U, is finite-to-one, onto, continuous, and open.

The following example gives an application of $A 2$. As is well-known, in $Z F^{\circ}+A C$ metacompact countably compact spaces are compact [1]. If X is infinite and $P(X)$ is D-finite, X with the discrete topology is countably compact, paracompact and metrizable, but not compact. Need metacompact spaces with a D-finite power set be paracompact?
4.3 Example In M_{1} there is a metacompact space with a D-finite power set, which is not paracompact.
Proof: Let $U_{1}^{+}=U_{1} \cup\left\{U_{1}\right\}$ be the one point compactification of the discrete space U_{1}.

$$
X=\left(U_{1}^{+}\right)^{2} \backslash\left\{\left(U_{1}, U_{1}\right)\right\}
$$

is T_{2} and not T_{4}, as was shown in [3]. Therefore, in $Z F^{\circ} X$ is not paracompact [4]. It follows from [11], that $P(X)$ is D-finite.

Let $\underline{O} \in \Delta(e)$ be an open cover of X. As was shown in 4.1, there is an $A 2$-mapping G for \underline{O}.

We next observe that X is metacompact if X is $A 2$ and there is a mapping $g: X \rightarrow \underline{X}$, the topology, such that $x \in g(x)$, and

$$
\{y \in X: x \in g(y)\}=g^{\prime}(y)
$$

is finite. Let \underline{O} be an open cover and G be an A2-mapping. $h(x)=g(x) \cap G(x)$ defines a refinement $H=\operatorname{Im}(h)$ of \underline{O} and \underline{H} is point-finite, since $h^{\prime}(x) \subseteq g^{\prime}(x)$ is finite.
X is $A 2$ by 4.1 and g is defined as follows: $g(a, b)=\{(a, b)\}$, when a, b are in $U_{1}, g\left(U_{1}, b\right)=U_{1}^{+} \times\{b\}, g\left(a, U_{1}\right)=\{a\} \times U_{1}^{+}$.

In M_{2} the situation is quite different: $A 2$-spaces are rare.
4.4 Example \quad In M_{2} there is a space X with a D-finite power set which is C, but not $B 3, A 2, D 2, S$.

Proof: Let (X, \underline{X}) be U_{2} with the order topology. As was shown in [3], X is hereditarily C. Because $P(X)$ is D-finite and X has no isolated points, X is not D_{2} (3.1) or $B 3$. Since in permutation models S spaces are wellorderable [3], X is not S. We prove not $A 2$.

Consider the open cover $O=\left\{(a, \rightarrow): a \in U_{2}\right\}$ (" \rightarrow " means " ∞ "). Let f be an $A 2$ mapping for O. Since $\operatorname{Im}(f)$ refines O, for each a there is a $b \in U_{2}$, such that $f(a) \subseteq(b, \rightarrow)$, and because $a \in f(a) \in \underline{X}$, there are $c<a$ in $f(a)$. Therefore $g(a)=\inf f(a)$ exists and it satisfies $g(a)<a$. But then $\left\{g^{n}(a): n \in \underline{w}\right\}$ is an infinite countable subset of U_{2}, contradicting D-finiteness.

4.5 Lemma $\quad M_{2}$ satisfies $A(B 3, D 1)$ and $A(H 1, W 1)$.

Proof: Let X be $B 3$. As was shown in [2], $X=\cup W$, where W is a w.o. family of sets Y, such that $P(Y)$ is D-finite. But then from [2] and $B 3$ each $Y \in W$ is closed and discrete and therefore $A(B 3, D 1)$.

By $P W A(H 1, W 1) \Leftrightarrow A(H 1, W 2)$. Suppose X is not $W 2$. Then it follows from [3] that X contains an infinite subset Y which is a copy of an interval $(a, b) \subseteq U_{2}, a<b$, and $\underline{X} \mid(a, b)$ is finer than the order topology (\underline{X} : topology of X) which is not $A l$ by 4.4. Hence X is not $H 1$.

5 Conclusion We complete the proof of Figure 2. If $A(P, Q)$ is provable in $Z F^{\circ}$, we insert a " \rightarrow ", and if $A(P, Q)$ implies $P W, M C$, or $A C$ in $Z F^{\circ}$, we write this form into the matrix. The corresponding results were proved in Section 2. We show by counterexamples that the remaining $A(P, Q)$ also depend on $A C$ with some exceptions.
X_{1} is U_{1} with the discrete topology in M_{1}. It was studied in Section 4.
X_{2} is U_{1}^{+}, the one-point-extension of X_{1} which was already constructed in Section 4.
X_{3} is the space of 4.2.
X_{4} is the space of 4.4.
X_{5} is 3.2.
The following counterexamples are constructed in M_{3}, the Cohen-Halpern-Levy model, where an infinite set A of Cohen-generic reals are adjoined to a ground model of $Z F+A C$. The arguments of [7] show that we may assume that A is an infinite, D-finite subset of \mathbf{R}, such that $\inf A=\leftarrow$ and A has no isolated points. It is well-known that M_{3} satisfies $A C_{f i n}$ (cf. [5]). If $B \subseteq A$ is infinite, B is not a w.o. union of finite sets (MW), otherwise B is w.o. by $A C_{f i n}$ (or use the ordering of \mathbf{R}). There is no mapping $f: B \rightarrow B$ such that $f(b)<b$, $b \in B$, since this contradicts D-finiteness (cf. 4.4).
5.1 Example $\quad X_{6}$ is A with the subspace topology of R. X_{6} is $B 1$ but not D2 or $A 1$.

Proof: Since R is second countable, X_{6} is $B 1$. We conclude that discrete subsets are C (2.1) and therefore finite (D-finiteness). A is not $M W$, whence X_{6} is not $D 2$. Since $A C_{f i n}$ holds in M_{3}, not F follows from not $A 1$. Let $O=\{(a, \rightarrow): a \in A\}$. Because inf $A=\leftarrow, O$ is an open cover of X_{6}. If f is an Al-mapping, $f(x)=(g(x), \rightarrow)$ defines a function g, such that $g(x)<x$. This was already shown to be impossible.
5.2 Example $\quad X_{7}$ is \mathbf{R}^{2}, the topology is an extension of the Euclidean by the complements of end-point-free straight-line segments. X_{7} is S and $B 3$, but not $D 2$ or $A 2$.

Proof: A basic neighborhood at p is an open ball around p from which finitely many lines through p have been removed. T_{2}, S, and $B 3$ are obvious. Since the subspace topology on the unit circle coincides with the usual, X_{6} is a subspace of X_{7} which therefore is not $D 2$.
X_{7} is not $A 2$: Let $L_{p, a}$ be the straight-line containing ($p, 0$) and ($a, 1$), $p \in \mathbf{R}, a \in A . E_{p}(V)=\left\{a \in A: L_{p, a} \cap V=\{(p, 0)\}\right\}$ (i.e., $L_{p, a}$ has been removed). If V is open, $E_{p}(V)$ is finite. It follows from the definition of the topology $\underline{X}(\mathrm{R} \times\{O\}$ is discrete $)$, that $\underline{O}_{1}=\left\{V \in \underline{X}:(p, O) \in O \Rightarrow\left|E_{p}(V)\right|>p\right\}$ is an open covering of $\mathbf{R} \times\{O\}$, and $\underline{O}=\underline{O}_{1} \cup\left\{\mathbf{R}^{2} \backslash(\mathbf{R} \times\{O\})\right\} \subseteq \underline{X}$ covers X_{7}. Let f be an $A 2$-mapping. Since $(n, O) \in f(n, O) \subseteq V \in \underline{O}$ yields $\left|E_{n}(f(n, O))\right| \geqslant\left|E_{n}(V)\right|>n$ because $V \in O_{1}$, it follows that $B=\bigcup_{n \in \underline{w}} E_{n}(f(n, O))$ is an infinite $M W$ subset of A, a contradiction, proving not $A 2$.
5.3 Example $\quad X_{8}$ is $\mathbf{R} \times \mathbf{Q}$, where a basic neighborhood at p is an open ball around p and countably many straight-lines not containing their endpoints are removed. X_{8} is $D 1$ but not $A 2$.
Proof: $D 1$ is obvious since $\mathbf{R} \times\{q\}$ for $q \in \mathbf{Q}$ is closed and discrete. Not $A 2$ is proved as in 5.2 because A is D-finite and $E_{p}(V)$ is finite when V is open.

Other remarkable spaces are \mathbf{R} which is $B 1+S$, but not $A 1$ (improving [7]), \mathbf{R}^{A} which is S [10] and not $B 2$, and the Moore-Niemytzky plane, which is S and $B 2$ but not $L 2 . X_{7}$ and X_{8} are $B_{3 a}$, but 2^{A} is not $B_{3 a}$, since it is compact ($B P I$ holds in M_{3}) and compact $B_{3 a}$ spaces are $B 2$.

We conclude with some words on $A(B 1, W 2)$, which was the starting point of this paper. As follows from 2.11, in $Z F^{\circ} A(B 1, W 2) \Leftrightarrow P W$. Hence in $Z F A(C, W 2) \Leftrightarrow A C$, thus answering in part a question from [3]. $A($ her $L 2, W 2$) is-in $Z F^{\circ}$-weaker than $A(L 2, W 2) \Leftrightarrow A C$. For as was shown in [3], $D_{2} \Rightarrow$ $A($ her $L 2, W 2) . D_{2}$ is the axiom that a set is well-orderable if each infinite subset has a Dedekind-finite power set. In $Z F^{\circ}, D_{2} \Rightarrow P W$ but $D_{2} \nRightarrow A C$, $P W \nRightarrow D_{2}$. In contrast, A (her L1, W2) does not imply $A C$ in $Z F$. D_{1} is the axiom that a set is well-orderable if each infinite subset is Dedekind-infinite. D_{1} holds in the Cohen model and therefore it does not imply $A C$ in $Z F$ (cf. [3]).
5.4 Remark In $Z F^{\circ}, D_{1} \Rightarrow A(\operatorname{her} L 1, W 2)$.

Proof: "her L1" is "hereditarily L1." Let X be her L1. If X is not w.o. there is an infinite D-finite $Y \subseteq X$. We show that Y is compact. Then Y is hereditarily compact and therefore finite, a contradiction. If Y is not compact, there is a w.o. cover (L1) without a finite subcover. Hence there is a sequence $\left(O_{n}\right)_{n \in \omega}$ of open sets such that $O_{n} \subseteq O_{n+1}$ and $O_{n} \neq O_{n+1}$. We set $Y^{\prime}=\bigcup_{n \in \omega} O_{n}, \underline{V}_{n}=\left\{O_{n+1} \backslash\{p\}: p \in O_{n+1} \backslash O_{n}\right\}$ and $\underline{V}=\bigcup_{n \in \omega} \underline{V}_{n} . \underline{V}$ is an open cover of Y^{\prime} and so it has a w.o. subcover $\left(P_{\alpha}\right)_{\alpha \in \beta}, \beta$ an ordinal number. We set $n(\alpha)=\min \left\{n \in \omega: P_{\alpha} \in \underline{V}_{n}\right\}$ and $\left\{a_{\alpha}\right\}=O_{n(\alpha)+1} \backslash P_{\alpha}$. Then $a_{\alpha} \in O_{n(\alpha)+1} \backslash \bigcup_{n \leqslant n(\alpha)} O_{n}$ and $P_{\alpha} \subseteq O_{n(a)+1}$. Because Y is D-finite, $A=\left\{a_{\alpha}: \alpha \in \beta\right\} \subseteq Y$ is finite, and therefore there is a $n \in \omega$ such that $\bigcup_{\alpha \in \beta} P_{\alpha} \subseteq O_{n} \neq Y^{\prime}$, a contradiction.
5.4 is the reason that questions concerning $A(H 1, Q)$ are difficult.

NOTES

1. Added in proof: $A(L 2, A 1) \Leftrightarrow A C^{w o}$. " \Leftarrow " is obvious and for " \Rightarrow " let $\left(F_{\alpha}\right)_{\alpha \epsilon \beta}$ be a w.o. family of nonempty sets such that $F_{\alpha} \cap F_{\alpha^{\prime}}=F_{\alpha} \cap \beta=\phi, \alpha \neq \alpha^{\prime}$ in β. We set $F=\bigcup_{\alpha \in \beta} F_{\alpha}$ and $X=F \cup \beta \cup\{p\}$ for some $p \notin F \cup \beta$. Points $x \in F \cup \beta$ are isolated, while neighborhoods of p are of the form $\{p\} \cup F \backslash E, E$ finite. This defines a $T_{2}+D_{2}$ topology on X. It is $L 2$. Let \underline{O} be an open cover. There is a $V \in \underline{O}$ such that $p \in V$. Since $F \backslash V$ is finite, $\{V\} \cup\{\{x\}: x \in \beta \cup F \backslash V\}$ is a w.o. open refinement of O. By $A(L 2, A 1)$ the following cover \underline{O} has an Al-mapping $a: X \rightarrow \underline{O} ; \underline{O}=\{\{p\} \cup F\} \cup\left\{\{\alpha\} \cup F_{\alpha} \backslash\{x\}: \alpha \in \beta, x \in F_{\alpha}\right\}$. $\{f(\alpha)\}=F_{\alpha} \backslash a(\alpha)$ defines the required choice function (since $\alpha \in a(\alpha)$).
2. $X_{q}=\mathbf{Q}$ in M_{3}. Let $A \subseteq \mathbf{R}$ be D-finite and $\inf A=\leftarrow \underline{O}=\{\mathbf{Q} \cap(a, \rightarrow): a \in A\}$ is an open cover. If $f: \mathbf{Q} \rightarrow \underline{O}$ is A_{1}, then $a(x)=\inf f(x) \in A ; B=a^{\prime} \mathbf{Q} \subseteq A$ is countable and unbounded. Therefore X_{9} is not A_{1} and not $F\left(A C_{f i n}\right)$.

REFERENCES

[1] Arens, R., "Remarks on the concept of compactness," Portugaliae Mathematica, vol. 9 (1950), pp. 141-143.
[2] Brunner, N., "Geordnete Läuchli Kontinuen," Fundamenta Mathematicae, vol. 116 (1982), pp. 67-73.
[3] Brunner, N., "Dedekind-Endlichkeit und Wohlordenbarkeit," Monatshefte für Mathematik, vol. 94 (1982), pp. 9-31.
[4] Comfort, W. W. "The Stone-Cech theorem without the axiom of choice," Fundamenta Mathematicae, vol. 63 (1968), pp. 97-100.
[5] Felgner, U., Models of ZF Set Theory, Springer-Verlag, New York, Lecture Notes 223, 1971.
[6] Howard, P. E. and J. E. Rubin, "Axiom of choice and linear order," Fundamenta Mathematicae, vol. 97 (1977), pp. 111-121.
[7] Jech, T., "Bemerkung zum Auswahlaxiom" Casopis pro Pëstování Matematiky, vol. 93 (1968), pp. 30-31.
[8] Jech, T., The Axiom of Choice, North Holland Studies 75, North Holland, Amsterdam, 1973.
[9] Levy, A., "Axioms of multiple choice," Fundamenta Mathematicae, vol. 50 (1962), pp. 475-483.
[10] Steen, L. A. and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1978.
[11] Truss, J. K., "Dedekind-finite cardinals," Fundamenta Mathematicae, vol. 84 (1974), pp. 187-208.

Kaiser Franz Ring 22
A-2500 Baden, Austria

[^0]: *The author wishes to express his gratitude to the referee and to U. Felgner (Tübingen) for their many useful suggestions.

