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Minimally Incomplete Sets of

-Lukasiewiczian Truth Functions

HERBERT E. HENDRY*

By an n-valued truth function we shall understand a function on the set
{1,2,. . ., n\. If such a function is closed on the set \l,n\, it will be said to be
pure. And, if it can be defined by composition from Ί and ->, it will be referred
to as Lukasiewiczian. Here:

1p = (n - p) + 1

and

(p->g) = max[1,(# -p)+ 1].

In [3] it is proved, for the three-valued case, that the set of rtukasie-
wiczian functions and the set of pure functions are one and the same. It is
also observed, again in the three-valued case, that if / is non-Lukasiewiczian,
then {Ί, -+, f\ is functionally complete (i.e., all three-valued functions can be
defined by composition from "Ί, ->, and /). The import of the latter result
is that although Ί and -» are together functionally incomplete, their incom-
pleteness is minimal. That is, when Π,-M is supplemented with a "new"
function, the resulting set is always functionally complete.

It is the purpose of the present essay to establish a more general result
from which the previous two can be derived as corollaries:

Theorem 3 The following are equivalent if 2 <n:

*I am grateful to my colleague Herbert G. Bohnert for several helpful suggestions. Thanks
are also due to the referee who discovered an error in the original version and to the editor
for suggestions that resulted in an improved exposition.
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(a) n- 1 is prime
(b) The set of tn-functions is exactly the set of pure n-valued functions
(c) The incompleteness oftn is minimal.

Therefore:

Corollary 1 The incompleteness of£3 is minimal (Theorem 1 of [3]).
Corollary 2 The set of £$• functions is exactly the set of pure three-valued
functions (Theorem 2 of [3]).

The theorem is an immediate consequence of two theorems that follow. But
first some lemmas will be needed.

Lemma 1 // the set of £n-functions is exactly the set of pure n-valued
functions, then n - 1 is prime.

Proof: We argue the contrapositive. Assume that n - 1 is nonprime. Then, let
k be the least number such that 1 < k < n - 1 and n - 1 is divisible by k.
Suppose that n - 1 = jk. Consider now the set μ = \\,k + 1,2k + 1,. . .Jk + 1!
where jk + 1 = n. Notice first that 2 ^ μ. Otherwise k + 1 = 2, and k is not the
least number >1 that divides n - 1. Notice next that μ is closed with respect
to Ί . For let pk + 1 (0 < p </) be an arbitrary member of μ. Then, ~)(pk + 1) =
n - (pk + 1) + 1 = n - pk - 1 + 1 = jk + 1 - pk = (j - p)k + 1 e μ. Finally, notice
that μ is closed with respect to ->. For let pk + 1 (0 < p </) and qk + 1 (0 <
q < /) be any two members of μ. Then, {pk + 1) -> (qk + 1) = max[ \,qk + 1 -
(pΛ+ 1) + 1] = max[l ,qk + 1 - p Λ - 1 + 1] = max[l,(? - p)k + 1 ] e μ. Thus,
2 ή. μ, and μ is closed with respect to both Ί and ->. It follows that no function
having the value 2 when each of its arguments is from μ can be defined in terms
of "1 and -». But some such functions are pure. So, not all pure functions are
£fl-functions, and the set of £w-functions is distinct from the set of pure
n-valued functions.

Lemma 2 // the functional incompleteness of£n is minimal, then n - 1 is
prime.

Proof: For the contrapositive, assume that n - 1 is not prime. By Lemma 1
the set of £w-functions is distinct from the set of pure /7-valued functions.
It is easily verified that {l,n\ is closed under both Ί and ->. Thus, all ^-func-
tions are pure. So there is some pure rc-valued function that is not an -tn-
function, i.e., there is some function /such that \\,ή\ is closed under/, and
/ is not definable from ~Ί and ->•. Thus, \\,n\ is closed under each member of
ί Ί , ->, f\, and {"Ί, -+, f\ is therefore functionally incomplete. Since / is non-
Lukasiewiczian, the functional incompleteness of {Ί,->*} is not minimal.

Subsequent proofs will make use of the familiar Lukasiewiczian & and v
where

(p &q) = max[p,q]

and

(pvq) = min[p,q].
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They will also make use of the H- and /-functions of Rosser and Turquette [5].
The //-functions are Lukasiewiczian and so defined that they have the follow-
ing property for each i (1 < / < « ) :

# z (p) = max[l,?2-(p- 1)/].

Similarly, the /-functions are tukasiewiczian and have the property:

/ n j , Λ ί 1 if p = /
( J ) J i ( p ) = \n if pΦL

Regarding the former of these functions we now establish:

Lemma 3 If n - 1 is prime and 2 < p < n, then there exists a tukasie-
wiczian function Hk such that 1 < Hk(p) <p.

Proof: Assume that n - 1 is prime and that 2 < p < n. Let k be the largest
integer such that (p - 1 )k < n. Then, Hk(p) = n - {p - \)k. It follows that
(a): 1 < Hfrip). For assume otherwise. Then Hk(p) = 1, i.e., n - (p - \)k = 1.
So n - 1 = (p - \)k. Since n - 1 is prime and 2<p, k= 1. Thus, n - 1 =p - 1,
and n = p. But this contradicts the assumption that p <n. (b) Hk(p) <p. For
a contradiction, assume that p < Hk(p). Then, p < n - (p - \)k. Whence
p + (p- l)k<n.Ύhus,(p- 1) + (P~ \)k<n. So (p - 1) (k + \)<n. But this
contradicts the assumption that k is the largest integer for which (p - \)k <n.

Next we observe that:

Lemma 4 There is a Lukasiewiczian function F((p) with the property

*'<W \nifpΦ2.

Proof: Let Ft(p) = Ίtf/^O) & /2(p). From (/) it is clear that F, (p) = rc if
p ^ 2 . Assume that p = 2. Then, /, (p) = 1. So F;(p) = Ί # , _i(2) = Ίmax[l,π -
(2 - 1)(/ - 1)] = Ίmax[l,rc - (/ - 1)] = Ί(n - (/ - 1)) = (n - (n - (i - 1))) +
l = i.

With the help of Lemma 4 and the H- and /-functions we can now estab-
lish that

Lemma 5 If n - 1 is prime and 1 < i < n, then there exists a Έukasie-
wiczian function Gι such that

Proof: It is clear from Lemma 4 that we can let G2{p ) = F2(p). Assume now
that G2, . . ., G7-1 have already been defined. By hypothesis and Lemma 3,
there exists a k such that 1 < //#(/) < /. Let //#(/) = /. Since / < /, Gj has already
been defined, and Gf(Hk(p)) = 2 if p = /. Since Jt{p) = 1 if p = /, Gf(Hk(p)) &
/, (p) = 2 if p = /. And, since Jt{p) = n if p Φ /, Gj(Hk{p)) &/Kp) -n'ύpΦi.
Therefore, G7O) may be defined as Gj(Hk(p)) &//(p).

We are now in a position to prove that



LUKASIEWICZIAN TRUTH FUNCTIONS 149

Lemma 6 If n - 1 is prime, then the set of £n-functions is exactly the set
of pure n-valued functions.

Proof: It was earlier observed that all f^-functions are pure. So to prove
the lemma it will suffice to prove that all pure π-valued functions are tn-
functions under the hypothesis that n - 1 is prime. Let / be any ^-valued
function of (say) degree m. Consider an arbitrary row i from a table that
characterizes/.

P i - - Pm 1 f(P». >.,Pm)

OLX am β (row/)

Observe now that we can write a representative formula R( that has the value
β on row i and the value n on every other row. Case L β= 1. Let /?,- = Jaι(Pi) &
• & Λ*m(Pm) Case 2. β is one of the nonclassical values 2 , . . . , « - 1. Since
/ is pure, at least one of au . . .,otm must be nonclassical. Consider now the
formula V(px) & . . . & V(pm) where for each / from 1 t o r n : V(pj) = JaApj)
if oίj is classical, and V(pj) = GaApj) if α ; is nonclassical. From (J) and
Lemma 5 it is clear that V(pχ) & . . . & V(pm) n a s t n e value 2 on row ι and
the value n on every other row. Thus, by Lemma 4, Fβ(V(p{) & . . . & ^(p m ))
has the value 0 on row / and the value n on every other row. So let Λ/ =
^ ( ^ ( P i ) & . . . & ^(Pm)) Owe 3. β = n. Let Λz = Ί ( A -> px). It is now clear
that /(Pi , . . ., pm) can be defined as Rλ v . . . v R^ where i ? l 5 . . .,Rk are the
fc (= nm) representative formulas of the rows of the table characterizing/.

From Lemmas 1 and 6 we may conclude that

Theorem 1 The set of £n-functions is exactly the set of pure n-valued
functions if and only ifn-1 is prime.

Next we prove that

Lemma 7 If n - I is prime, then the functional incompleteness of£n is
minimal.

Proof: Assume that n - 1 is prime and that / is non-tukasiewiczian. From
Theorem 1 it follows that / is impure. Thus there are elements ah . . ., am

each of which is either I or n such that the value of f(pί9 . . .,pm) is non-
classical (say /) when the values of pl9 .. .9pm are respectively au . . . ,α m .
Consider the formula f(pf,. . ., Pm) where pf is (p -> p) or ~Ί(p -> p) according
as «/ is 1 or n. It is clear that the value of/(pf, . . ., p^) is; for all assignments
of elements to p. Then, by Lemma 5, the value of Gj(f(p*,. . .,Pm)) is uni-
formly 2. Thus, Slupecki's Γ-function can be defined in terms of Π, ~>, /!. But
Π, -̂ j T\ is known to be functionally complete. (See Rosser and Turquette [5],
pp. 23-25.) So the lemma is proved.
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From Lemmas 2 and 7 we may conclude that

Theorem 2 The functional completeness of Ln is minimal if and only if

n - 1 is prime.

Further results relating to functionally complete extensions of {Ί,-*i

may be found in [1], [2], and [4].
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