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The Transitivity of Implication

in Tree Logic

N. L. WILSON*

A // \-Sx and hSΊ D S2 then \~S2.
B IfS1 h S2 and S2 h 5 3 then S1 h 5 3 .

These are, obviously, desirable metatheorems. The first states that the set
of theorems is closed under modus ponens and one would like to appeal to A in
doing a relative soundness proof, in showing, for example, that this system
(whatever it is) is at least as strong as some other system, given by axioms and
MP. (Whence, if this system is provably sound, so is that other.) Proposition B
states that [syntactical] implication is transitive—whence the title of this paper.

These are syntactical metatheorems. (They are interderivable for tree logic
without too much trouble.) What is surprising is the difficulty of getting purely
syntactical proofs of them for tree logic. Standard procedure is to prove com-
pleteness and soundness of tree logic and then, from the corresponding semanti-
cal theorems, get quick proofs of A and B.1

But suppose we did the same thing for the Deduction Theorem in tradi-
tional logics, i.e., first proved completeness and soundness, without the
Deduction Theorem and then got the Deduction Theorem from the corre-
sponding semantical theorem via completeness and soundness. The feeling
would be that we would have missed out on important insights which a purely
syntactical proof of the Deduction Theorem supplies. In the same way, it seems
to me, we miss out on some insights into tree logic if we do not have purely
syntactical proofs of Propositions A and B. This paper aims at supplying such
proofs as Metatheorems 12 and 13.

*I am exceedingly grateful to the referee for some very astute and helpful criticisms of this
paper as originally submitted.
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1 Basic tree logic Tree logic has its origins in the method of Semantic
Tableaux (see Beth [1]). The terms "semantical tableaux" and "truth trees"
(Jeffrey [2]) both seem to me to be inappropriate, since they suggest that the
methods are somehow semantical. On the contrary, they have to be regarded as
syntactical, for the tree rules are stated purely in terms of the syntactical
character of the sentences in question. There is no appeal to truth or any other
semantical notion.

1.1 Grammar We will use \S", ΊSY, 'S 2 \ e t c

 5

 a s metalinguistic variables
ranging over the sentences of our object language L, and V, 6Sχ\ 6s2 as variables
ranging over just the elementary (or, atomic) sentences of L and negations of
elementary sentences (the "basic" sentences). Initially we shall use Quine's
corners, subsequently leaving them to be supplied by the reader.

Nonlogical signs of L: Ά\ 'B\ ' C , etc., with or without subscripts (these
are the elementary sentences of L).

Logical signs of L: '~\ '&', V, and βD\
We shall assume the usual definition of "sentence of V\

1.2 Syntax: The Tree Rules ("Rules of Arboriculture*' after Jeffrey [2])
Each rule specifies for sentences of a certain kind what sentence or sentences
must be written in each path beneath the given sentence, and whether the
offspring sentences will be written as stacked or branched. It is assumed
without proof (what is in fact true) that, given a sequence of initial sentences
("the trunk"), it does not matter in what order the sentences are "handled"
(have the relevant rule applied to them).

Stacking Rule Branching Rule

Negation Given: Γr—5Π

Offspring: S

Conjunction Given: rS1&S2~
] Given: Γ ~(5 1 &5 2 )~ 1

Offspring: Sj /^N^
S2 Offspring: Γ~S? Γ ~ S 2

Π

Disjunction Given: Γ~(S1v S2V Given: rSx v S2

Π

Offspring: r~S? / \
ΓS2~

1 Offspring: S1 S2

Conditional Given: r^(Sί D S 2)π Given: rSx D S2

n

Offspring: S, / \
Γ ~ S 2

Π Offspring: Γ~S? S2

1.3 Definitions

A basic sentence is a sentence which is either elementary or the negation
of an elementary sentence.

Two basic sentences are said to be opposites of each other if one is
elementary and the other its negation.

A path through a tree is finished iff every nonbasic sentence in that path
has been handled (has had the appropriate tree rule applied to it).
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A tree is finished iff every path in the tree is finished.
A path is closed iff it contains an elementary sentence s and also its

opposite ~s (in which case we put a cross 'X' under it).
On occasion, it will be convenient to put an Ό ' under a finished open

path. In practice, of course, we terminate a path with 'X' as soon as s and ~s
appear (or, given MThl, S and ~S). But in some of the proofs to follow, where
one finished tree is tacked onto the end of an open path of another finished
tree, it is necessary to assume that a closing path is finished in the sense defined,
before termination.

A tree is closed iff every path through that tree is closed.
A set K of sentences is syntactically inconsistent iff the tree under K is

closed. (Strictly speaking, that should be: a tree under K. It does not matter,
since every properly constructed tree will close if one such tree does.)

A sentence S is refutable iff iS is syntactically inconsistent (i.e., iff the tree
under S closes).

A sentence S is provable (i.e., \~S) iff ~S is refutable.
Sx . . . Sn syntactically imply S (i.e., S l 5 . . . Sn hS) iff the set {Sb . . . Sn ,

Γ ~S π i is syntactically inconsistent.

2 Syntactical metatheorems

MThl (The General Closing Law) For any sentence S, if both S and ~S
occur in a finished path -P, then that path closes (i.e., there is an elementary
sentence s, such that both s and ~s occur in 1°).

Prove by induction on the length of S.
Normally, the closing conditions are given as what is stated in MThl. Yet I

believe that in the interests of articulateness, it is preferable to give narrow
closing conditions, leaving it to the theorem to establish the wider closing
conditions. Moreover, in many of the proofs to follow, we have to assume that
where closing occurs, it is due to the clash of two opposite basic sentences.

With MThl we may now offer an

Example: We show that: S1 D S2\~ (S2 3 S3) D (Sί D S3)
Premise (I) SΊ D S2

Neg. ofConcl. (2) ~[(S2 D S3) D (SΊ D S3)]
Stack (2) (3) S2 D S3

(4) ~(SXDS3)
Stack (4) SΊ

Branch (1) / \

Branch (3) X / \

X X

All paths close in virtue of MThl. So, the relevant tree closes and the implica-
tion holds.

MTh2 (The Deduction Theorem) // Su . . . Sn h S then and only then
Si, . . . Sn-ι j SnD S.
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Proof: The two trees:

Si St

[a] [b]

^ o '^l^n —^ S ]
etc. Sn

etc.

close or stay open together.2

MTh3 HSi D S2) 3 [(S2 D S3) D (S1 D S3)].

Proof: From the Example and the Deduction Theorem.
From MTh3 and Proposition A, B is quite easily derivable, using the

Deduction Theorem. (A is easily derivable from B using the Deduction Theorem
and the lemma: h ~ S 2 D S2 iff r~S2, which in turn is certified by trees.)

All the subsequent work aims at getting the General Forking Law(MThl 1,
below) which is interesting in its own right and is the essential lemma for
getting Propositions A and B.

MTh4 (The Special Forking Law)

(a) If s is any elementary sentence, then, if the fork A is added to the

s ~s
end of any finished open path fi, then at least one of the augmented paths is
open. For, if s is incompatible with some basic sentence of 1°, then ~s is
compatible with every basic sentence of ^, otherwise there would be incom-
patible basic sentences within ^, contrary to the assumption that P is open.

(b) Further, if neither s nor ~s occurs in P, then both the augmented paths are
open.

Definition Given a set K of sentences, a MaxConBasic set for K is a set C of
sentences such that

(a) for every elementary sentence s in a member of K, either s or ~s is a
member of C (maximal)

(b) but not both (consistent)
(c) no other sentences are members of C.

Note: Each MaxConBasic set for K is incompatible with every other distinct
MaxConBasic set for K.

Definition A fully forked finished tree (a FFF tree) is a tree each of whose
open paths is successively forked with those elementary sentences of the initial
sentences that occur neither in themselves nor in their negations in the initial
open path.

Note: It follows that the basic sentences of an open path of a FFF tree under a
sentence S constitute a MaxConBasic set for S.
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MTh5 (The Upward and Downward Syntactical Implication Theorem) If C
is a MaxConBasic set for Sx then C H S1 if and only if C h~ S for every S in
some twig that is the result of applying the appropriate rule to Sx.

Proof: By cases.

2

S2

witn Λ2 as me twig, consider trie trees:

C C
[a] ~[~~S 2 ] [b] ~ [ J 2 ]

These trees have the same closing conditions. So, C h ~~S2 (i.e., Sx) if and
only if C h S2.

Case 2. Si = S2 v S3 for some 5 2, iSa. Then by the tree rule we will have 5Ί

branching to yield two twigs:

S2χS3

O2 ύ 3

Then (if we suppose that C h SΊ) the following tree closes:

C
[a] ~[S 2 vS 3 ]

^ 3

X

Now suppose: Not (C H5 r

2). That is, the following FFF tree remains open:

C

~[S2]

A\
0

Place ~[S3] and its FFF tree at the end of any open path. From [a] we know
that every path closes.

C
~[S2]

Λ\
~[53]

/ ! \
X X X
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Suppose that in the case of one closing path, the incompatibility among the

basic sentences arises between the ~[S3] part of the path and the ~[S 2] part of

the path. But then an inconsistency would have arisen between the ~[S3] part

of the path and C. (For, if s in the "[53] part clashes with its opposite, su in

the ~[S2] part, then it would also clash with Sj in C, for the path being open

prior to the [S3] part, C must contain st rather than s.) Thus the tree under

closes and C h £3. So C h S for every S in some twig yielded by Sv

, closes. But then so does
me lυuuwiiig tics. 3

C
~[S2vS3]

~s*
and C h S2 v S3. Similarly, if we suppose that C h S2. The cases for the other
branching rules are essentially the same.

Case 3. Si = S2 & S3 for some S2f S3. By the tree rule we have the stack:

S2 & S3

s2s3

Now consider the trees:

c c c
[a] ~[S 2&S 3] [b] ~[S2] [c] -[^3]

o 2 03

Obviously, [a] closes if and only if both [b] and [c] close. So, C \~ S2 & S 3 if
and only if C h S2 and C h 5 3. The case for the other stacking rules is
essentially the same.

MThό3 // C is a MaxConBasic set for K and C h S for every S in K, then
there is an open path i9 through the FFF tree under K, such that C \~ S for
every S in P.

Proof: By strong induction on n, the number of nonbasic sentences in the FFF
tree under K.

Basis. There are no nonbasic sentences: the members of K ^re all basic, K= C,
and the theorem holds trivially.

Step. We assume as induction hypothesis that the theorem holds for every
FFF tree with fewer than n nonbasic sentences. Consider the tree under K and
the fork or stack immediately under ^—obtained by applying a tree rule to one
of the members of K, Sl9 say. By the antecedent of the theorem, C h Su and
so, by MTh5, C h S for every S in some branch (or the stack). Now delete St

and the other fork (if any) and its branches. We are left with one new initial
sentence (if Sί called for branching) or two new initial sentences (if St called
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for stacking) in a tree with fewer than n nonbasic sentences. So, by the
induction hypothesis, C h S for every S in some open path P in the diminished
tree. Now reintroduce Sv Then P, extended to include Su is a path in the tree
under Ky such that C h S for every S in that path. Hence the theorem.

MTh7 / / C is a MaxConBasic set for S and C \~ S, then there is an open path
through the FFF tree under S whose basic sentences are precisely those of C.

For, from MTh6 and the antecedent of the theorem, there is an open path
P through the FFF tree under S such that C h S for every sentence of ^ , and
a fortiori, for every basic sentence s of P. From the definition of a FFF tree,
the set K of basic sentences of P is a MaxConBasic set for S.

Let s be a member of K. Then C hs, which is to say, the tree

[a] C
~[s]

closes. Since C is MaxConBasic, [a] closes only if s is a member of C.
Let s be a member of C. Suppose its opposite, su is a member of K. Then,

from above, C \~sv But in that case Sx must be a member of C, contrary to the
fact that C is consistent. So, sx$ K. But since K is MaxConBasic for S, K
contains either s or sx\ so, lacking sh it must contain s.

Hence, s e K if and only if s e C; and K = C

MTh8 / / C is a MaxConBasic set for S, and there is no open path through
the FFF tree under S whose basic sentences are precisely those of C, then

For, consider the FFF tree under:

C
[a] ~[~S]

S

C will clash with some basic sentence in every otherwise open path in the FFF
tree under S in isolation. So, every path in [a] will close. Whence C h ~S.

MTh9 / / C is a MaxConBasic set for S and there is no path through the
FFF tree under S whose basic sentences are precisely those of C, then C is
identical with the set of basic sentences in some open path in the FFF tree
under ~S.

Directly from MTh8 and MTh7.

MThlO / / there are n elementary sentences occurring in S, then there are
2n MaxConBasic sets for S and each one is identical with the set of basic
sentences in some open path in the FFF tree under S v ~S.

Proof: From MTh9 and the tree rule for disjunctions.

MThl 1 (The General Forking Law) / / the end of a finished open path 1° of
any tree is forked with y< for any S and then finished, then there is at

S ~S
least one open path beneath the fork.
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Proof: We shall suppose that the tree in question is FFF before the fork is
added to an open path. We also suppose that what is added is the FFF tree
under y. . Let S contain n elementary sentences. The general idea is that

S ~S
since the set of basic sentences in the path above the fork (i.e., 1°) is self-
compatible it must be compatible with at least one of the 2n MaxConBasic sets
for S represented in the path segments beneath the fork. Specifically, let us
consider a path through the whole tree, a path which passes through a self-
consistent sub-path below the fork. Suppose this path, considered as a path
through the whole tree, is closed. Since the path was open down to the fork,
there is no contradiction among the basic sentences above the fork. So, the
closing of the whole path must be due to the clash of basic sentences slv . . . s1(

above the fork with their opposites s2v . . . s2. below the fork. But by MThlO,
there is another path containing slv . . . sip s2i+v . . . s2n below the fork. This
whole path will be free of contradiction, hence open.

MThl2 // \~Sι D S2and \Slt then hS2.

From the antecedent, the following trees close:

[a] Sx [b]

Consider the tree under ~[S2]. Suppose ~[S2]
this tree has an open path, i9. Then ,'J\s

fork it with Sγ and ~SV By the General / j \
Forking Law the resulting tree must be 0
open. But from [a] we see that the left
branch closes and from [b] we see that
the right branch closes. So the tree S\
under ~[S2] by itself must be closed. / \^
Hence \~S2. Sx ~SΊ

MThl 3 IfSί h S 2 and S2 h S3, then Sλ h ^3.

From the antecedent, the following trees both close:

[a] Sx [b] S2

~[S2] ~[S3]

Consider the tree [c] and suppose it to S1

be open. Then fork an open path with [c] ~[S 3]
S2 and ~ 5 2 . By the General Forking /j\
Law there must be at least one open y' j \
path through the finished tree. But by 0
[a] we see that the right-hand branch
closes and by [b] that the left branch

I st X
closes. So the tree { could not / \
have been open. Hence S1 h ^3. S2 ~S2
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These last two theorems are the sought-after Propositions A and B. The
fact that it should be so difficult to prove them for tree logic says something
about tree logic.

NOTES

1. See, e.g., van Fraassen, [3], p. 195, question 3.2, and the solution, p. 209; also, Jeffrey,
[2], p. 99, question 5.7.

2. The ease of proving the Deduction Theorem in tree logic, together with the difficulty of
proving A and B, illustrate the principle: what you make on the peanuts you lose on the
popcorn.

3. This proof is adapted from Jeffrey's semantic proof of his 5.5 in [2], p. 90.
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