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Infimα of Recursively Enumerable

Truth Table Degrees

PETER A. FEJER and RICHARD A. SHORE*

Introduction Let r be a reducibility between sets of natural numbers. It is
natural to study structural properties of the partial order of r-degrees, and for
varying values of r such studies have formed one of the main thrusts of classi-
cal recursion theory. Because of the importance of recursively enumerable (r.e.)
sets, particular attention has focused on the study of the r.e. r-degrees (i.e., those
r-degrees which contain an r.e. set). For most (but not all) values of r, both the
r-degrees as a whole and the r.e. r-degrees form upper semi-lattices but not lat-
tices; that is, every pair of r-degrees in the structure has a supremum, but some
pairs do not have an infimum (inf). For this reason, much attention has been
paid to constructing sets whose r-degrees have some specified behavior with
respect to the inf(imum) operation.

The basic internal problem is the existence of substructures with specified
infima, i.e., the lattice embedding question. For some reducibilities this prob-
lem has been essentially solved. Thus, for example, the sublattices of the r.e. m-
and w^-degrees are exactly the countable distributive ones by Lachlan ([7] and
[8]) and Stob ([15]). On the other hand, every recursively presented lattice is
embeddable in the r.e. ^-degrees by Fejer and Shore ([4]). The situation for the
r.e. Γ-degrees is, however, quite complex. All countable distributive lattices are
embeddable ([10] and [16]) as are some ([8]) but not all ([9]) finite nondistribu-
tive ones. The general problem for Γ-degrees remains open. Ambos-Spies and
Lerman ([1]) present the current state of affairs.

Another basic question concerns the way the r.e. r-degrees sit inside all the
r-degrees. In particular, one would want to know what is the relationship, if any,
between the inf of a0 and 2LX considered as elements of the structure of the r.e.
r-degrees and the inf of a0 and a! considered as elements of the structure of all
r-degrees. A priori, there are five possibilities if ao,ai are r.e. r-degrees:
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1. ao,a! have the same inf in both structures
2. ao,ai have infs in both structures, but they are different
3. ao,ai have an inf in the structure of the r.e. r-degrees, but not in the

structure of all r-degrees
4. ao,ai have an inf in the structure of all r-degrees, but not in the struc-

ture of the r.e. r-degrees
5. ao,ai do not have an inf in either structure.

Based on the definitions alone, all we can say is that if both infs exist, then
the one in the r.e. r-degrees is < the one in all the r-degrees.

An early result of Lachlan ([6], Lemma 18) showed that for r = Turing (T)
reducibility

(*) two r.e. r-degrees have an inf among all the r-degrees iff they have an inf
among the r.e. r-degrees, and if these infs exist, they are the same.

(so only the first and fifth possibilities given above can be realized for r=T).
A slight modification of Lachlan's argument shows that (*) holds for r = weak
truth table. (See [12] for definitions of the reducibilities mentioned, and [11] for
a survey of results about reducibilities which are stronger than Γ-reducibility.)
For r = many-one or one-one, we have that if a,b are r-degrees, a < b, and b
is r.e., then a is r.e. Thus (*) also holds for these reducibilities. Of the most com-
monly studied reducibilities this leaves only truth table (tt) reducibility. No obvi-
ous modification of Lachlan's proof works for ^-reducibility. In [11] we find
as Problem 17 the question of whether or not (*) holds for r = tt as well. In this
paper we answer Odifreddi's question negatively, in fact, we give a complete
answer to this question by showing that any of the five possibilities listed above
can be achieved for ^-reducibility. (Of course the fact that possibilities 1 or 5
can hold is not surprising. It is the other three that are interesting.)

It is quite easy to see that possibility 1 can hold. For instance, we can take
ao,a! to be comparable r.e. degrees. For a less trivial example, let Ao and A\ be
r.e. sets whose Γ-degrees form a minimal pair (i.e., have inf 0). (Such A0^Ai
exist by [6] or [17].) Let ao,ai be the tf-degrees of Aθ9Aχ. Then ao,ai are
incomparable and have inf 0 among all ^-degrees and among the r.e. tf-degrees.

Results of Degtev ([2], [3]) and Kobzev ([5]) show that possibility 5 can hold
for two r.e. /'/-degrees. (See [11], Theorem 6.11.) Their argument is indirect. In
Section 4 we indicate how a direct construction can be given using our methods.

In the next three sections we show that each of the remaining possibilities
can be achieved. We give the first construction in detail and then describe the
others by noting where they are different from the first. Although the construc-
tions are similar, each has its subtleties.

We complete the introduction by giving the definitions and notation which
we will use.

Our notation is for the most part standard (see e.g. [13]). By set we mean
set of natural numbers and by number we mean natural number. We identify
a set with its characteristic function. A string is an element of 2 < ω . If σ E 2n,
then the length of σ, denoted |σ | , is n. We write {e} for the eth Turing
reduction.

A truth table is a function from 2n to 2 for some nonnegative number n.
If a: 2n -> 2 then the length of a, denoted \a\, is n. Truth tables are finite
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objects and we let {an}nGω be some effective enumeration of all truth tables
such that | α Λ | < n.

If A is a set (which we confuse with its characteristic function) and a a
truth table, then we say that A satisfies a if a (A t \a\) = 1 in which case we
write aA — 1. Otherwise we say aA = 0 and similarly for finite strings σ of
length > I a \.

If A and B are sets, we say that A is truth table (tt) reducible to B (A <tt

B) if for some recursive function/, for every x, x E A <-• afM — 1. Then <#
is reflexive and transitive and we define as usual an equivalence relation =tt by
A =tt B if A <ttB and B <ttA. We write degtt(A) for the s=tt equivalence class
of A, i.e., for the ^-degree of A. By a result of Nerode (see [12], p. 143), A <tt

B iff A = {e}B for some e such that {e}x is total for every X.

If \e\ (x)ί, we write [e] (x) for 0L{e)(x)* F ° r a number e and set A we
define a partial function [e]A by

1 J ( ' ~ I T otherwise j '

T h e n A <tt B iff ( 3 e ) M = [e]B).

If σ is a string, we define a partial function [e]σ by

f ( [ e ] ( J t ) ) σ if ( e ) ( x ) l a n d | σ | > | [ e ] ( x ) | ]
l β J W ~ I ί otherwise j '

We also define [e]f by

O]J is defined similarly.
We adopt the usual conventions, so that if {e}s(x)l, then

|[e](*)| < [e)s(x)<s.

If y4 is a finite set, we write #A for the cardinality of A. We let <.,.) be a
recursive pairing function such that x,y < (x9y) and we write A[n] for {(n,x):
( n , x ) <EA] a n d v 4 [ - " ] f o r \J A [ n ] .

We write ω for the set of natural numbers. If φ and ψ are partial funtions,
φ(x) Φ φ(x) means that φ(x) and ψ(x) both converge and have different val-
ues; -i (φ(x) = φ(x)) means that either φ(x) or ψ(x) diverges, or else φ(x) Φ
Ψ(x).

1 Two r.e. tt-degrees with different infima in the r.e. tt-degrees and in all the

tt-degrees

Theorem 1.1 There are r.e. tt-degrees a0 and VLX such that a0 and ai form a
minimal pair (i.e., have inf 0̂  among the r.e. tt-degrees, but have a nonzero inf
among all the tt-degrees.
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Proof: We build A0,Aι r.e. and C not of r.e. //'-degree so that if a 0 =
degί,(v40), a! = deg,, C^) and c = deg^(C), then ao,ai have inf c among all the
//-degrees, but ao,ai have inf 0 in the r.e. //-degrees.

We have three types of requirements, where e and / run over the integers:

Type I: C Φ {e}
Type II: We — [i]c -• We is recursive
Type III: [e]A° = [e]Aι = Y-+Y < „ C.

In addition, we will ensure that C <tt At for / = 0 or 1. Suppose that we
meet all the requirements and meet the conditions of the previous sentence. By
a now-standard argument due to Posner, if we meet all the Type III require-
ments and in addition ensure that C <tt Ah then ao,ai have inf c among all //-
degrees. Thus by the Type II requirements, the only r.e. sets //-reducible to both
AQ and Ai are the recursive ones so a o,a! have inf 0 among the r.e. //-degrees.
The Type I requirements ensure that c Φ 0.

Let [Rn}nGω be an effective listing of the requirements. We say that Rn>
has higher priority than Rn if n' < n.

In order to make C <tt Ah / = 0 and 1, we ensure during the construction
that

x<ΞCs iff #Alx

s

] is odd

and

<x,y) e AitS, y' <y-+ <x,y') G AitS.

In addition, we put on restraints so that Rn cannot make any changes in A\n ]

with n' < n. Since we will have a finite injury construction, these restraints will
ensure that for each x, A\x] is finite. The conditions given so far are enough to
ensure that At < Γ C; however, to get At <tt C we need more, namely a recur-
sive/such that (x,y) E Ai-* y < / ( J C ) . One might hope that the existence of
such an / would follow immediately from the way we try to meet the require-
ments Rn, but the situation is more complicated than that because of the Type
III requirements. We will return to this point later.

We meet Type I requirements by the usual Friedberg-Muchnik technique;
i.e., we pick a witness x and keep it out of C either until we see {e}s(x) = 0 or
permanently. If we see {e}s(x) = 0, then we put x into C.

Our strategy for meeting Type II requirements might be described as "do
your best to make We Φ [i]c\ if you fail then We is recursive". In more detail,
for each x, we wait for a stage s + 1 such that [i]s(x)l. Then we look for two
strings σo,σu both suitable to be initial segments of C such that [i]σ°(x) = 0,
[i]σi(x) = 1. If such strings exist, we begin an attack on the requirement by
making sure that σ^ 9 Cs+\. If at some later stage / we see x E WeJ, then we
change C so that σ0 <Ξ Ct. In this way, we ensure that We{x) Φ [i]c(x). In
order to maintain the strategy to get C <n At discussed above, each time a
number x is put into or taken out of C, we must put into Ah i = 0 and 1, the
least number in ω[x] which is not yet in At.

Suppose that We— [i]c. Then we argue that We is recursive as follows (we
ignore other requirements): Given x, find s such that {i}s(x)l. At stage 5 + 1
we do not begin an attack (else We Φ [i]c). Thus for all suitable σ, [i]σ(x)
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gives the same answer. Since C \ \[i] (x)\ is one of the "suitable" σ's which was
considered, it follows that this common answer for [i]σ(x) is [i]c(x) = We{x).
Thus we have a way of computing We recursively.

To meet Type III requirements, we again try to make the antecedant
([e]A° = [e]Aι) false. If we never get an opportunity to do this, then [e]A° <tt
C. In more detail, given x9 we wait for an s such that {e]s(x)l. At stage 5 + 1 ,
we consider all pairs Bθ9Bχ of finite sets which are suitable to be AOfS+{ and
AjfS+\. (Since Aθ9Al9 are to be r.e., suitability entails, among other things, that
AiyS c Bi9 i = 0,1.) For each such pair with the additional property that for each
y9 '#Bky\#B{y] have the same parity, we see if [e]B°(x) = [e]Bί(x). If not,
then we begin an attack by making AifS+i = Bi9 i — 0,1, and restraining num-
bers <\[e] (x)\ from entering either Aj. We also adjust C to maintain our strat-
egy to make At <tt C. (This is why we need the condition on #B^y].) If the
restraints are not violated, we have thus ensured that [e]A°(x) Ψ [e]Aι(x).

Now suppose that [e]A° = [e]Aι = Y. We argue that Y <tt C as follows
(we again ignore other requirements): Given x, find s such that {e}s(x)l. Since
no attack is made at stage s + 1, it must be that for any two suitable BQ,Bι with
#Bάγ],#Bly] of the same parity for every y, [e]B°(x) = [e]Bι(x). We can now
give a ^-reduction. Given σ, a potential initial segment of C of the proper length,
find suitable Bθ9Bu if any, such that for all x < \ σ\, #BQX] is odd iff σ(x) =
I and give [e]B°(x) — [e]Bι(x) as answer. As long as large enough initial seg-
ments of A0,Aι are among the "suitable" Bθ9Bl9 this ^-reduction, when applied
to C gives the answer [e]A°(x) = [e]Al(x) = Y(x)9 so Y <tt C.

We now discuss what constraints must be put on the action taken for sake
of Type III requirements to ensure the existence of the recursive function /
needed to make At <tt C. If a given Type III requirement Rn is allowed to add
numbers <x,y) into A t with no bound on y9 then at the end of the construction
there is no reason why we should have the function/we desire. Thus we must
try another approach. We calculate a recursive function/such that the restric-
tion <x,j>> E Ati-+y </(*) still leaves enough room to act for all Type I and
II requirements which might want to put numbers into A\x]. Now we might
consider restricting Type III Rn by insisting that if such an Rn puts a number
{x,y) into Ah then y </(x). However, this still leaves such Rn too much lee-
way. For, if a Type III Rn puts all numbers (x,y) with y </(JC) into At for
some x, then no higher priority R'n of Type II can put x into C or take x out of
C, because all possible numbers for coding such a change are already in A-t. If
this happens often enough, then a given Type II requirement may never be met
because of the actions of lower priority Type III requirements.

To prevent this from happening, we define a function f'(x,n) and add the
restriction on a Type III Rn that for £, to be suitable, if {x9y) G Bj - Ai>s, then
y <f'(x,n). We make/r(Λ:,Λ) sufficiently smaller than/(jc) so that even if a
Type III Rn puts all numbers (x,y) with y </'(JC,Λ) into Ai9 for some x, there
are still enough y with /'(x,n) < y < f(x) so that higher priority Rn's can
change C(x) if they want to. Since/' (x,n) </(*), this means that a given Type
III Rn does not always consider initial segments of the final AOiAι to be suit-
able. This may seem to be a problem, but the key observation is thatf'(x9n)
can be defined so that if s is such that no requirement Rn> with n' < n receives
attention at a stage > s and (x9y) enters At after stage s9 then y <f'(x9n).
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Thus, once higher priority requirements stop acting, a given Type III require-
ment does consider relevant initial segments of ΛOiΛχ to be suitable in spite of
the restrictions put on Rn, and this is enough to make the Y <tt C argument
from above go through.

It turns out by a careful counting argument that f(x) = 2x + 2 and
f (x,n) = 2(x — n) work.

We may summarize a part of this discussion by saying that we make C <tt

A i by ensuring

(1.1) x G C iff #{y:y < 2x + 2 Λ <x,y) G At} is odd.

We now give the definitions and construction. From time to time in the
construction, a requirement may "receive attention". In particular, it may begin
an attack through some number x. (At most one attack exists for a given require-
ment at a given time.) At the same time, the requirement puts on a restraint. The
restraint is said to have the same priority as the requirement. The attack remains
in effect until some higher priority requirement receives attention and thus can-
cels attacks of lower priority requirements. When an attack on a Type II require-
ment is begun, an "alternate string" is assigned to the attack. Aside from
restraints put on when an attack is made, each requirement puts on an initial
restraint at stage 0. Restraints are not canceled.

At the end of stage s, we let r(n,s) be the largest restraint put on by Rn

by the end of stage s and we define

R(n,s) = max[r(n',s): n' < n}.

If Rn receives attention at stage s and x enters Ao or Ax at stage s, then we say
that Rn puts x into Ao or Ax at stage s.

We now define the phrase "Rn requires attention at stage 5 + 1 " according
to the type of Rn.

(1.2) Rn is C Φ [e] (Type I):
(a) Rn is not under attack at stage s + 1, or
(b) Rn is under attack through x and

(i) ( έ ? W * ) = 0 , and
(ii) x £ Cs.

(1.3) Rn is We = [i]c -> We is recursive (Type II):
(a) Rn is not under attack at stage 5 + 1 and there are an x and strings

σo,σι such that

(i) [i}s(xn
(ii) | σ o | = Io"!I = | [/ ] ( * ) |

(iii) (Vy<R(n,s))[y< \σo\ -> σo(y) = σx(y) = Cs{y)]
(iv) [i]°o(x)=0i [/p(*) = 1

or (b) Rn is under attack through x and
(i) x G WβyS+u and

(ii) [i]Cs(χ) = 1.

(1.4) Rn is [e]Ά° = [e]Ai = Y-+ Y <tt C (Type III): Rn is not under attack at

stage s + 1 and there are a number x and finite sets B0,Bι such that

(i)x*>R(n,s)

(ϋ) [e}s(x)i
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(Ώi)AitScBh / = 0,l
(iv) for / = 0 or 1, [ W G ^ - ^ ^ H Έ ω[y] for some y, R(n,s) <

y< \[e](x)\]

(v) (y9z) G Bi -> (Vz' < Z ) « Λ Z ' > G £,), for / = 0 and 1

(vi) <j>,z> <Ξ Bi Λ y > R(n,s) -> z < 2(y - n), for / = 0 and 1
(vii) (Vy < \[e] (x)\)(#B^y\#Bly] have the same parity), and

(viii) [e]B°(x) * [e]Bι(x).

Note that one can effectively determine at a given stage whether or not a given
Rn of Type III requires attention: by (1.4H) there are only finitely many x to
consider and by (1.4iv) and (1.4vi) for each such x there are only finitely many
B0,Bι to consider.

We now construct A0,Aι,C. We write AOtS,AιtS,Cs for those numbers in
the given set at the end of stage s. A number once put into Ao or Ax is never
removed. A number may be put into and taken out of C repeatedly. We show
later that for each x there is a stage s such that x is neither put into nor taken
out of C after stage s. This ensures that C is a well-defined ΔQ set.

Construction:

Stage s = 0. For each n, enumerate a restraint of priority n equal to n + 1.

Stage 5 + 1 . Find the least n such that Rn requires attention at stage s + 1 and
carry out the appropriate action below depending on the type of Rn. We say
that Rn receives attention at stage 5 + 1 . (Such n exists since at stage s + 1
almost all requirements of Type I require attention via (1.2a).)

R n is C Φ {e}:
(1.2a) holds: Begin an attack on Rn through x where x is the least number
> R(n,s) which is not in Cs and such that {e)s+\{x)J\. Enumerate a
restraint of priority n equal to maxfx + 1, s + 1).

(1.2b) holds'. Put x into C 5 + 1 . For / = 0 and 1, find the least z such that
(x,z) ί AiiS and put (x,z) into AitS+ι. Enumerate a restraint of priority
n equal to s + 1.

Rn is We— [/] c -> We is recursive:
(1.3a) holds: Take the least x and then the first strings σθ9σχ (in some
effective enumeration of pairs of strings) which make (1.3a) hold. Begin
an attack on Rn through x. Change Cs Γ | σx \ as needed so that σx c Cs+Ϊ.
Assign σ0 to be the alternate string for the attack. Enumerate a restraint
of priority n equal to max{| σ01, s + 1).

For each y such that Cs{y) Φ Cs+X (y) and / = 0 or 1, find the least z
such that (y,z) ί AitS and put (y,z) into AitS+i.

(1.3b) holds: Modify Cs Γ |σ|, where σ is the alternate string for the
attack, so that σ c C J +i. Enumerate a restraint of priority n equal to 5* +
1. Proceed as in the second paragraph under "(1.3a) holds.".

Rn is [e]Ao = [e]Ά* = Y^Y <„ C:
Take the least x and then the least B0,B{ (in some effective enumeration of
pairs of finite sets) which make (1.4) true. Make AitS+ΐ = Bh i = 0 and 1. (By
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(1.4iii) this involves only adding elements to At.) Enumerate a restraint of pri-
ority n equal to max{||>] (x)\, s + 1).

For each y < \[e] (x)\, put y into C or take y out of C, if necessary, to
ensure that y E Cs+Ϊ iff #/4cu+i is odd.

We give some properties of the construction.

(1.5) For each 5, R(0,s) < R(l,s) < R(2,s) < . . . .
For each n, R(n,0) < R(n,l) < . . . .

(1.6) If no Rn> with n' < n receives attention at stage s + 1, then R(n,s +
1) =/?(/!,*).

(1.7) For all x,s,x G C5 iff &4&] is odd.
(1.8) For all x,s, #Ao*}, #A[*} have the same parity.
(1.9) For all x,y,s and / = 0 or 1,

(x9y) G A\, -> (vy' < y)«x,y'> G A > )

(1.10) If i?π receives attention at stage s + 1 and Cs+i(x) Φ Cs(x) or
Λ\s+iK*>.y» *Ahs((x,y))y then R(n,s) = R(n,s + 1) < * < # ( « + 1,
5 + 1).

Properties (1.5)—(1.9) are easy to verify. Property (1.10) is only slightly harder.
Suppose that (1.10) holds for all s' < s and that Rn receives attention at stage
s + 1 and Q + 1 (x) Φ Cs(x) or AitS+ϊ ((x,y)) Φ Ahs((x,y)). We consider the case
where Rn is of Type II and (1.3b) holds; the other cases are similar but easier.
The fact that R(n,s) = R(n9s + 1) is immediate. To see that x < R(n + 1,
5 + 1 ) , note that x < | σ| where σ is the alternate string and when the attack
began at stage t 4- 1 < s, a restraint of priority n > | σ\ was enumerated. Finally,
to see that R{n,s) < x, it suffices to show that if z < R(n,s), then Cs(z) =
Cs+ι(z). If z >: | σ | , then this is immediate, so suppose that z < \σ\. Then
Q+i (z) — <*(z). Since the attack on Rn was not canceled before stage s 4- 1, no
Rn> with nf <n received attention at a stage u with t + 1 < u < s, so by (1.6),
R(n,u) =R(nft) for all w, t<u<s. Thus z<R(n,s) =R(n,t), so by (1.3a.iii),

σ ( £ ) = Ct(z). Now, applying the induction hypothesis to u with t <u <s and
using (1.5), we have that Cu \ R(n,u) - Cu+X \ R(n,u). But z < R(n,s) =
R(n,u), so Cw(z) = C w + 1 ( z ) . Thus Ct{z) = Cs(z) and so finally Cs+1(z) =

σ(z) = Q ( z ) = Q ( z ) as desired.

Lemma 1.2 Suppose that Rn is a requirement of Type I or II, Rn receives
attention at stage t + 1, s> t, and no requirement Rn> with n' <n receives atten-
tion at a stage u, t+\<u<s+\. Then there is at most one u9 t + 1 < u <
5 + 1 such that Rn receives attention at stage u. Furthermore, if Rn is C Φ [e]
and the attack at stage t + 1 is through x, then -ι ( C 5 + 1 (x) = le}s+{ (x)), while
if Rn is We— [/] c -+ We is recursive, and the attack at stage t + 1 is through x,
then WetS+1(x) Φ [i]Qγ{x).

Proof: First note that the attack on Rn in progress at the end of stage t + 1 is
still in progress at the end of stage 5 + 1 . Say that this attack is through x. Sup-
pose that Rn is C Φ {β}. We consider two cases. First suppose that Rn receives
attention at some stage u + 1 with / L + 1 < « + 1 < 5 + 1 such that (1.2b) holds
for u + 1. Then x is put into C w + 1 and one easily sees that x stays in C until at
least the end of stage 5 + 1 . Thus Rn does not require attention at any stage v,
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u + I < v < s + 1, so Rn does not receive attention at any such stage υ, and Rn

receives attention only once at a stage after t + 1 and at or before s + 1. Also
{e}u+ι(x) = 0, so {e}s+ι(x) = 0 Φ 1 = C5 + 1(x). If the first case does not hold,
then (1.2a) must hold at stage t + 1 and i?rt does not receive attention at any
stage w , ί + l < w < s + l . Also x£Ct and one easily sees that x is not put into
C until at least after stage s + 1, so Cs{x) = Q + 1 (x) = 0. If {e}5+1 (x) = 0, then
/?„ would receive attention at stage s + 1, contradicting our assumption, so
-•(CJ+1(x) = M J + 1(x)).

Now suppose that Rnis We— [i]c-+ We is recursive. We again consider two

cases. First suppose that Rn receives attention at some stage w + 1 with t + 1 <

M + 1 < 5 + 1 such that (1.3b) holds for u + 1. Then the alternate string σ for

the attack is <Ξ C w + 1 and one easily sees that σ ^ Cv for all v with w + 1 < v <

5 H- 1. By definition of σ, this means that [/] Cv(x) = 0 for all v, u + 1 < v < 5 +

1, and thus i?Λ does not receive attention at any stage v with u+l<v<s+\.

Since (1.3a) does not hold any stage v with t+l<v<s+l,it follows that Rn

receives attention at most once after stage t + 1 and at or before stage 5 + 1 . Fur-

t h e r m o r e , xG W6fU+ι s o x E WetS+ι a n d WetS+ϊ(x) = 1 Φθ= [i]Cs+1(x). I f t h e
first case does not hold, then (1.3a) holds at stage t + 1 and Rn does not receive

attention at any stage u with t + 1 < u < s + 1. Furthermore, [i]Cs+1(x) = 1

and C does not change below |[/] (x)\ by the end of stage s + 1 so [i]Cs(x) =

[i]Cs+1(x) = 1. If x G We,s+i, then 7?Λ would receive attention at stage 5 + 1 ,

contradicting our assumption. Thus W ^ + i ί x ) = 0 ^ 1 = [ ί ] C 5 + 1 ( x ) .

Lemma 1.3 F o r / = 0 or 1 αwrf α// <X,^>,<ΛΓ,y) G ^4/ OΛ/y / j < 2(ΛΓ + 1).

/« fact, for each fixed x, if (x,y) E ΆitS (i = 0 or 1), — 1 < « < x, #tf<i AZO
requirement of priority <n has put a number into A[

o

x] or A[x] by the end of
stage 5, then y<2(x-n). The basic fact is then just the case n = - 1 as there
are no requirements of priority <0.

Proof: Fix x. We use backwards induction on n. Suppose n — x. At stage 0, a
restraint of priority n equal t o / i + l = x + l i s put on. Thus by (1.10) no Rn>
with ri > n can put a number into A\x] (i = 0 or 1) at any stage. Hence, under
the hypotheses, A[*] = 0 (/ = 0,1) so the lemma holds vacuously.

Now suppose that the result holds for some n with 0 < n < x. We show that
the result holds for n — 1. Hence we suppose that no requirement of priority
</? - 1 has put a number into A[Q] or ^4^ by the end of stage s and (x,y) G

Aι s. If in fact no requirement of priority <n has put a number into A{$] or
A\x] by the end of stage s then by induction hypothesis, y < 2(x — n) < 2(x —
( « - l))sowe are done. Thus suppose that Rn has put a number into A\?] or

v41*] by the end of stage s. Say that this first happens at stage / + 1 < s. Now
we may apply the induction hypothesis to stage t to conclude that if (x,y) E
Aitt9 t h e n ^ < 2 ( x - n) <2(x - (n - 1)). Furthermore, by (1.10), x < R(n +
1, t + 1). Hence, at no stage >t + 1 can a requirement Rn> with «' > n put a
number into A\x]. Thus we may assume that (x,y) E 4̂, >iS entered At at a stage
>t + 1 and hence was put in by /?„. If Rn is of Type III, then by (1.4iv) and
(1.4vi), y < 2 ( x - ή).

Suppose that Rn is of Type I or II and that (x,y) was put into Ai at stage
« + l , f + l < w + l < 5 . Now since Rn put a number into A\?] or ^4i*] at stage
/ + 1, it follows from the usual conventions (e.g., if {e}s(x)l then x < s) that
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x < t + 1. If some Rn> with nr <n received attention at a stage v, t + 1 < v <
M + 1, then R(n,u + 1) > R(n,v) > i; > ί + 1 > xand hence /?„ could not put
a number into A \x] at stage u + 1. Thus at no stage t>, ί + l < y < w + l does
an Rn> with n' <n receive attention. By Lemma 1.2, stage w + 1 is at most the
second stage at or after stage t + 1 at which Rn has received attention. No
requirement other than Rn can put a number into A[x] at a stage >t + 1 and
<s. As already noted, if (x,z) E ̂ 4,-̂ , then z < 2(x — n). Thus y < 2(x — fl) +
2 = 2(JC - (n - 1)) as desired.

Lemma 1.4 For e#cΛ JC, lim^C5(x) exists (so C is a well-defined set) and
C<ttA0,A{.

Proof: By Lemma 1.3 with π = —1, if <x,y) E Ah then y < 2x + 2. If Q(x) Φ
Cs+i (x) then by construction a new element is enumerated into Aι

o

x] and v4i*]

at stage s + 1. Thus, for a fixed JC, there are at most 2x + 3 stages 5 such that
Cs(x) Φ Cs+ι(x)9 so UmsCs(x) exists. Also it follows from (1.7), (1.8), and the
facts just shown that x E C iff #{ y: y < 2x 4- 2 & <JC, j> E Λ ) is odd. Thus C

Lemma 1.5 For each n, Rn is met and receives attention only finitely often.

Proof: Suppose that the result holds for all n' < n. Then let s0 be such that for
no s > s0 does an Rn' with n' < n receive attention at stage s. If s > s0 and Rn

requires attention at stage s, then Rn receives attention at stage s\ also, no
attack on Rn is cancelled at a stage >s 0 . By (1.6) if s > s0 then R(n,s) =
R(n9s0). Let us call this common value r0.

Suppose that Rn is C Φ {e}. Because of (1.2a), there is an attack on Rn

which is never cancelled. Say the attack is through x and is made at stage / +
1. It follows from Lemma 1.2 that Rn receives attention at most once after stage
t + 1 and that for all s > t, -^ (C 5 + 1 (x) = {e}s+ι (x)). Thus Rn receives atten-
tion only finitely often and is met.

Suppose that Rn is We— [i]c -> We recursive. Lemma 1.2 implies that Rn

receives attention at most twice after stage s0,
 s o Rn receives attention only

finitely often. Suppose that We = [i]c. If there were an attack on Rn which is
never cancelled (say the attack is through x), then by Lemma 1.2, We(x) Φ
[i]c(x). Thus every attack on Rn is later cancelled, so at no stage >s 0 is Rn

under attack. Furthermore, it follows from (1.10) that (Vs > s0) [Cs Γ r0 = C
Γ r 0 ] . We must show that We is recursive. In fact, let D = C Γ r0. We show that
We = [i]D which certainly makes We recursive. Given x, let σ = D I \[i] (x)\,
T = C t |[/] (Λ:)| . Let s > s0 be such that {i}s(x)l. Then (1.3ai-iii) are satisfied
with σ and r in place of σ0 σ{. Since Rn is not under attack at the end of stage
5 + 1 , [/]*(*) = [iV(x). Thus [i]D(x) = [i]σ(x) = [iV(x) = [i]c(x) = We{x)
as desired.

Finally, suppose that Rn is [e]A° = [e]Aι = Y^> Y <„ C. By construc-
tion, Rn will receive attention at most once after stage s0 so Rn receives atten-
tion only finitely often. Suppose that [e]Ά° — [e]Aι = Y. We must give a
tf-reduction which gives Y when applied to C. First note that if an attack on Rn

is never cancelled, then [e]A° Φ [e]AK Thus every attack on Rn must be can-
celled, so at no stage >5 0 is Rn under attack.
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Given an x > r0, we define a truth table of length \[e] (x)\, i.e., given a
σ of length \[e] (x)\ we must effectively produce a 0 or 1 as answer. To do this,
find a stage s > s0 such that [e}s(x)i. Then see if there are any finite sets B0,Bi
satisfying (1.4 iii—vi) for x and in addition for / = 0 and 1,

(1.11) (Vy < \[e] (x)\) [σ(y) = 1 iff #{z: <J>,Z> E Bt] is odd].

If no such B0,Bι exist, then, arbitrarily, give 0 as an answer. If B0,Bι are such
sets then since Rn is not under attack before or after stage 5 + 1 , [e]B°(x) =
[e]Bι(x) = y, say. Furthermore, if Bo and Bx also satisfy (1.4iii-vi) and (1.11)
then the common answer [e]B°(x) = [e]Bl(x) must also bey, or else we could
attack Rn using Bo and B\. We thus givey as the answer for our //-reduction.

Now we must show the correctness of this //-reduction; i.e., if σ = C \
\[e] (x)\, then the answer obtained above should be Y(x). Let s be as above and
let Bi = ΛUs U Aj \ ω [ < l [ e ] ( x ) ' ] . Then Bo and Bx are finite. From previous work,
it is not hard to see that Bo and B{ satisfy (1.4 iii-v) as well as (1.11) with the
given σ. (For (1.4 iv) note that for / = 0 or 1, Alfr°] = A\<r°].) We show that
B0,Bι satisfy (1.4 vi). Suppose that y > r0 and (y,z) E Ah Then no requirement
Rn> with nr <n ever puts a number into A\γ] since if this happened, a restraint
of priority <n which was >y would be enumerated, contradicting R(n,s) = r0

Vs > s0. If Rn put a number into ^4/^ , say at stage SΊ , then the corresponding
attack must later by cancelled by an Rn> with n' < n say at stage s2. Then at
stage s2 a restraint of priority <n which is >s2 > SΊ > j ; > r0 is enumerated;
again this is a contradiction. Thus no Rn> with n' <n ever puts a number into
^ P ] . Hence, by Lemma 1.3, z < 2(y - Λ). Since Bi c ^4., (1.4 vi) holds. Thus
our //-reduction, applied to σ, gives as answer [e] 5°(x) = [e]Bι(x). But 2?0 I"

\[e] (x)\ = Ao ί \[e] (x)\. Thus the answer produced by the //-reduction is
[e]A°(x) = F(x), as desired.

2 Two r.e. tt-degrees with an infίmum among all the tt-degrees, but no ίnfί-
mum among the r.e. tt-degrees

Theorem 2.1 There are r.e. tt-degrees a0 and ax such that a0 and ?ίχ have no
infimum among the r.e. tt-degrees but have an infimum among all the tt-degrees.

Proof: We build A0,Aχ r.e., and C so that if a 0 = degtt(A0), ai = degtt(Aι)9

c = deg^(C), then ao,ai have inf c among all the //-degrees, but ao,ai have no
inf in the r.e. //-degrees.

We have three types of requirements where e,i,m run over the integers:

Type I: C[m+l] ψ [e]c^m]

Type II: We = [/]c-+ {lr){We <„ C[*r])
Type III: [e]A° = [e]Ai = Y-> Y <Ltt C.

In addition, we ensure that C <tt Ai9 i = 0,1, and that, for all n, C[n] is
r.e. Suppose that we meet all the requirements and meet the conditions of the
previous sentence. Then it is immediate that ao,ai have inf c among all the //-
degrees. Suppose that ao,ai have inf d in the r.e. //-degrees, say We E d. Then
We <tt C, say We = [/] c . Then by a Type II requirement, (3r)( We <tt C[-r]).
So by the Type I requirements We <tt C[~r] <tt C[~r+ι] <tt C <tt A0,Aι and
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C[-r+i] is r.e. But this contradicts the assumption that ao,ai have inf d among
the r.e. degrees.

Our strategy to make C <tt Aιis the same as in Theorem 1.1. Our strat-
egy to make C[n] r.e. is to ensure that for some stage s (which depends on n),
no number is removed from C[n] after stage s. We accomplish this by specify-
ing that no requirement Rn with n' > n may remove a number from C[n].
Since the Rn> with n' < n did only finitely often, this suffices.

We use a Friedberg-Muchnik type strategy to meet the Type I requirements;
i.e., we choose a n x ξ ω [ m + 1 ] as a witness and keep x out of C until we see a
computation [ers (x) = 0. Then we put x into C and preserve the compu-
tation.

To meet a requirement Rn of Type II we follow a strategy similar to that
for Type II requirements in Theorem 1.1; however, because of the strategy to
make each C[m] r.e., when we consider strings σo,σι as in (1.3a), we must add
conditions saying that σ0 and σx must agree on ω[~n] and cannot remove any
number from C[~n]. Because of these new restrictions, if We = [/] c, then we
get We <# C[~n] rather then We recursive.

The strategy to meet a Type III requirement is like that for Type III
requirements in Theorem 1.1, with a slight change to accommodate the strat-
egy to make each C[m] r.e.

The construction is quite like that of Theorem 1.1. Here we give only the
changes. The definition of "requires attention" for a Type I requirement is the
same as (1.2) except that (1.2bi) is replaced by

(2.1) [e]fiΓ\*) = 0.

The definition of "requires attention" for a Type II requirement is as in (1.3)
except that we add to (1.3 a)

(2.2) ( i ) (V^^ ] ) (^< σo\-+σo(y) = σι(y))
(ii) ( V y G ω c ^ ] ) ( . y < σo| Ay G CS -* σo(y) = 1).

The definition of "requires attention" for a Type III requirement is as in (1.4)
with the additional clause

(2.3) (VyGω[^])(y< \[e] (x)\ Ay G Cs -> #B^y] is odd).

The construction is as in Theorem 1.1 with the addition that if the require-
ment C[m+ι] Φ [e]cl~m] receives attention and (1.2a) holds, then the number
x chosen must be in ω[m+ι].

Properties (1.5)—(1.10) hold for this construction. In addition we have

(2.4) If x G Cs Π ω[~n] and no Rn> with nr <n receives attention at stage s +
1, then x G C 5 + 1 .

To see (2.4), suppose that x G CSΠ ω[~n] and Rn> with n' > n receives atten-
tion at stage 5 + 1 . Then x G C 5 + 1 is easily seen unless Rn> is of Type II and
(1.3b) holds at stage s + 1, so suppose that this is the case. If x > | σ| where σ
is the alternate string for the attack, then x G Cs+U so suppose that x < \σ\.
Let t + 1 be the stage at which the attack is begun and let σo,σi be as in (1.3a)
and (2.2). Then C m (x) = σx (x), and by (2.2i) and the fact that ri > n9 σo(x) =
σλ (x). Now for no u with ί + l < w < s + l does a requirement of higher pri-
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ority than Rn> receive attention at stage u (or else the attack on Rn> would be
cancelled). Thus, using (1.10), it follows by induction on u that for t + 1 < u <
5 + 1 , Cu(x) = Ct+ι{x)9 so Cs+ι(x) = Cs(x) = 1.

Lemma 2.2 Suppose that Rn is a requirement of Type I or II9 Rn receives
attention at stage t + 1, s> t, and no requirement Rn> with n' < n receives atten-
tion at a stage w, / t + l < w < 5 + l . Then there is at most one u9 t + 1 < u <
5 + 1 , such that Rn receives attention at stage u and if Rn is C[m+l] Φ [e]c ~m

and the attack at stage t + 1 is through x, then -π (CJ+ + 1 ] (x) = [e]fiΓ" ] (x))9

while if Rn is We = [i]c -+ (lr)(We <tt C[~r]) and the attack at stage t + 1 is
through x9 then WβtS+ι(x) Φ [i]f#l{x).

Proof: The attack on Rn in progress at the end of stage t + 1 is still in pro-
gress at the end of stage s + 1 say the attack is through x. Suppose that Rn is
C[m+ι] Φ [e]c ~m . We consider two cases. First suppose that Rn receives
attention at some stage u + 1 with ί + l < w + l < s + l such that (1.2b) as mod-
ified by (2.1) holds for u + 1. Then x G Cu+i and x stays in C until at least the
end of stage 5 + 1 . Thus Rn does not require attention at any stage v, u + 1 <
v < 5 + 1, so Rn does not receive attention at any such stage v9 and Rn receives
attention at most once at a stage after t + 1 and at or before 5 + 1 . Also,
[ e ] £ ψ \ x ) = 0 ( s i n c e x £ ω [ ^ m ] ) a n d Cu+ι { \[e] (x)\ = Cs+ι l \ [ e ] ( x ) \ 9 s o

[ e ] f ί F V ) = ίe]^ψ\x) = 0 * 1 = C]+! + 1 ] (x). If the first case does not
hold, then (1.2a) must hold at stage / + 1 and Rn does not receive attention at
any stage u, t+l<u<s+l. Also, x ^ Q and one easily sees that x is not put
into Cuntil at least after stages + 1, so Cs(x) = Cs+i(x) =0. If [e]fj^m] (x) =
0, then Rn would receive attention at stage 5 + 1 , contradicting our assumption,
so

If Rn is Type II, then the proof is as in Lemma 1.2.

Lemmas 1.3 and 1.4 hold for this construction as well, with proofs
unchanged.

Lemma 2.3 For each n, Rn is met and receives attention only finitely often.

Proof: The proof is similar to that of Lemma 1.5. In particular, we use the nota-
tion and definitions of the first paragraph of that proof.

If Rn is Type I, then the result follows from Lemma 2.2 just as the corre-
sponding fact in the proof of Lemma 1.5 follows from Lemma 1.2.

If Rn is We = [z']c-> (3r)(»ς <tt C[~r]), then Lemma 2.2 implies that Rn

receives attention at most twice after stage sθ9 so Rn receives attention only
finitely often. Suppose that We = [i]c. If there were an attack on Rn which is
never cancelled, then by Lemma 2.2, We Φ [i]c. Thus every attack on Rn is
later cancelled, so at no stage >5 0 is Rn under attack. Furthermore, it follows
from (1.10) that (V5 > s0) [Cstr0 = Ct r0]. We will show that We <tt C[-n].
In fact, let D = C[~n] U C \ r0. We show that We = [i]D, which suffices.
Given x9 let σ = D Γ |[/] (x)\ 9τ = C \ \[i] (x)\. Let 5 > s0 be such that [i]s(x)l.
Then (1.3ai-iii) and (2.2) are satisfied with σ,r in place of σθ9σx. ((2.2ii) holds
because, by (2.4), y E CJ~n] -• y G C.) Since Rn is not under attack after stage
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* + 1, [i]σ(x) = UV(x). Thus [i]D(x) = [i]σ(x) = [i]τ (x) = [i]c(x) = We(x)

as desired.
If Rn is of Type III, then the argument is similar to the corresponding

argument in the proof of Lemma 1.5. The only differences are: (a) In defining
the tf-reduction, we ask that the sets Bθ9Bχ satisfy (2.3) as well as (1.4iii-vi) and
(1.11). For any such B0,Bu[e]B°(x) = [e]Bl(x) and we give this result as
answer, (b) In showing the correctness of the ̂ -reduction, when we define
B0,Bl9 we must show that they satisfy (2.3) as well as (1.4iii-vi) and (1.11). But
(2.3) follows from (1.11) since by (2.4) if y G Cs

[~n], then y G C, so σ(y) = 1.

Lemma 2.4 For all n9 C
[n] is r.e.

Proof: By Lemma 2.3, take s0 so that at no stage s > s0 does an Rn> with n' <
n receive attention. Then by (2.4)

C[n] = {x<Ξω[n]: (3s > s0) [x G Cs])

so C[n] is r.e.

3 Two r.e. tt-degrees with an infimum among the r.e. tt-degrees, but no infί-
mum among all tt-degrees

Theorem 3.1 There are r.e. tt-degrees a0 and ?L\ such that a0 and ai form a
minimal pair (i.e., have infO) among the r.e. tt-degrees, but have no inf among
all the tt-degrees.

Proof: We build Aθ9Aι r.e. and C so that if a 0 = deg^(^40)> a n d a t = degtt(Aι)
then ao,ai are as desired.

We have three types of requirements, where e,i9m run over the integers:

Type I: C[m+l] ψ [e]cl*m]

Type II: We = [/] c -> We recursive
Type III : [e]A° = [e]A* = y - > (3r)(Y <tt C[~r]).

In addition, we ensure that for each n, C[n] <tt Ah for / = 0,1. Suppose
that we meet all the requirements and meet the condition of the previous sen-
tence. If We <tt AOiAι9 then by a Type III requirement, for some r, We <tt

C[~r] <tt C, so by a Type II requirement, We is recursive and hence ao,ai have
inf 0 among the r.e. degrees. Suppose that ao,ai have inf deg^Z}) among all
the ^-degrees. Then by a Type III requirement, for some r, D <tt C[~r], so by
a Type I requirement D <tt Cι~r] <tt C[~r+ι] <tt Ah i = 0,1, contradicting the
assumption that a o ,a! have inf άzgtt(D).

Our strategy to make C[n] <ttAiis to arrange that

{for each n there is some M such that
(Vx>M)(xGω[-n] ->*G Ciff #{j: y < 2x + 2rκ(x,y) G At) is
odd).

Our strategies for Type I and II requirements are as in Theorems 2.1 and 1.1
respectively. Our strategy for Type III requirements is similar to that of The-
orem 1.1, but if Rn is Type III then in trying to make [e]A° Φ [e]Aι, Rn needs
to respect the coding strategy of (3.1) only for those x G ωι~n]. Thus if we get
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[e]A° = [e]Aί = Y, we can show that Y <„ C[~n] rather than just Y <tt C.
The tradeoff here is that we now only have C[n] <tt At for each n and / = 0,1
via (3.1) rather than C <„ At via (1.1).

The construction is similar to those of Theorems 1.1 and 2.1. The defini-
tion of "requires attention" for a Type I requirement is as in Theorem 2.1. The
definition of "requires attention" for a Type II requirement is as in (1.3). For
a Type III requirement, the definition is as given by (1.4) except that (1.4vii) is
replaced by

n o\ l(vy)[R(n,s) <y< \[e](x)\ AyGω[~n] -+#B$y] ,#B}y] have the same
V'Z) [parity].

The construction is as in Theorem 1.1 except that Type I requirements are
handled as in Theorem 2.1.

Properties (1.5)-(1.7), (1.9), (1.10) hold for this construction. In place of
(1.8), we have the following property:

n _ ΓFor all y,s,n,y G ω[n], y > R(n,s) -* #Aly}$A[y} have the same
V'5) [parity.

We verify (3.3) by induction on s. For s = 0, ftA}y] = 0 for / = 0,1, so the result
holds. Suppose that the result holds for s and that y G ω[n]

9 y > R(n,s + 1).
By (1.5), R(n,s) < R(n,s + 1) < y, so by induction hypothesis, #Aoy} JA\y}
have the same parity. Let Rn> receive attention at stage s + 1. If Rn> is Type I
or II, then by construction either A[

o

y] ,A\y] are unchanged at stage s + 1 or else
one element is added to each set, so the desired result holds for s + 1. If Rn> is
Type III and n' < n, then A[

o

y] ,A[y] do not change at stage s 4- 1 (since by
(1.10), if A[ow] or A\w] changes at stage 5 + 1 , then w < R{n' + 1, s + 1) <
R(n,s+ 1) <y), so the result holds. If n < n' a n d y <R(n\s) or y > \[e] (x)\
(where e,x,BOiBι are as in (1.4)), then by (1.4iv) A[

o

y] ,A\y] do not change at
stage s + 1. If R(n',s) < y < \[e] (x)\, then by (3.2) and the fact that y G
ωίn] c ωι-n>], the desired result holds for s + 1.

Lemma 2.2, with We= [/]c-> (lr)(We <tt C[~r]) replaced by We=[i]c-*
We is recursive, and Lemma 1.3 hold for this construction.

Lemma 3.2 For each x9 \imsCs(x) exists (so C is a well-defined set).

Proof: By Lemma 1.3 with n = - 1 , if (x,y) G Ah then y < 2x + 2. If Cs(x) ψ
Cs+ι(x), then by construction, a new element is enumerated into A[

o

x] at stage
s + 1. Thus, for a fixed x, there are at most 2x + 3 stages s such that Cs(x) Φ
Cs+Ϊ(x), so limsCs(x) exists.

Lemma 3.3 Each Rn receives attention only finitely often and is met.

Proof: The proof is similar to that of Lemma 1.5 and we take preliminary defi-
nitions and notations from that proof.

If Rn is of Type I, then the result follows as in Lemma 2.3. If Rn is of
Type II, then the result follows as in Lemma 1.5. If Rn is of Type III, say
[e]A(> = [e]Aι = y-> (3r)(F <tt C[~r]), then the argument is similar to the
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corresponding argument in the proof of Lemma 1.5. The only differences are:
(a) If [e]A° = [e]Al = Y, then we show that Y < „ C[~n] rather than C; (b) In
defining the ^-reduction, we ask that the sets B0,Bχ satisfy (1.4iii-vi) and in
addition

(3.4) (Vy)(ro<y< |[έ?](*)| Λ j > e ω [ - " ] -* σ(y) = 1 iff #B}y] is odd).

For any such BOiBu [e]B°(x) - [e]Bι(x) and we give this result as answer, (c)
In showing the correctness of the ^-reduction, given σ = C[~n] \ \[e] (x)\, we
define B0,Bι as before and they satisfy (1.4iii-vi). In addition, using (1.7),
(3.3), and the fact that each A\y] is finite, we see that B0,B{ satisfy (3.4) as
well. Thus the tt-reduction, applied to σ, gives [e]B°(x) = [e]Ά°(x) = Y(x) as
answer.

Lemma 3.4 For each n and i = 0,1, C[n] <tt Ah

Proof: By Lemma 3.3, fix s0 so that no Rn' with n' < n receives attention at a
stage >5 0 . Then (Vs > s0) [R(n,s) = R(n,sQ)]. Call this final value r0. By (1.7)
and (3.3), if y > r0, y e ω[n], s > s0, and / = 0 or 1 then y G Cs iff ttA^] is
odd.

Taking s large enough and remembering that by Lemma 1.3 with n = - 1 ,
if (y,z) G A , then z < 2( j + 1), we get that (Vy > r o j G ω [ Λ ])(j> G C «
# { Z : Z < 2 ^ + 2 Λ < ^ , Z ) G Λ ) is odd). Thus C [ A l ] <ttA^Ax.

4 Two r.e. tt-degrees with no infimum in either structure

Theorem 4.1 There are r.e. tt-degrees a0 and &ι such that a0 and &i have an
infimum neither among the r.e. tt-degrees nor among all the tt-degrees.

Proof: We build AQ,AU and C r.e. so that if a 0 = deg^ (AQ), &ι = deg^ {Ax),
then ao,ai are as desired.

We have two types of requirements, where e,m run over the integers:

Type I: C[m+ι] Φ [e]c^m]

Type III: [e]A° = [e]A* = Y-+ (3r)(Y <tt C [ - r ] ) .

In addition, we ensure that for each «, C[n] <tt Ah for / = 0,1. Suppose
that we meet all the requirements and meet the condition of the previous sen-
tence. If Y <tf AO,AU then by a Type III requirement, Y <tt C[~r] for some
r. But by a Type I requirement, C[-r] <tt C [ - r + 1 ] and C[~r+ι] <ttA^Ax. Fur-
thermore, since C is r.e., c[~r+l] is r.e. Thus a o ,a! have an infimum neither
among the r.e. ^-degrees, nor among all the ^-degrees.

Our strategies to make C[n] <tt At^ as well as to meet the Type I require-
ments are the same as in the proof of Theorem 3.1. Because we no longer have
Type II requirements, we can make C r.e. if we modify the Theorem 3.1 strat-
egy for meeting Type III requirements by insisting that action for Type III
requirements can only add elements to C, not remove them.

More formally, the definition of "requires attention" for a Type III require-
ment is the same as in Theorem 3.1 with the addition of

(4.1) (vy< \le](x)\)(yeCs-+#B£y] is odd).
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The rest of the construction is the same as that in Theorem 3.1. Because of (4.1),
when a Type III requirement receives attention, no numbers are removed from
C, so C is r.e.

The proof that the construction works is similar to the proof in Theorem
3.1 and is omitted.

REFERENCES

[1] Ambos-Spies, K. and M. Lerman, "Lattice embeddings into the recursively enu-
merable degrees," The Journal of Symbolic Logic, vol. 51 (1986), pp. 257-272.

[2] Degtev, A. N., "The m-degrees of simple sets," Akademiya Nauk SSSR, Sibirskoe
Otdelenie Institute Matematiki, Algebra i Logika, vol. 11 (1972), pp. 130-139
(English pp. 74-80).

[3] Degtev, A. N., "tt- and m-degrees," Akademiya Nauk SSR, Sibirskoe Otdelenie
Institute Matematiki, Algebra i Logika, vol. 12 (1973), pp. 143-161 (English pp.
78-89).

[4] Fejer, P. and R. A. Shore, "Embeddings and extensions of embeddings in the r.e.
tt- and wtt-degrees," pp. 121-140 in Recursion Theory Week (Proceedings, Ober-
wolfach 1984), eds. H. D. Ebbinghaus, et al., Lecture Notes in Mathematics 1141,
Springer-Verlag, New York, 1985.

[5] Kobzev, G. N., "The semilattice of tt-degrees," Sakharthvelos SSR Mecnierebatha
Akademiis Moambe, vol. 90 (1978), pp. 281-283.

[6] Lachlan, A. H., "Lower bounds for pairs of recursively enumerable degrees," Pro-
ceedings of the London Mathematical Society, Third Series, vol. 16 (1966), pp.
537-569.

[7] Lachlan, A. H., "Initial segments of many-one degrees," Canadian Journal of
Mathematics, vol. 22 (1970), pp. 75-85.

[8] Lachlan, A. H., "Embedding non-distributive lattices in the recursively enumer-
able degrees," pp. 149-177 in Conference in Mathematical Logic, London 1970,
Lecture Notes in Mathematics 255, Springer-Verlag, New York, 1972.

[9] Lachlan, A. H. and R. I. Soare, "Not every finite lattice is embeddable in the
recursively enumerable degrees," Advances in Mathematics, vol. 37 (1980), pp.
74-82.

[10] Lerman, M., "On sublattices of the recursively enumerable degrees," unpublished.

[11] Odifreddi, P., "Strong reducibilities," Bulletin (New Series) of the American Math-
ematical Society, vol. 4 (1981), pp. 37-86.

[12] Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-
Hill, New York, 1967.

[13] Soare, R. I., "Recursively enumerable sets and degrees," Bulletin of the American
Mathematical Society, vol. 84 (1978), pp. 1149-1181.

[14] Soare, R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin,
1986.

[15] Stob, M., "wtt-degrees and T-degrees of recursively enumerable sets," The Jour-
nal of Symbolic Logic, vol. 48 (1983), pp. 921-930.



INFIMA OF TRUTH TABLE DEGREES 437

[16] Thomason, S. K., "Sublattices of the recursively enumerable degrees," Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp.
273-280.

[17] Yates, C. E. M., "A minimal pair of recursively enumerable degrees," The Jour-
nal of Symbolic Logic, vol. 31 (1966), pp. 159-168.

P. A. Fejer R. A. Shore
Department of Mathematics and Computer Science Department of Mathematics
University of Massachusetts-Boston Cornell University
Boston, Massachusetts 02125 Ithaca, New York 14853




