A Five-Valued Model of the E-p-q-Theses

DOLPH ULRICH

The first eleven-character single axioms for the classical equivalential calculus were discovered by Łukasiewicz, who proves in [3] that each of *EEpqEErqEpr*, *EEpqEEprErq* and *EEpqEErpEqr* will (with substitution and detachment) suffice.

Is there a yet shorter formula which will do the same job? To show that there is not, Łukasiewicz proceeds in [3] to establish that if a shorter single axiom existed there would be one among

EEEppqq	EEpEpqq	EEppEqq	EpEEpqq	EpEpEqq
EEEpqpq	EEpEqpq	EEpqEpq	EpEEqpq	EpEqEpq
EEEpqqp	EEpEqqp	EEpqEqp	EpEEqqp	EpEqEqp.

He then considers one two-valued, three three-valued and two four-valued matrices, showing that each of the fifteen formulas listed is a tautology of one of the six matrices though *EEpqEErqEpr* fails in all of them.

The author has not found in the literature the single matrix

= 3	_ <i>E</i>	1	2	3	4	5
	*1	1	2	3	4	5
	2	2	1	4	3	1
	3	3	4	1	2	1
	4	4	3	2	1	1
	5	5	1	1	1	1,

whose tautologies include all fifteen formulas, and more. Indeed, the reader can verify that each submatrix of \mathcal{E} generated by two elements validates *EEpqEEr*-*qEpr*, whence *all* two-letter *E*-theses are \mathcal{E} -tautologies. But *EE* 43*EE* 53*E* 45 = 2, whereupon *every* complete set of equivalential axioms must (cf. [1]) include an axiom involving three or more distinct letters and so-since it is known from [2] that letters occur an even number of times each in *E*-theses – an axiom at least eleven characters long.

Received November 20, 1985; revised February 27, 1986

DOLPH ULRICH

REFERENCES

- [1] Diamond, A. H. and J. C. C. McKinsey, "Algebras and their subalgebras," Bulletin of the American Mathematical Society, vol. 53 (1947), pp. 959-962.
- [2] Leśniewski, Stanisław, "Gründzüge eines neuen Systems der Grundlagen der Mathematik," *Fundamenta Mathematicae*, vol. 14 (1929), pp. 1-81.
- [3] Łukasiewicz, Jan, "The equivalential calculus,", pp. 88-115 in Polish Logic, 1920-1939, ed., Storrs McCall, Clarendon Press, Oxford, 1967.

Department of Philosophy Purdue University West Lafayette, Indiana 47907