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Do We Need Models?

PHILIP HUGLY and CHARLES SAYWARD*

A truth valuational semantics consists of an assignment of truth values to
atomic formulas together with a definition of truth keyed to the devices through
which formulas are built up from simpler formulas. The definition serves to
extend the assignment of truth values from atomic to nonatomic formulas. Each
truth valuation V for a language L thereby effects a distribution of truth val-
ues over the formulas of L.

It is a central feature of truth valuational semantics that truth values are
assigned to atomic formulas directly, not via assignments of objects to individual
symbols or sets of π-tuples of objects to π-ary predicates. Further, the truth value
of every nonatomic formula evaluated by V is a function of the truth values of
simpler formulas. In particular, the truth value of a universal quantification is
defined in terms of the truth-values of its instances in a way which does not
involve assignment of objects to individual symbols. A truth valuational seman-
tics is nondenotative. It is its nondenotational character which makes a truth
valuational semantics of special philosophical interest.

By contrast, a semantics which assigns objects to individual symbols, sets
of ^-tuples of objects to fl-ary predicates, etc., is denotational Standard for-
malizations of denotational semantics, employing models, also serve to effect
distributions of truth values over the formulas of L. Logical terms are defined
relative to these distributions. For example,

A sentence 5 of L is a logical truth of L just in case S is true relative to each
model M of L

i.e., just in case every model of L determines a truth value distribution over the
sentences of L on which S is assigned truth. Adapting the just cited definition
to truth valuations, we obtain

*We wish to thank an anonymous referee for a set of unusually helpful notes on the
original version of this paper.
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A sentence S of L is a logical truth of L just in case S is true relative to each
truth valuation V of L.

These exactly parallel definitions are extensionally equivalent, for a sentence S
of L is true relative to each model M of L if and only if it is true relative to each
truth valuation V of L.

Next consider the notion of finite consistency. Here the exactly parallel
definitions would be as follows:

For any finite set K of sentences of L, K is consistent just in case there is
a model M of L such that each member of K is true relative to M.

For any finite set K of sentences of L, K is consistent just in case there is
some truth valuation V of L such that each member of K is true relative
to V.

These definitions also are extensionally equivalent, for there is a model M of L
relative to which each member of a finite set K of sentences is true if and only
if there is a truth valuation V of L relative to which each member of K is true.
A similar situation holds in respect to the consequence relation on finite sets of
sentences.

Well-known difficulties arise, however, in connection with infinite sets of
sentences, in particular the ω-inconsistent sets.

For expositional simplicity let L be a language with denumerably many
individual constants and let the truth valuations for L be based on truth value
distributions to atomic sentences. Consider now the set membering the negation
NQF of L and each instance Fv/c of the quantification QF which results from
dropping the quantifier Q and replacing, for the variable v in Q, each of its free
occurrences in F by some individual constant c. There will be no truth valua-
tion V of L relative to which NQF and each Fv/c are true. But there will be mod-
els of L relative to which all those sentences are true. Thus, the parallel
definitions of general consistency,

A set K of sentences of L is consistent just in case there is some model M
of L relative to which each member of K is true,

A set K of sentences of L is consistent just in case there is some truth valu-
ation V of L relative to which each member of K is true,

determine different extensions for Consistent'. The reason is that the truth valu-
ations for L do not provide for all of the truth value distributions provided for
by the models for L.

A similar divergence holds for the parallel definitions of general conse-
quence.

Thus, one problem facing the truth valuation approach is that of how to
attain the extensions for consistency and consequence fixed for these notions by
denotational semantics employing models given that models provide for distri-
butions of truth values unavailable within the truth valuation approach.

The basic line of attack has been to revise the definitions for these terms;
i.e., to replace the parallel definitions noted above by nonparallel definitions.

The guiding idea for one revision was perhaps first indicated by Hintikka
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([1], p. 33) when he suggested that names could be added as needed to embed
consistent sets of sentences in model sets. This yields the notion of a language
which results from a given language by the addition of individual constants.
Given a truth valuation V of L it will be easy to define a truth valuation V for
a name-extension L' of L. And now the definition of consistency due to Dunn
and Belnap ([2], p. 183) is ready at hand:

A set K of sentences of L is consistent just in case there is a name-extension
L of L such that for some truth valuation V of U each member of K is
true relative to V.

An alternative method is developed by Leblanc in [3] and [4]. Let set K' of sen-
tences of L be an alphabetic variant of a set K of sentences of L just in case the
sentences in K' result from the sentences in K by some systematic rewriting of
individual parameters. Leblanc then defines:

A set K of sentences of L is consistent just in case there is an alphabetic
variant K' of K such that for some truth valuation Fof L, each member
of K' is true relative to V.

Yet another new definition due to Leblanc [3] is as follows:

A set K of sentences of L is consistent just in case for each finite subset K'
of K there is a truth valuation V of L such that each member of AT' is true
relative to V.

As the authors show, these revised definitions all yield the classical extensions
for consistency.

But is it quite necessary to proceed by revising the definitions? Would it
not be possible to so revise truth valuation^ as to yield all of the truth value dis-
tributions available in terms of models? That is, might we not so revise the
underlying truth valuational semantics that each classical distribution of truth
values would be matched by some truth valuational distribution of truth values?

In fact this is not possible. The reason is that whereas the classical denota-
tional semantics does not make the truth values of all of the truth valued for-
mulas a function of the truth values of simpler truth valued formulas, it belongs
to the very character of truth valuational semantics to do so. A semantics is truth
valuational in character precisely in viewing all truth as a function of some truth.
But the truth value distributions classically but not truth valuationally available
are just those which involve truth value assignments which are not functions of
such assignments to simpler formulas.

To see this point quite clearly consider any first-order language L and
model M of L with domain set D and function υ assigning a domain element
to each individual symbol of L and sets of ^-tuples of elements of D to the n-
ary predicates of L. Let an α-variant of M be model M' like M except at most
in what υ' of M' assigns to variable a of L. Similarly, let a variant M' of Mbe
a model like M except at most in what υ' oi M' assigns to the variables of L.
Finally let a satisfaction relation for the formulas of L relative to model M of
L be so defined that M satisfies an atomic formula ψτι... τn just in case
(v(τι),... 9v(τn)) G v(φ); and Msatisfies (a)φ just in case, for each α-variant
M' of M, M' satisfies φ. Truth and falsity are then defined as follows:
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A formula φ of L is true relative to M just in case it is satisfied by each var-
iant M' of M, and is false relative to M just in case it is satisfied by no var-
iant M' of M.

Now, there will be many formulas of L whose truth values are a function
of the truth values of simpler formulas of L. But this is not the general case, for
there also are formulas of L which are truth valued relative to M whose truth
value relative to M is not a function of the truth values relative to M of simpler
formulas of L. In general, truth is a function of satisfaction, not of truth.

Now, it is precisely in virtue of this feature that the classical denotational
semantics just sketched yields more truth value distributions than are available
through a truth valuational semantics. Thus, since a truth valuational seman-
tics is based on the idea that all truth is a function of some truth, no variation
on the truth valuational approach will provide for all of the truth value distri-
butions available on the denotational approach.

Nonetheless, the aim of this paper is to provide a nondenotational seman-
tics for first-order languages which will match, one for one, each distribution
of truth values available in terms of a denotational semantics.

This will require the development of an alternative nondenotational seman-
tics, a nondenotational semantics which is not a truth valuational semantics.

Our basic idea is to define a nondenotative relation parallel to satisfaction.
Our term for this nondenotative relation will be comprehension. We also define
a nondenotative parallel to a model which we call an atomic system. We shall
define truth and falsity as follows:

A formula φ of L is true relative to an atomic system A of L just in case,
for every variant φ' of φ, A comprehends φ' and is false relative to A just
in case, for every variant φ' of φ, φ' is not comprehended by A,

where φ' is a variant of φ just in case φ' results from φ by rewriting the vari-
ables in φ.

What we will show is that for every first-order language L (with or with-
out individual constants or operations symbols) and model M of L there is an
atomic system A of L such that for any formula φ of L, φ is true relative to M
if and only if φ is true relative to A and φ is false relative to M if and only if
φ is false relative to A; and conversely.

Given this result it will not be necessary to revise the definitions for con-
sistency and consequence beyond replacing "true relative to model M" by "true
relative to atomic system A ".

Atomic systems, comprehension and truth. By a language we shall mean
countable s e t N U P U O , for set N of names, nonempty set P of predicates, and
set O of operation symbols. By a term we mean a name, a variable, or
0τi,... τn where θ is an #-ary operation symbol and each τ, is a term. Let Γbe
a function from the terms into the variables satisfying these conditions:

T(a)=a,

T(θτι...τn) = T(ΘT(τι)...T(τn)),
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for each n-axy operation symbol θ GO, variable α, and terms τ{,..., τn. Let A
be a set of atomic formulas constructed from language L each of which is an
n-ary predicate flanked by n occurrences of variables. Then (A, T) is an atomic
system for L.

An atomic system for a language is our syntactic analogue of a model of
that language. The set A represents in syntactic terms assignments of extensions
to predicates. T similarly represents assignments of extensions to terms.

Our syntactic analogue of satisfaction is comprehension, spelled out as fol-
lows. First, formula φ is an α-variant of formula φ just in case φ differs at most
from φ in having bound occurrences of distinct variables where and only where
φ has bound occurrences of distinct variables and having free occurrences of
variable ω where and only where φ has free occurrences of variable a. Second,
call a formula φ a Γ-variant of formula φ just in case φ results from φ by replac-
ing one or more occurrences of term r in φ by Γ(r), or conversely. Then for-
mula φ is comprehended by atomic system K = (A,T) just in case

(i) φeA or
(ii) φ is -i φ and φ is not comprehended by K\ or

(iii) φ is φ v x and either φ or χ is comprehended by K\ or
(iv) φ is (a)φ and φ is comprehended by K for each α-variant φ of φ\ or
(v) φ is a Γ-variant of φ and φ is comprehended by K.

In the model-theoretic sense (a)φ is satisfied by model M just in case φ is
satisfied by all a-υariants of M; i.e., all models which differ from M at most
on their assignments to variable a. An α-variant of formula φ is our syntacti-
cal representation of an α-variant of a model M.

Model relative truth as developed in terms of satisfaction is defined as fol-
lows: A formula φ is true relative to a model M just in case it is satisfied by all
variants of M, i.e., all models which differ from Mat most in their assignments
to variables. We syntactically represent the notion of a variant of a model M
by a variant of a formula φ, i.e., a formula φ' which results from φ by simul-
taneously replacing all occurrences of all the distinct variables in φ by distinct
variables. Then a formula φ is true relative to atomic system K just in case K
comprehends all variants of φ. This is our syntactic analogue of model relative
truth.

Note that just as 'satisfaction by all variants of model M' generalizes 'satis-
faction by all α-variants of model M\ so also 'comprehends all variants of φ9

generalizes 'comprehends all α-variants of φ\ since each α-variant of φ is also
a variant of φ, though not conversely.

Example: Let L = (0, =, ', +, }. Thus L consists of one name, one predicate,
one unary operation symbol, and two binary operation symbols. It is a language
suitable for arithmetic. Now consider an atomic system K = {A, T) defined for
L relative to the standard enumeration of the variables as follows:

Γ(Ό') = V
Γ(α') = ω iff a is the nth variable and ω is the n + lth variable
T(a + ω) = 7 iff a is the nth variable and ω is the rath variable and y is

the (n - 1) + (m - l)th variable
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T(a ω) = 7 iff a is the nth variable and ω is the mth variable and 7 is the
(n — 1) (ra — 1 )th variable.

By the standard enumeration of the variables, x is the first variable, y the sec-
ond, z the third. Here is how to show 0' + 0' = 0" is true relative to K: K com-
prehends z = z, which is a T-variant of y + y = z, which is a Γ-variant of y +
7 = ;>', which is a Γ-variant of x' + x' = x" which is a Γ-variant of 0' 4- 0' =
0". Thus, 0' + 0' = 0" is comprehended by K. Since any variant of that formula
is that formula, the formula is also true relative to K. Note also that although
y + y — z is comprehended by K, not all of its variants are (e.g., K does not com-
prehend x + x = y); thus, y + y — z is not true relative to K.

For another example, T{a ωr) = Γ((α ω) + α) = 7 for any variables α,
ω and some variable 7. So, since K comprehends 7 = 7 for any variable 7, AT
comprehends (x){y)((X'y/) = (x-y) + x) and all variants of this formula. Thus
this formula is true relative to K.

By similar reasoning it can be shown that the usual axioms of arithmetic
are true relative to K. It can also be shown that K has this version of ω-
completeness: If φa/τ is true relative to K, for all closed terms r, (a)φ is also
true relative to K. Thus K is equivalent to a standard model of arithmetic in the
sense that a formula of L is true relative to the model just in case it is true rel-
ative to K.

Theorem Every atomic system for a language L is equivalent to a model
forL.

Our strategy is to prove this plus its converse: every model for L is equivalent
to an atomic system for L, where a model for a language L and an atomic sys-
tem for L are equivalent just in case the set of formulas true in the model is the
set of formulas true relative to the atomic system.

Though entrenched, the notion of truth in a model is characterized in
diverse ways, so it will not hurt to spell out our characterization. First, a model
for a language L is a pair (D,v) for some nonempty set D and function v
defined for L plus the variables. In particular, v(β) E D and υ(a) E D for each
name β and variable a; υ assigns the usual things to the predicates and opera-
tion symbols in L as well as all terms constructed from L. In addition,

φτu . . . ,rΛ is satisfied by (D, v) iff (υ(τx),... ,υ(τn)) E v(ψ), for each
atomic formula ψτι . . . τn of L

-"</> is satisfied by <Z>, v) iff φ is not satisfied by (D9 v), for each negation
-ιφ of L (similarly for disjunctions φvψ)

(a)φ is satisfied by (D, v) iff φ is satisfied by <D, ι/>, for each function
υ' which differs from v at most in what it assigns to a ('each v' = α v'
for short).

A formula φ is true (false) in a model M just in case 0 is satisfied by all (no)
variants of M.

A model of L is complete just in case, for each quantification formula
(a)φ of L, the model satisfies (a)φ iff it satisfies every α-variant of 0.

Let K = (A, T) be any atomic system for L. Then an equivalent model is
constructed as follows:
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D is the set of variables
v(a) = a, for all variables a
v(β) = T(β), for each name β G L
v{θ) = {«αi,.. . ,αΛ>, a): T(θotχ.. .an) = α) for each rt-ary operation

symbol θ and variables α, c ^ , . . . , α Λ

^ W = {<^(«i)» ,v(an)): φoίi.. .an is comprehended by # } , for each
rt-ary predicate ψ G l and variables aΪ9... ,α Λ .

Now < A y> is complete. This follows from the fact that v maps the set of terms
onto D = the set of variables. Using the fact that <D> v) is complete, an induc-
tion on the number of occurrences of logical signs (= connectives and quanti-
fiers) in a formula φ establishes that <£), υ) satisfies φ just in case K
comprehends φ. Thus K is equivalent to <Z), v).

Theorem Every model is equivalent to an atomic system.

This is the main thing we seek to show.
First we shall say a model (D, v) is a. falsification model just in case, for

each quantification formula (a)φ of L, if the model fails to satisfy (a)φ then,
for some variable ω free in φVω wherever a is free in φ ('ω free for a in φ\ for
short), the model fails to satisfy φa/ω. <A v) will be called normal just in case
for each term r there is a variable a such that v(τ) = v(a). Finally, two mod-
els of a language will be said to be equivalent just in case the same formulas of
the language are true in each model.

We outline the proof of our theorem by means of a series of lemmas.

Lemma 1 Every model of a language is equivalent to a falsification model
of that language which is also normal.

Proof: Let <D, v) be a model of L and let R well order D. Let χi, χ 2 , . . . enu-
merate the quantification formulas of L. We construct a series of sets So,
S\y... of variables as follows: So is the null set; for / > 0, S, = S, _i U
( 7 ! , . . . ,yn] U {ω, ω! , . . . ,ωm] where yl9... ,yn are all the variables free in
Xi = (a)φ but not in £,_!, ω is the first variable free for a in φ which is not in
S/_i U {71,... ,7Λ} and, where m is the number of terms in χh ωi, . . . ,ωw are
the first m variables not in S/_! U {71,... ,7,,, ω). We next construct a series
of functions v0, υu... which agree with v on L. y0 is the subfunction of v
defined on L, i.e., on the names, predicates and operation symbols of L. For
each / > 0, yf is defined on S, in three stages. First, for each a e S, _i,f/(α) =
ϋ, _i(α); and for each 7^, ^(7^) = v(yk). Second, for each ωk, Vj(ωk) = Vj(τ)
where r is the A:th occurring term in χh Third, Vj(ω) = v(ω) if (D,vf) satis-
fies (a)φ where v' differs from υ at most in assigning to the free variables of
Xi = (a)φ what vt assigns to those variables; otherwise ι/, (ω) is the iMeast
element of {d\ d E D and for some v* =a v\ <A v*) does not satisfy φ and
z;*(α)=rf}.

Let ϋ be the union of the v0, v 1.... Then first observe that for each vari-
able a and functions Vj and Vj defined for a, Vi(a) = Vj(a). Thus v also is a
function. Since each vt agrees with υ on L, so does v. Finally, note that each
variable is assigned an element of D by some vt. Thus <A v) is a model for
L. Now < A £> satisfies the lemma because, first, since v agrees with υ on L,
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<A v) is equivalent to (D, v), and, second, by the ω-assignments, (D,v) is a
falsification model for L which is also normal.

Lemma 2 Every model of a language L is equivalent to a complete model
of that language which is also normal.

Proof: Every falsification model is complete. This fact plus Lemma 1 yields
Lemma 2.

Lemma 3 Let (D, v) be a model of L which is complete and normal. Let
A — {\poLγ... an: (D, υ) satisfies φa\... an} for n-ary predicate ψ G L and vari-
ables «!,... 9an. Let Tsatisfy these conditions: T(β) = a iffv(β) = v(a)9for
name β and variable a (that the model is normal guarantees that this condition
can be satisfied); T(θaγ ...an) = aiff v(θaγ . . .«„) = a, for variables α,
c*i,... ,αΛ and n-ary operation symbol θ. Then {A, T) is an atomic system
equivalent to (D, v).

Proof: First, since (D9v) is normal it follows by the construction of T that
T(τ) — a iff v(τ) = v(a), for term r and variable a. This fact yields the result
that <£>, v) satisfies φ just in case (A, T) comprehends φ if φ is an atomic for-
mula. Then an inductive proof which relies upon < A v) being complete estab-
lishes the same for any formula φ. This establishes the equivalence of {A, T)
and (D,v).

From the three lemmas it follows that every model is equivalent to an
atomic system.

Here is the main idea of the argument. Let M be any model of L. Then
there is a model M' which agrees with M on L and which is complete and nor-
mal. Since the models agree on L, a formula is true relative to one model just
in case it is true relative to the other. That is, M and M' are equivalent. Since
M' is complete and normal, an atomic system K may be constructed which com-
prehends just the formulas M' satisfies. Hence a formula is true relative to M
just in case it is true relative to K. That is, M and K are equivalent.

Applications: Our main purpose has been to show that our nondenotative, sys-
tem relative theory of truth matches any classical model-theoretic distribution
of truth values over first-order languages. We have shown just this, having
shown

(1) Every atomic system is equivalent to a model.
(2) Every model is equivalent to an atomic system.

A corollary is that our proposed nondenotative theory of truth yields the stan-
dard extensions of logical notions (consequence, consistency, etc.) in a perfectly
straightforward way, simply by replacing, in the standard definitions, occur-
rences of 'model' by occurrences of 'atomic system'.

Further, the semantical properties of theories are explicable in terms of
system-relative truth. Consider a language interpreted by model M, and let X
be a theory couched in the language. Then X is complete just in case only the
theory's theorems are true relative to M. By (2) there is an atomic system K
equivalent to M. Thus X is complete by model theoretic criteria just in case only
X9s theorems are true relative to K.
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Next, consider ω-incompleteness. Let M be a model verifying the usual
axioms of arithmetic but not the Gόdel sentence; in that case M verifies -i (a)φ.
As Gόdel showed, for each numeral n, φa/n is provable from the axioms. Thus
M verifies each of these as well as -i (a)φ. Thus Mis a nonstandard model of
arithmetic. By (2) there is an equivalent atomic system K. Then each sentence
φa\n is true relative to K even though (a)φ is not. More generally, ω-incom-
pleteness can be interpreted in nondenotative terms: there are languages with
denumerably many closed terms such that, for some universal quantification
(α)φ, there is an atomic system K such that φa/τ is true relative to K, for all
closed terms r, while (a)φ is not true relative to K.

As a final example consider the following reasoning based on GόdeΓs
incompleteness result. Suppose that M verifies the usual axioms, and that each
element of the domain is named by some numeral, so that M is a standard model
for arithmetic. Let (a)φ be the Gόdel sentence. Since M verifies each axiom,
M verifies φa/n for each numeral n. Since M verifies each of these and since
each domain element is named, M verifies (α)φ. If (α)Φ is added to the axioms,
the Gόdel proof may be reapplied. Thus, there is no consistent decidable exten-
sion of the axioms from which everything true in Mis provable. Given (2) this
reasoning can be replicated in terms of system-relative truth: Let Δ be any axiom
set suitable for arithmetic. Let K be an atomic system equivalent to the standard
model M. Then each element of Δ is true relative to K. So is (a)φ. If that sen-
tence is added to Δ, the Gόdel proof may be reapplied. Thus, there is no con-
sistent decidable extension Δ' of Δ such that the set of sentences provable from
Δ' is the set of sentences true relative to K.

In all these cases, classical conceptions and arguments can be directly car-
ried out in the framework of our nondenotative semantics. This seems to us a
strong reason in favor of the view that in respect to the logic of first-order lan-
guages denotative notions are semantically dispensable.
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