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Sums of Finitely Many Ordinals
of Various Kinds

MARTIN M. ZUCKERMAN

Abstract The ordinals «;, as,...,a, are said to be pairwise-noncommuta-
tiveif for all i, j =1, 2,...,n, if i #j, then o; + a; # oj + ;. For positive
integers n and k, let £, be the symmetric group on n letters and let E,, (respec-
tively L,,, S,, T,, or P,) be the set of all k for which there exist n (not necessarily
distinct) nonzero ordinals (respectively, limit ordinals, successor ordinals, infinite

successor ordinals, or pairwise-noncommutative ordinals) such that E (i)

i=1
takes on exactly k values as ¢ ranges over L,,. Then foralln=1,E, =L, =
S, = T,; min P, = n, and max P, = max E,,. Furthermore, P, = E|, P, = E,,
Py=E; - {1,2},and P,=FE; — {1, 2, 3, 11}.

1 Introduction Addition of ordinal numbers depends upon the order of the
summands. For each positive integer n, the maximum number, m,,, of distinct
values that can be assumed by a sum of n nonzero ordinal numbers in all n! per-
mutations of the summands has been calculated by Erdos [1] and Wakulicz [3]
and [4]. The first few values of m, are as follows: m; =1, my =2, m3 =5,
my = 13, ms = 33, mg = 81, m; = 193, mg = 449; moreover, it is known that
. my,
lim — =0.
n—ooo 1!
Let n and k be positive integers. Let I, be the symmetric group on # let-
ters. Let oy, aa,...,a, be any n (not necessarily distinct) nonzero ordinals. We

n
will say that «;, a,...,a, yield k sums if {2 gy ¢ € E,,} is a k-element
i=1

set. Let E, be the set of all integers k& for which there exist #» (not necessarily
distinct) nonzero ordinals that yield £ sums. It is known that E, = {1, 2, 3,
..omyyforn=1,2,3,4,6,7, and 8 ([2], [5], and [6]), that E5s = {1, 2, 3,...,
29} U {31, 32, 33} ([3]), and that E,, is properly included in {1, 2, 3,...,m,}
for all n = 9 ([7]).

For every ordinal number « > 0, let

) a=owMa + oMy +...+ o™a,
( 1 2
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be the (Cantor) normal form of «; here r, a;, a,, .. .,a, are positive integers
and Ay > N\, >...> A\, = 0 are ordinals. A\, is called the degree of o (writ-
ten, “deg o) and «, the leading coefficient of «. By the remainder of «,
we mean w’a, +...+ w™a, (or zero, if r = 1). By the remainder form of
«, we mean wMa, + p;, where \, is the degree of «, a; is the leading coeffi-
cient of «, and p, is the remainder of «.

The ordinal numbers «,, as,...,a, are said to be nonoverlapping if for
each i, j (#i) =1, 2,...,n, whenever \; = deg o; > deg o; = \;, then (1), the
normal form of «;, consists of terms all of which are of degree >\;. Addition
of nonoverlapping ordinals is considerably simpler than in the general case, and
is considered in [6]. Here and in [8] we consider the addition of various other
types of ordinals.

2 Limit ordinals; successor ordinals Let L, be the set of all integers k for
which there exist n (not necessarily distinct) limit ordinals that yield & sums; let
S,, be the set of all integers k for which there exist #» (not necessarily distinct)
successor ordinals that yield k£ sums, and let 7}, be the set of all integers k£ for
which there exist k& (not necessarily distinct) infinite successor ordinals that yield
k sums.

Theorem 1 Foralln=1,2,3,...,E,=L,=8,=1T,.

Proof: Clearly, L, € E,and T, = S, S E,.
For any nonzero ordinal o whose normal form is given by (1), let

o = oM la + M, 4+ WM,
o = { a + 1, if « is infinite
o , if o is finite
and
a” =oMtap + e, 4+ oM e+ L

Let k € E, and let «;, ay,...,q, yield kK sums. Suppose that for some
¢ e En’

X

apiy = Wby + w¥2by +. ..+ Wb,
j=1

Then

X

((X¢(i)/) = w6‘+lb1 + w52+1b2 +...+ was+lbs
i=1

4

so that o', o', ..., yield k sums, and consequently, E, S L,. Clearly 1 €
S, for all n. To see that E, < S, for all n, we can assume that at least one of
the ordinals a4, ay,...,«, is infinite. Then

n n
Y (eyy’) = (E %(:’)) +1
i=1 i=1

so that o;”, ay”,...,a,” yields k sums, and E, € S,. Finally,
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X

(ada(i)l”) — w6|+1bl + w52+1b2 +...+ w65+lbs +1
j=1

1

so that «;”, or”,...,a,” yield k sums, and E, € T,. Thus for all n, E, =
L,=S8,=T,, as was to be proved.

3 Pairwise-noncommutative ordinals Let « = wMa; + pand B = w*'b, + 0
be the remainder forms of the nonzero ordinals « and (3, respectively. Then it
is well-known that « + 3 = 8 + « if and only if A\ = u; and p = ¢. In other
words, two nonzero ordinals commute if and only if they agree in their degrees
and in their remainders.

Let ay, a3, .. .,a, be any n nonzero ordinals. Then «;, as, .. .,«, are said
to be pairwise-noncommutative if for all i, j=1, 2,..., n, if i # j, then o; +
a; # a; + «;. In many of the examples in [2], [3], [5], and [6], ordinals repeat,
or more than one ordinal is finite, or several ordinals are integral multiples of
w. These examples thus make use of # ordinals, at least two of which commute.
Addition of pairwise-noncommutative ordinals is considerably more restrictive.

For each n, let P, be the set of all integers k& for which there exist n
pairwise-noncommutative ordinals that yield £ sums.

Lemma 1 Suppose that for ordinals o and 3, a + 8 # 3 + «.
If deg 3 < deg a, then
a=Ff+a<a+f.
If deg B = deg o and rem 3 < rem «, then
a+B<B+a.

Theorem 2 For all n = 1, min P, = n and max P, = m,,.

Proof: We first show that for all n = 1, every set of n pairwise-noncommutative
ordinals yields at least # distinct sums. For » = 1, this is obvious.

Let n > 1 and suppose that for 1 < k < n, every set of k pairwise-
noncommutative ordinals yields at least k£ distinct sums. Suppose that o,
oy, .. .,0, are pairwise-noncommutative ordinals and o < a3 <...< a,,. If
deg o, < degay, let Ay, A,,...,A,_; be sums for ay, as,...,a,_; such that
A1 <Ay <...< A,_;. Then deg A, < deg o, so that, by Lemma 1,

A1+Oln=0£n<0!n+Al<Oln+A2 <...<0[,,+An__1
and consequently,

A top, o0+ A, apn+ Ay . ,an+ A,

are n distinct sums for oy, ay,...,q,.
If deg a,_, =deg a,, let m be the smallest index for which dega,, =
dega,. if m=1andif A, A,,...,A,_; are distinct sums for oy, az,...,0,_;

such that 4, < 4, <...< A,_;, then because ay, as,...,a,, Ay, 4s,..., and
A,_, are all of the same degree and because

remA,=remaoa, <remoa,=remA, <...<
rema,_ =remA,_; <rema,
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it follows that
o+t A <op+A,<..<a,+A, 1 <A, +a,

so that o, + A;, i=1, 2,...,n — 1, together with A,,_; + «, are » distinct sums
for Oy Opy. .. s0p.
If m > 1, then let

m—1 n—1 n—1
Bm=Eo¢,-+ E o + o, = E o + oy
i=1 i=m+1 i=m+1
m n—1 n—1
Bm+l=2ai+ E ot apye =0y + Z o+ apmy
i=1 i=m+2 i=m+2

n—1 n—1
B,,_l = E o = E .
i=1 i=m

Then B,, < Bj,+1 <...< B,_;, so that B,,, B,,.,,...,B,_; are n — m distinct
sums for o, @mi1s...,,—1 as well as for oy, ay,...,a,_;. Moreover,

() an+ Bp < an+ Bmi1 <...< an+ Bn_

so that o, + B;, i =m, m+ 1,...,n — 1, are n — m distinct sums for o,
oy, . . .,a,. Furthermore, by the inductive hypothesis, there are (at least) m dis-
tinct sums, Cy, C,,...,Cp_1, C, for oy, as, ..., 0,1, o,. We can assume that

C, <G <...<C,_; <Cy, and consequently,

B, +C<B, 1+C,<...<B, ,+C,,,_1<B,_ +C,.
Each of the ordinals B,,_, + C;, i=1,2,..., m — 1, n, is a sum for «y,
oy, ...,0,. Finally, using the lemma, we see that

(3) oz,,+B,,_1<B,,_1 +OlnSBn_1 +C1<Bn_.1 +C2<<
B,_,+C, <B, +C,
so that by (2) and (3),
oa,+By,<a,+Bui <...<a,+B,_;<B,_;+C
<B, ,+C;<...<B, ,+C,_,<B,_;+C,.
This proves that a, + B;, i =m, m + 1,...,n — 1, together with B,_; + C;,
Jj=1,2,...,m—1, n, are n distinct sums for oy, as,...,q,.

Foralln=1, 0w+ 1, o + 2,...,0 + n are n pairwise-noncommutative
ordinals with sums wn + 1, wn + 2,...,wn + n. Thus, min P, = n. Finally,
Wakulicz [3] has shown, in effect, that the maximal sum, m,, for E, can al-
ways be obtained by using n pairwise-noncommutative ordinals of the form

w2r; w2r—l + er—Z’ w2r—1_2 + er—Z_Z’ er—l.4 + w2r—2.3’
. ’er—l .2%r—1 + w2r—2_xr;
w2r—3 + w2r—4’ w2r—3.2 + 0)2’“4'2, w2r—3.4 + CL’Zr—4_3’

. ’w2r—3.2x,_1—1 + w2r—4_xr_l;

w+1,02+2, 0d+3,. .. ,02% 7 + xq,
where x; +x, +...+ x,=n—1.
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Corollary P,={1} =E,and P, = {2} = E, — {1}.

Theorem 3 Let n = 2. Then the following integers are in P, :

@mnn+1,....2n-2

(b) For n =3 and for 1 < ¢ < n - 2, all integers of the form (n —2)* + £(n —
2) +2

(c) Forn=4,n(n—-1)

(d) Forn=5,n*-2

(e) 2n—l
(f) N2 —=3n+3
() n*—3n+4.

Proof: Unless otherwise indicated, assume n = 2.
(@) For 1 = ¢ < n — 1, the n pairwise-noncommutative ordinals w + 1,
w+2,...,0+ (n—1), and ¢ have sums

on=-1)+1L, wn-1)+2,...,0(n=1)+n—-1+1.

Thus {n,n+1,...,2n — 2} S P,.

(b)Letn=3andletl<f<n-2.Thenw?, w+1,0+2,...,0+ (n—
2), and ¢ have sums w?, w? + £; w?-i+j, where l<i<n—-2and1<j<n-—
2 + £. Consequently, for each such ¢ there are (n — 2)? + #(n — 2) + 2 distinct
sums.

(c) For n > 4, the ordinals w? w2 + 1, @ + 2, @ + 3, w + (n — 1) yield the
n(n — 1) distinct sums w?; w? +w+j, for2<j<n—1;w? +wi+j, for2 <
i<nmandl<j=<n-1.

(d) For n > 5, the ordinals w?, w3+ 1, w+2, w+3,...,0+ (n— 1) have
as sums w?; w?> +wi+j,fori=1,2and2<j<n-—1; w?+ wi+j, for3 <
i<n+land1<j<n—1.Thusthereare (n — 1)>+2(n—2) + 1, or n? —
2 distinct sums.

(e) The ordinals 0" !, 0" 2,...,0?, w, 1 yield 2”~! distinct sums.

(f) The ordinals w?, w?> + w, w, w + 1, w + 2,..., w + (n — 3) have as
sums w?-2; w?-2 +wi+j,for 1<i<n—1and0<j<n— 3. There are n* —
3n + 3 distinct sums.

(g) The ordinals w?, w + 2, w + 4,...,w + 2(n — 2), 2 have as sums w2,
w?+2; 0’ +wi+2j,forl<i<n—2and1=<j<n—1.There are n®> — 3n +
4 distinct sums.

Theorem 4 Py ={3,4,5} =E; — {1, 2}.

Proof: P, < E; = {3, 4, 5}. Moreover {3, 5} € P, by Theorem 2 and 4 € P; by
part (a) of Theorem 3.

Lemma 2 In order for 4 ordinals to yield 11 or more different sums, one
of these must have highest degree and the other three must have the same degree.

Proof: Given any 4 ordinals, let 6 be the highest degree of any of these. Then
it is easily seen that if all 4 ordinals are of degree 8, there are at most 4 differ-
ent sums; if 3 of the ordinals are of degree 8, there are at most 6 different sums;
if 2 of the ordinals are of degree 6 there are at most 10 different sums.
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Now suppose that exactly one of the ordinals, a5, is of degree 8. Let v be
the highest degree among the other 3 ordinals. If exactly one ordinal, a,, is of
degree v and if 3, and 3, are the remaining ordinals, there are at most 10 pos-
sible sums: a5, o + 61, o + 62, o + B + 62, ag + Bz + By, o + oy, O +
a, + B, a5 + o, + B2, a5+ o + By + B2, and o5 + o, + B + 6. If exactly two
ordinals, «; and «, are of degree v and if § is the remaining ordinal, there are
at most 10 possible sums: a5, a5 + B, a5 + oy, a5 + an, a5 + o) + o, a5 +
ar+ay, as+ oy + B,05 + s+ 0, as+ o+ ax + 6, anda5+oe2+a1+6. The
lemma is thereby established.

Lemma 3 4 pairwise noncommutative ordinals cannot yield 11 sums.

Proof: By Lemma 2, it suffices to consider ordinals with remainder form w¥; +
pi for i =1, 2, and 3 together with o, where deg () > 7. Clearly, because the
ordinals are pairwise-noncommutative, p;, o2, and p; are distinct. We can
assume f; < £, < {3. The possible sums for these ordinals are then

Bi=a

Br=a+ "l + p;

Bs=oa+ "+ p,
Ba=a+ "l + p;
Bs=oa+ (€ + £) + py
Bs=oa+ (£ + £) + p,
"'oz+w7(l71+f3)+p1
a+ ¥l + f3) + ps
Bo=a+ w¥(fr+ £3) + py
Bio=a+ w"(l + £3) + p,
Bin=a+w"(f; + b+ £3) +p,
Bo=a+"(fy + b+ £3) + p,
Biz=a+ w"(f; + &+ £3) + p;

D™
o 3
i

Some of these 13 sums may be the same.

If £, = £, = 3, then B85 = 84, Bs = By, and Bg = B9, so that there are 10
distinct sums.

If ¢, = £, < {3, then Bg = 8,9, and there are 12 distinct sums.

If £, < £, = ¢35, then 85 = (3,, and there are 12 distinct sums.

If ¢; < £, < {5, then there are 13 distinct sums.

Theorem 5 P,=1{4,5,6,7,8,9, 10, 12, 13}
=E,—{1,2,3, 11}.

Proof: By [5] together with Theorem 2 and Lemma 3 of this paper, P, < {4, 5,
6,7,8,9, 10, 12, 13}. Moreover, {4, 13} < P, by Theorem 2, {5, 6} < P, by
Theorem 3 (a), {8, 10} < P, by Theorem 3 (b), 12 € P, by Theorem 3 (c), and
7 € P, by Theorem 3 (f). Finally, the ordinals w?, w, w2 + 1, and 1 have 9 dis-
tinct sums: w?, w? + L, w?+w o +o+ 1, w?+ w2 + 1,w2+w2+2, w? + w3,
w?+ w3+ 1, and w? + w3 + 2.

The cases of 5 and 6 pairwise-noncommutative ordinals will be considered
in [8].
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