A Modal Analog for Glivenko's Theorem and its Applications

V. V. RYBAKOV

Abstract

This paper gives a modal analog for Glivenko's Theorem. It is proved that $(\square \diamond A \rightarrow \square \diamond B) \in K 4$ iff $(\diamond A \rightarrow \diamond B) \in S 5$. Some applications of this analog are obtained. A formula ϕ is called an NP-formula if ϕ is built up on its own subformulas of the form $\square \diamond B$. It is shown that if ϕ is an NPformula then the logic $\Lambda+\phi$ is decidable or has the finite model property if $\Lambda \supseteq K 4$ and Λ has this property.

Introduction Glivenko [2] proved long ago his remarkable result for the intuitionistic propositional calculus H. Glivenko's Theorem may be formulated in this way: a formula $A \equiv B$ is derived in the classical propositional calculus $C 1$ if and only if the formula $\neg A \equiv \neg B$ is proved in H. In this paper an analog of Glivenko's Theorem is found for modal logic. This analog has prompted us to investigate a special class of NP-formulas (which are built up on subformulas of the form $\square \diamond A$). It is shown that adding a finite number of such formulas to an arbitrary modal logic containing $K 4$ preserves decidability and the finite model property. Some applications of these results are given.

1 We recall that K denotes the minimal normal propositional logic. Let Λ be a modal logic and A be a modal formula. Then $\Lambda+A$ denotes the smallest normal modal logic containing Λ and A. So in these denotations,

$$
\begin{aligned}
& K 4 \leftrightharpoons K+(\square p \rightarrow \square \square p) \\
& S 4 \leftrightharpoons K 4+(\square p \rightarrow p) \\
& S 5 \leftrightharpoons S 4+(\diamond p \rightarrow \square \diamond p) \\
& G r z \leftrightharpoons S 4+(\square(\square(p \rightarrow \square p) \rightarrow p)) .
\end{aligned}
$$

Throughout this paper we assume some familiarity with algebraic and Kripke relational semantics for modal logics (see, for example, Rasiowa and Sikorski [4] or Segerberg [8]).

Theorem 1 (Modal analog of Glivenko's Theorem) Let A and B be arbitrary modal formulas. Then $(\square \diamond A \rightarrow \square \diamond B) \in K 4$ iff $(\diamond A \rightarrow \diamond B) \in S 5$.

Proof: If $(\square \diamond A \rightarrow \square \diamond B) \in K 4$ holds, then $(\diamond A \rightarrow \diamond B) \in K 4$ holds as well because $(\diamond C \leftrightarrow \square \diamond C) \in S 5$, and $K 4 \subseteq S 5$.

As is well known, $K 4$ has the finite model property (FMP) (see [7]). Therefore it is sufficient for completing the proof of Theorem 1 that if $(\diamond A \rightarrow \diamond B) \in$ $S 5$ then $\square \diamond A \rightarrow \square \diamond B$ is valid in all finite transitive Kripke models. Let ($\diamond A \rightarrow$ $\diamond B) \in S 5$, and let $\boldsymbol{W}=\langle\boldsymbol{W}, R, \phi\rangle$ be a finite transitive Kripke model. Let $\alpha \in$ \boldsymbol{W}, and assume that $\alpha \Vdash_{\phi} \square \diamond A$. We proceed to check that $\alpha \mathbb{H}_{\phi} \square \diamond B$.

Assume that $\beta \in \boldsymbol{W}$ and $\alpha R \beta$. First observe that there exists $z \in \boldsymbol{W}$ such that $\beta R z$. Indeed otherwise $\beta \|_{\phi} \square \diamond A$ and hence $\alpha H_{\phi} \square \diamond A-$ a contradiction. Since \boldsymbol{W} is finite, there exists a $c \in \boldsymbol{W}$ such that $\beta R c$, and if $c R d$ then $d R c$.

We introduce the set \boldsymbol{V} and the relation R_{1} on \boldsymbol{V} by $\boldsymbol{V} \leftrightharpoons\{x \mid x \in \boldsymbol{W} \wedge c R x\}$, and $R_{1} \leftrightharpoons R \cap \boldsymbol{V}^{2}$. The valuation ψ and the model \boldsymbol{V} are defined by $\forall p \psi(p) \leftrightharpoons$ $\phi(p) \cap \boldsymbol{V}, \boldsymbol{V} \leftrightharpoons\left\langle\boldsymbol{V}, R_{1}, \psi\right\rangle$.

Assume that $V=\varnothing$ then $c \|_{\phi} \diamond A$ holds, and then $\alpha \mathbb{H}_{\phi} \square \diamond A-$ a contradiction. So $\boldsymbol{V} \neq \varnothing$. It can be easily shown by induction on the length of a formula D that

$$
\begin{equation*}
\forall x \in \boldsymbol{V}\left(x \Vdash_{\phi} D \Leftrightarrow x \Vdash_{\psi} D\right) . \tag{1}
\end{equation*}
$$

Now if $x \in V$ then $x R_{1} x$, and if $x, y \in V$ then $x R_{1} y$ and $y R_{1} x$. This follows directly from the choice of c and from the fact that R is transitive. Thus R_{1} is an equivalence relation. Therefore for an arbitrary formula M, if $M \in S 5$ then $\left\langle\boldsymbol{V}, R_{1}, \psi\right\rangle \Vdash M$. Taking $\alpha R c$ into account, we conclude that $\left.c \Vdash_{\phi}\right\rangle A$. This, by (1), gives us $c \Vdash_{\psi} \diamond A$. By $(\diamond A \rightarrow \diamond B) \in S 5$ and $\left\langle V, R_{1}\right\rangle \Vdash S 5$, we obtain $c \Vdash_{\psi}$ $\diamond B$. Then $c \Vdash_{\phi} \diamond B$ by (1). Therefore $\beta \Vdash_{\phi} \diamond B$ holds. Thus it is true that $\alpha \Vdash_{\phi}$ $\square \diamond B$. Hence we have proved that $\langle\boldsymbol{W}, R, \phi\rangle \Vdash(\square \diamond A \rightarrow \square \diamond B)$, which proves the theorem.

In an obvious way, we obtain from Theorem 1 the following:
Corollary 2 Let A be a formula, then $\diamond A \in S 5$ iff $\square \diamond A \vee \square \diamond \perp \in K 4$.
Indeed $\diamond A \in S 5$ iff $\diamond T \rightarrow \diamond A \in S 5$. The latter is equivalent to ($\square \diamond T \rightarrow$ $\square \diamond A) \in K 4$ by Theorem 1, but $(\square \diamond T \rightarrow \square \diamond A) \in K 4$ iff $\square \diamond A \vee \square \diamond \perp \in K 4$.

Glivenko's Theorem for H is al ong the corollaries of Theorem 1. Indeed, let $A \equiv B \in \mathfrak{a}$. Let T be a Gödel translation of a propositional formula into a modal proposition. As is well known (see Dummet and Lemmon [1]) by a translation theorem, $C \equiv D \in \mathfrak{a}$ iff $(\mathrm{T}(C) \leftrightarrow \mathrm{T}(D)) \in S 5$ for arbitrary formulas C, D. Since $(\mathrm{T}(A) \leftrightarrow \mathrm{T}(B)) \in S 5$ and $(\diamond \neg \mathrm{T}(A) \leftrightarrow \diamond \neg \mathrm{T}(B)) \in S 5$ holds, by Theorem 1 it is true that $(\square \diamond \neg \mathrm{T}(A) \leftrightarrow \square \diamond \neg \mathrm{T}(B)) \in K 4$. Then $(\square \neg \square \mathrm{T}(A) \leftrightarrow$ $\square \neg \square \mathrm{T}(B)) \in S 4$ by $K 4 \subseteq S 4$. As is well known (see [1]), $\mathrm{T}(\neg C) \leftrightharpoons \square \neg \mathrm{T}(C)$ and $(\square \mathrm{T}(C) \leftrightarrow \mathrm{T}(C)) \in S 4$. Therefore $(\mathrm{T}(\neg A) \leftrightarrow \mathrm{T}(\neg B)) \in S 4$, and by the Gödel translation theorem (see [1]) $(\neg A \equiv \neg B) \in H$.

2 The derived modal analog of Glivenko's Theorem has a number of applications. We say that a modal propositional formula A is an $N P$-formula if A is
obtained from a formula G by substituting formulas of the form $\square \diamond D$ for all the propositional variables in G.

Theorem 3 If Λ is a decidable modal logic containing system $K 4$ and A is an NP-formula, then $\Lambda+A$ is also decidable.

Proof: Let $A \leftrightharpoons A_{0}\left(\square \diamond D_{j}\right)$ and let $B\left(p_{1}, \ldots, p_{n}\right)$ be a formula having no propositional variables not in $\left\{p_{1}, \ldots, p_{n}\right\}$. It can easily be seen that

$$
\begin{equation*}
(B \in \Lambda+A) \Leftrightarrow\left(\left(\left(\square Q_{0} \wedge Q_{0}\right) \rightarrow B\right) \in \Lambda\right) \tag{2}
\end{equation*}
$$

for some Q_{0} which is a conjunction of instances of A having no propositional variables not in B.

There are only finitely many formulas having only the propositional variables of B up to equivalence in $S 5$. Moreover, all of these formulas may be effectively constructed (see Maksimova [3]). Let $\left\{c_{i} \mid 1 \leq i \leq k\right\}$ denote the set of all these formulas.

We take Q to be the conjunction of all formulas which are obtained from A by all possible replacing of the propositional variables by formulas from $\left\{c_{i} \mid 1 \leq i \leq k\right\}$. Let us prove that each conjunct R_{0} of Q_{0} is equivalent in Λ to some conjunct R of Q. Indeed, if

$$
R_{0} \leftrightharpoons A_{0}\left(\square \diamond D_{j}\left(\alpha_{V}\left(p_{1}, \ldots, p_{n}\right)\right)\right)
$$

then, by Theorem 1,

$$
\left(\left(\square \diamond D_{j}\left(\alpha_{V}\left(p_{1}, \ldots, p_{n}\right)\right)\right) \leftrightarrow \square \diamond D_{j}\left(c_{i_{V}}\right)\right) \in \Lambda
$$

for some $c_{i_{V}} \in\left\{c_{i} \mid 1 \leq i \leq k\right\}$. Therefore (2) implies

$$
\begin{equation*}
(B \in \Lambda+A) \Leftrightarrow(((\square Q \wedge Q) \rightarrow B) \in \Lambda) \tag{3}
\end{equation*}
$$

The logic Λ is decidable. Therefore (3) gives the algorithm for recognizing if $B \in \Lambda+A$ holds. This proves the Theorem.

The following theorem regarding FMP is similar to Theorem 3.
Theorem 4 Let Λ be a modal logic which has FMP and $\Lambda \subseteq K 4$. Let A be an NP-formula. Then $\Lambda+A$ has FMP as well.

Proof: Let $B\left(p_{1}, \ldots, p_{n}\right)$ be a modal formula having only the propositional variables in $\left\{p_{1}, \ldots, p_{n}\right\}$, and let $A \leftrightharpoons A_{0}\left(\square \diamond D_{j}\right)$ where all propositional variables of A are in $\left\{q_{1}, \ldots, q_{m}\right\}$. Assume that $B \notin \Lambda+A$. As we have shown in the proof of Theorem 3 (cf. (3)), (($\left.\square Q \wedge Q) \rightarrow B\left(p_{1}, \ldots, p_{n}\right)\right) \notin \Lambda$. By the theorem condition, Λ has FMP. Therefore there exists a finite modal algebra Q such that $\mathbb{Q} \vDash \Lambda$, but $Q \neq(\square Q \wedge Q) \rightarrow B$. Then there exists an n-tuple, $\left(a_{1}, \ldots, a_{n}\right)$, $a_{i} \in \mathcal{Q}$, such that

$$
Q \nexists \square Q \wedge Q\left(a_{1}, \ldots, a_{n}\right) \leq B\left(a_{1}, \ldots, a_{n}\right) .
$$

We take \mathscr{L} to be the subalgebra of the algebra \mathbb{Q} which is generated by $\left\{a_{1}, \ldots, a_{n}\right\}$. Then $\forall c \in \Lambda \mathscr{L} \vDash c$ holds, and $\mathscr{L} \nexists \square Q \wedge Q\left(a_{i}\right) \leq B\left(a_{i}\right)$. The filter Δ, where $\Delta \leftrightharpoons\left\{x \mid x \in \mathcal{L}, \square Q \wedge Q\left(a_{i}\right) \leq x\right\}$, is obviously an I-filter. This means that $\forall \beta \in \mathscr{\&} \beta \in \Delta \Rightarrow \square \beta \in \Delta$. The quotient algebra \mathcal{L} / Δ with respect to
this I-filter Δ is a homomorphic image of \mathscr{L}. This implies $\forall c \in \Lambda \mathscr{L} / \Delta \vDash c$. By choice of $\Delta, B\left(a_{i} / \Delta\right) \neq 1 / \Delta$.

Let us prove that $\mathcal{L} / \Delta \vDash A$. By choice of Δ, we have

$$
\begin{equation*}
(\square Q \wedge Q)\left(a_{i} / \Delta\right)=1 / \Delta \tag{4}
\end{equation*}
$$

Assume there exist $y_{\rho}(1 \leq \rho \leq m)$ such that $A\left(y_{\rho} / \Delta\right) \neq 1 / \Delta$. Because the \mathcal{L} is generated by $\left\{a_{1}, \ldots, a_{n}\right\}$ there exist the terms t_{1}, \ldots, t_{m} which are built up on a_{1}, \ldots, a_{n} and such that $y_{\rho}=t_{\rho}\left(a_{1}, \ldots, a_{n}\right), 1 \leq \rho \leq m$. Then $A\left(t_{\rho}\left(a_{1}, \ldots, a_{n}\right) /\right.$ $\Delta) \neq 1 / \Delta$. Hence $A\left(t_{\rho}\left(a_{1}, \ldots, a_{n}\right)\right) \notin \Delta$ holds. Moreover

$$
\forall \rho\left(t_{\rho}\left(p_{1}, \ldots, p_{n}\right) \leftrightarrow c_{i_{\rho}}\left(p_{1}, \ldots, p_{n}\right) \in S 5\right.
$$

where $\left\{c_{i} \mid 1 \leq i \leq k\right\}$ is the set of all formulas up to equivalence in $S 5$ with variables in $\left\{p_{1}, \ldots, p_{n}\right\}$ which was constructed in the proof of Theorem 3.

We replace in $A\left(t_{\rho}\right)$ all t_{ρ} by the equivalent $S 5$ formulas $c_{i_{\rho}}$ from $\left\{c_{i} \mid 1 \leq\right.$ $i \leq k\}$. By Theorem 1, as A is an NP-formula, we obtain

$$
A\left(t_{\rho}\left(p_{1}, \ldots, p_{n}\right) \leftrightarrow A\left(c_{i_{\rho}}\left(p_{1}, \ldots, p_{n}\right)\right) \in K 4\right.
$$

Hence $A\left(c_{i_{\rho}}\left(a_{1}, \ldots, a_{n}\right)\right) \notin \Delta$ holds. Then it is true that $Q\left(a_{1}, \ldots, a_{n}\right) \notin \Delta$ such as $A\left(c_{i_{\rho}}\left(a_{1}, \ldots, a_{n}\right)\right)$ is a conjunct member of $Q\left(a_{1}, \ldots, a_{n}\right)$, since $Q\left(a_{1} / \Delta, \ldots\right.$, $\left.a_{n} / \Delta\right) \neq 1 / \Delta$ holds - a contradiction of (4). Thus $\mathfrak{\&} \vDash A$ holds. Moreover $\mathfrak{L} / \Delta \nexists$ B and $\forall c \in \Lambda \mathscr{L} / \Delta \vDash c$. Thus $\Lambda+A$ has FMP and Theorem 4 is proved.

A number of modal systems have been obtained by adding NP-formulas. For example,

$$
\begin{aligned}
& S 4.1 \leftrightharpoons S 4+(\square \diamond p \rightarrow \diamond \square p) \text { (see Segerberg [7]), } \\
& S 4.2 \leftrightharpoons S 4+(\diamond \square p \rightarrow \square \diamond p), \\
& K 4.1 \leftrightharpoons K 4+(\square \diamond p \rightarrow \diamond \square p), \\
& K 4.2 \leftrightharpoons K 4+(\diamond \square p \rightarrow \square \diamond \square p) \text { (see [8]). }
\end{aligned}
$$

The theorems which ascribe decidability and FMP to these systems (see [7] and [8]) follow directly from Theorems 3 and 4.

Introduce the formulas $\forall n \in N$:

$$
\begin{aligned}
& \alpha_{n} \leftrightarrow \bigwedge_{0 \leq i \leq n} \diamond \square p_{i} \rightarrow \bigvee_{i \neq j} \diamond \square\left(p_{1} \wedge p_{j}\right) ; \\
& \beta_{n} \leftrightarrow \square \diamond \bigvee_{0 \leq i \leq n} \square\left(p_{i} \rightarrow \bigvee_{i \neq j} p_{j}\right) .
\end{aligned}
$$

By Theorems 3 and 4, the logics $G r z+\alpha_{n}$ and $S 4+\beta_{k}$ are decidable and have FMP because $S 4$ and $G r z$ have these properties (see, for example, [8]).

It has been shown in Theorems 12 and 13 of Rybakov [5] that Theorems 3 and 4 cannot be generalized to the case of adding an infinite but recursive set of NP-formulas. The logic $G r z+\left\{\theta_{i} \mid i \geq 1\right\}$ was constructed in [5], where θ_{i} are NP-formulas, which is incomplete in Tomason's sense as shown in [9]. This means, in particular, that this logic is incomplete by Kripke (and of course does not possess FMP) and has no finite number of axioms. In passing we note that a modal propositional logic containing $S 4$ that is decidable but noncompact by Tomason (i.e., incomplete by Kripke and such that it has no finite number of axioms) has been found by Rybakov [6].

REFERENCES

[1] Dummett, M. A. and E. J. Lemmon, "Modal logics between S4 and S5," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 250-264.
[2] Glivenko, V. I., "Sur quelques points de la logique de M. Brouwer," Academie Royal de Belgique Bulletin, ser. 5, vol. 15 (1929), pp. 183-188.
[3] Maksimova, L. L., "A modal logic from finite layers," Algebra and Logic, vol. 14 (1975), pp. 304-319.
[4] Rasiowa, H. and R. Sikorski, The Mathematics of Metamathematics, Panstwowe Wydawn, Warsaw, 1963.
[5] Rybakov, V. V., "Modal logics with LM-axioms," Algebra and Logic, vol. 17 (1978), pp. 455-467.
[6] Rybakov, V. V., "A decidable noncompact extension of the logic S4," Algebra and Logic, vol. 17 (1978), pp. 210-219.
[7] Segerberg, K., "Decidability of S4.1," Theoria, vol. 34 (1968), pp. 7-20.
[8] Segerberg, K., "An essay in classical modal logic," Filosofiska Studier, vols. 1-3, Uppsala, 1971.
[9] Tomason, S. K., "Noncompactness in propositional modal logic," The Journal of Symbolic Logic, vol. 37 (1972), pp. 716-720.

Department of Mathematics
Krasnojarsk State University
pr. Svobodny; 79
Krasnojarsk, 660062, USSR

