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The Hαnf Numbers of Stationary Logic II:
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Abstract We show the ordering of the Hanf number of <£ω>ω( wo) (well or-
dering) <££>ω (quantification on countable sets), £ωω(aa) (stationary logic),
and second-order logic has no more restraints provable in ZFC than previ-
ously known (those independence proofs assume CON(ZFC only). We also
get results on corresponding logics for £\,μ.

0 Introduction The stationary logic, denoted by £(aa) was introduced by
Shelah [8]. Barwise, Kaufman, and Makkai [1] make a comprehensive research
on it, proving for it the parallel of the good properties of <£(Q). There has been
much interest in this logic, being both manageable and strong (see Kaufman [5]
and Shelah [10]).

Later some properties indicating its affinity to second-order logic were dis-
covered. It is easy to see that countable cofinality logic is a sublogic of £(aa).
By [10], for pairs φ, ψ of formulas in <Cω,ω(ζ?κ£), satisfying Vφ -• ψ there is an
interpolant in £(aa). By Kaufman and Shelah [6], for models of power > K1}

we can express in £ωyω{aa) quantification on countable sets. Our main conclu-
sion is (on the logics see Definition 1.1 or the abstract, on h, the Hanf numbers,
see Definition 1.2):

Theorem 0.1 The only restriction on the Hanf numbers of <£ω> ω (wo), <£^ ω ,
£ωy0)(aa), £τJωare:
(a) h(£ω,ω(wo)) < h(£c

ωtω) ^ H^Λaa)) < h(£lJ

ω)
(b) h(£c

ωfω)<h(£i[ω).

Proof: See 2.1 (neccessity), 2.2, 2.4, 2.5, and 3.3 (all five possibilities are con-
sistent).

The independence results are proved assuming CON(ZFC) only and the re-
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suits are generalized to £χ+ ω We do not always remember to write down the
inequalities of the form £χ,ω(βi) < £μ,ω(δ2) For some of the results when we
generalize them to £χ+,ω ° r £χ,κ w e n e e d a stronger hypothesis. The proofs of
the results on h(£i) < h(£2) give really stronger information: we can interpret
<£! in £ 2 , usually here by using extra predicates, i.e., every formula in JCi is
equivalent to a formula in Δ(£ 2 ); remember Δ(£ 2 ) is defined by: θ G Δ(£ 2 )(r)
is represented by (0 l s θ2), θe E £ 2 ( r e ) , Ί\ Π r 2 = r, M 1= 0 iff M can be ex-
panded to a model of 0! iff M cannot be expanded to a model of θ2 (so the re-
quirement on (#i,02) is strong). Note that this has two interpretations: one in
which we allow τ\, τ 2 to have new sorts hence new elements, the other in which
we do not allow it. We use an intermediate course, we allow this but the num-
ber of new elements is the power set of the old. But for ££ > ω < £ ω > ω (##), for
models of power λ = λκ°, we do not need new elements.

We thank Matt Kaufman for discussions on this subject.

Notation Let cardinals be denoted by λ, K, μ, χ. Ordinals are denoted by
α, |8,7, ξ, f, ij. δ is a limit ordinal. Let H(λ) be the family of sets whose tran-
sitive closure has cardinality < λ (so for λ regular it is a model of ZFC~, i.e.,
ZFC except the power set axiom: and for a strong limit a model of ZC). Let
Levy(λ, K) = [f:f a function from some a < λ into K].

Levy (λ,</c) = {/:/ a partial function from λ X K to K, |£>om/| < λ,
f(a,β)< l + j 8 } .

Notation on logics £ will be a logic, r a vocabulary (i.e., set of predicates
and function symbols, always with a fixed arity, usually finite). We assume that
£(r) is a set of formulas, each with < Ocx (£) free variables and < Oc(£) pred-
icates and function symbols; £ ( r ) is closed under first-order operations, sub-
stitutions, and relativizations and £(r) is a set (with r and the family of variables
sets). Two formulas are isomorphic if some mapping from the set of predicates,
function symbols, and free variables of one onto those of another is one-to-one
and map one formula to the other. We are assuming that up to isomorphism
there is a set of £-formulas, this number is denoted by | £ | . Let £ ^ £ 2 mean
£ i ( r ) <Ξ £ 2 ( r ) for every vocabulary r.

1 Preliminaries

Definition 1.1
(1) £Kκ is the logic in which Λ / e/( |/ | < λ) and (3x0, . . . , * / . . . )iej(\J\ < Ό

are allowed, with Ocλ(£χκ) = K (SO £ ω > ω is first-order logic)
(2) For a logic £, £(wo) extends £ by allowing the quantifier (wo x,y)φ(x,y)

saying ({x: lφ(x,y)]9φ(x,γ)) is well ordering.
(3) For a logic £, £ c = Σ(3C) extends £ by allowing monadic predicates as free

variables and the quantifier (3cX)φ(X) saying there is a countable set X
such that φ(X).

(4) For a logic £, £(aa) extends £ by allowing monadic predicates as free vari-
ables and the quantifiers (aaX)φ(X) saying that the collection of countable
X satisfying φ contains a closed unbounded family of countable subsets of
the model.
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(5) For a logic £, £ 7 7 = £(37 7) extends £ by allowing binary predicates as free
variables and the quantifiers 3Rφ(R) saying there is a two-place relation R
on the model satisfying φ.

(6) For Q E {3c,tfα,377}, £ ' (β) is defined similarly allowing a string

(Qxi. . .0x/. . .) , <«,|α| < 0 c ! ( £ ) .

(7) Let £ c = £(3 C ), Jβ™ = £(wo), £ 7 / = £(3 7 7 ), £aa = £(aa).

Definition 1.2
(1) For a sentence i/s let A(i/0 = sup{|M| + :Mh ^} (so it is a cardinal (or infin-

ity) and it is the first λ such that ψ has no model > λ).

(2) For a theory T, h(T) = h(/\φGτΨ)
(3) For a logic £ let A(£) = suρ{h(ψ) :h(ψ) < oo, I / Έ £ ( T ) for some vocabu-

lary r) .
(4) For a logic £ and cardinal λ let A(£,λ) = sup{A(^): for some vocabulary

rof power < λ , ψ € £ ( τ ) , A ( ί ) < oo}.
(5) For a logic £ and cardinal λ let A/A(£,λ) = sup{Λ(Γ): for some vocabulary

rof power < λ, TQ £ ( r ) , h(T) < oo}.

hth(£) =H(£,oo).

Claim 1.3
(1) For every ψ G £ for some φ E £, [h(ψ) < <χ>^> h(ψ) < h(φ) < oo].
(2) h(£) is strong limit.
(3) If £ is closed under Λ α < α o for a0 < λ then c/[Λ(£)] > λ.
(4) If the number of sentences in£ (up to isomorphism) is<λthenc/[Λ(£)] <λ.

Lemma 1.4 Assume £ is a logic <Ξ £ ^ ω ί?«rf /Λerβ is a function ffrom Card
/o Card swcΛ ίΛαί:
(a) //51 definable in £ 7 7

ω , /.β., /Λβ cte5 of two-sorted models (κ,f(κ)) is defina-
ble by some sentence of L"ω or even just
(a)" For some λ* < A ( £ 7 7 J and φ* e £77

ω/c?r/c, μ,> λ*, AC < Λ(£ 7 7

ω), we
/zm e </c,μ> N^* iffμ-f(κ).

(b) 7/*̂  E £ /zαs α model of power > K ί/ze/? ̂  Λα5 α model M, K < || Af || </(κ).
(c) £ is definable in £ 7 7

ω , /.β., /Λe ctoss {(0, τ,M): ψ E £ ( r ) , Ma τ-modeU
M^φ] is definable by a sentence in £rJω.

( d ) F o r μ < Λ ( £ ) , / ( μ ) < Λ ( £ ) .

Γ A ^ Λ ( £ ) < Λ ( £ 7 7

ω ) .

Proo/: Let ψ0 E £ 7 7

ω be such that λ* < A(^o) < °°> where λ*, ^* are as in (a)".
We can assume h(ψ0) < h(£) (otherwise the conclusion is trivial). Let ψ E £ 7 7

ω

say that for some λ, μ0:
(i) The model Mis isomorphic to some (//(λ),E), λ strong limit.
(ii) For every K < λ, M t= (3μ > K) [φ0 has a model of cardinality μ] v

(3μ >*)[<*, μ>^*].
(iii) μ0 < λ, Φo has a model of power whose cardinality is in the interval

(μo>λ)

(iv) For every K < λ, K > μ0, there is θ E £ which has a model of cardinal-
ity in the interval (κ,λ)> but for some κf E (κ,λ) has no model of cardinality in
the interval (κ',λ)
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Now (H(h(<£)),G) is a model of φ and it has no models of larger cardi-
nality.

We can prove similarly:

Lemma 1.5 Suppose £ γ ,£2 are logics and there isf: Card -* Card such that
(a) For some λ* < h(£2) and φ* G £2 for κ,μ > λ* we /wz e: <κ,μ> t= <ρ* «jf

(b) IfφG£\ has a model of cardinality > K ̂ Λê  ̂  /ίαs # model M, κ< \M\ <

(c) £x is definable in £2just in the following weaker sense: for K\ = [(ψ, τ):φG
£i(τ)}iK2 = {(M9ψ,τ):M\=ψ, φe£{(r)} there are ψee £2.

( VJC) [x G Ke &for some λ, some expansion of (H(λ)9G, x) satisfies φe]
and for every x [\: some expansion of {H(\),G,x) satisfies ψe] is a
bounded family of cardinals.

(d) Forμ <h(£ι),f(μ)< Λ(£i).
(e) | |£||<Λ(£2),£^ωc£2.

Thenh(£{) <h(£2).

Remark 1.6 Of course if the hypothesis 1.5 holds for £{ (and £2) then the
conclusion holds for £\9£2 whenever £\ c £{ and £2 c £'2.

Lemma 1.7
(1) IfM\=\l/,φG£wo then this is preserved by any forcing; this holds even for

(2) ifM (= φ9 φ G <£^ω ί/ίe« ίΛ/5 is preserved by any Xχ-complete forcing; this
holds even for φ G <£^>ω.

(3) 7/*M 1= 0, ̂  G <££>ω Λ̂/51 is preserved by forcing not adding new countable
subsets of \M\ (this holds even for φ G £<»,ωi).

(4) IfM \=φ, φG <£oo,\> λ regular, then this is preserved by forcing by P9 where
P does not add sequences of ordinals of length <\.IfPis Xrcomplete this
holds for φ G £™λ.

(5) Suppose Vχ9 V2 are models of set theory {with the same ordinals), Vι<Ξ: V2,
and letting λ = h(£)Vl where £ is £™ω or £c

μ>ω or ££)/c (just a suitable
downward Lowenheim-Skolem theorem is needed).

If {A Qλ:A bounded, A G Vλ] = {A Q λ:A bounded, A G V2\ then
h((£)Vι =h(£)v\

Proof: Left to the reader.

2 Independence for £«, ω , £ ^ ω In this section we shall deal with the inde-
pendence of the cases where h(£Z°ω) = Λ (<££>,ω)

Lemma 2.1
(1) For any logic £, h(£(wo)) <h(£c) <h(£(aa)) <h(£π).
(2) For any logic £, we have h(£c

ω,J < h (£%„).
(3) For any logic £, we have h(£{+ ω) < Λ(£{7

+ ω ) , moreover: ifλ< h(£JJ[ω)
then h(£c

λ+ω)<h (£%„).
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Proof:
(1) By Kaufman and Shelah ([6], Theorem 4.1); only £ = £ ω ? ω is discussed

there, but it makes no difference, the nontrivial part is h(£c) < h(£aa);
(2) See [6];
(3) Use 1.5 for the function/:/(*) = (κ*°)+.

Lemma 2.2

(1) IfV = L then h{£Z%) = h(£c

ω9J < h(£™ω) = A(££ω)
(2) IfV = L, then for any logic £, h(£wo) = h(£c) <Λ(£α α) = h(£π).

Proof: For (1), see [6]; and (2) is the same proof.

Fact 2.3 For a regular cardinal λ and ψ E £χ"λ the following are equivalent:
(i) For every μ large enough lhLevy(λ,μ) "Ψ has a model of power λ".

(ii) For some λ-complete forcing Q we have: \\-Q "ψ has a model of power > λ".

Proof: (i) => (ii): As Levy(λ, μ) is a λ-complete forcing notion, (i) is a particu-
lar case of (ii).

(ii) => (i): Let Q be a λ-complete forcing notion such that \\-Q "ψ has a model
of cardinality > λ". Let μ be such that μ > \ Q\, \\-Q "ψ has a model of cardinal-
ity > λ but < μ" and μ = μλ. In ( F ^ ) L έ v y ( λ ^ ) ψ has a model of cardinality λ by
1.7(4).

But ( F e ) L έ v y ( λ ' ^ ) is F L έ v y ( λ ' μ ) (see e.g. Kunen [7]).

Notation 2.3A Let μoίΦM be the first cardinal μ satisfying 2.3(i), if one ex-
ists, and λ otherwise.

Lemma 2.4
(1) In some forcing extension ofL, Λ(££°J = h(£c

ω$ω) < h(£a

ω%) < h(£JJtJ.
(2) Moreover, for λ < A(£^J, we have h(£%λ) < Λ(£^J.

Remark 2.4A If we want to have: λ < Λ(£^ λ ) =* Λ(£χ,ω) < Λ(£^ ω ) , we
should define λ/ + 1 = h(£c

μt>ω)+.

Proof: Start with V=L. Let ψ* E £2% a sentence such that h(£c

ωtJ <h(ψ*) <
oo be chosen later. Let λ0 > h(ψ*) be regular, λ0 < h(£TJf0}). We define an it-
erated forcing (PhQj:i < oo,y < oo) and cardinals λ/ such that:

(a) iteration is with set support (so P^ is a class forcing).
(b) λ, is regular cardinal.
(c) λ, > Σy</ λy, and λ/ is the first regular cardinal > Σy</ (λy 4- μ y ) + (when

/ > 0 ) .
(d) Qj(E F P 0 is λ,-complete.
(e) Let {i/̂  : α < λ,} be the set of all £χa

 λ . sentences (up to isomorphism)
in Vp\

We define in VPi, Qi to be Levy(λ/, μt) where μ, is the successor of sup{μo[^»
λi]Pi: φ E £λ /,λ /} and so λ/ + 1 = μf.

Our model is FPo°. Clearly the λ/ are not collapsed (as well as limits of λ,
and x < λ0) and other successor cardinals > λ0 are collapsed. So in Vp°°, for
regular χ > λ0, if ψ E £™x has a model of cardinality > χ then it has a model
of cardinality χ. As clearly A(££ ω ) > λ0, we get by 1.4 h(£™J < h(£gω) (as
well as (2)).
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By the Lowenheim-Skolem theorem, using 1.7(5) for φ E <£ °̂ω or φ E
£>ί ω>h(ψ) does not change (being oo or < λ0) hence (in VPao) h(£ζ°ω) =
h(£™ω)v; h(£c

ω,ω) = h(£c

ω,ω)v. Hence (in Vp~) h(£™ω) = Λ(££,ω) as this
holds in L.

We still have to choose φ* E £a

ω

a

ω and prove that in VPo° we have h (££, ω) <
A ( £ £ ω ) . There is φ* E £™ω, L N "A(££,J < A( iΠ < oo" (by 2.2).

Clearly for any such φ*9 Vp~ 1= "Λ(££,ω) < h(φ*)" (as no new subset of
h(φ*) is added), but we need also FPo° 1= "h(φ*) < oo"; but checking the sen-
tences produced in [6] proof of Theorem 4.3 (for proving L (= h{£aa) =
Λ(£7 7)), they are like that. So F p ~ N "Λ(££f J < A ( £ £ J " .

Lemma 2.5
(1) /« some forcing extension of L we have h(£ζ°ω) = Λ(££ J = Λ(£f J <

Λ(£2«).
(2) In fact for any logic <£ we have h(£wo) = h(£c) = h(£aa).
(3) For λ < * ( £ £ J / t o , Λ(JESfλ) = A ( £ ^ J .

Proof: We start with F = L. We define a (full set support) iteration, Q =
{Ph Qi: / an ordinal) (β , — a P, name) and cardinals λ, such that

(a) λ, is regular > ^ + | P , | , for / limit λ, = (Σy<, λ, )+.
(b) Qi is λ;-complete.
(c) If i is even, G, ̂  P, the generic set (remember β, E F P / ) then let the set

of elements of P/ be listed as {pι

a: a < \}, and Qi will be the product
of the Levy collapses of Kλ.ω + 4 θ ί + 2+m to K λ / ω + 4 α + 1 + m for a < λ, such
that: [pί EGi=>m = 0] and [p£ ^ G, => /w = 1]. Let λ/+1 = Kλ.ω + λ / + 1.

(d) If / is odd, let {φ^: a < λ,} list all sentences of £x?,x, i n a rich enough
vocabulary (of cardinality λ, ). For each a, if there is a λ,-complete forc-
ing notion Q (which is a set) and (in VPi) \\-Q "there is a model of φ^ of
cardinality > λ," then let μι

a be such that lhLevy(λ,,/4) "ΨL has a model
of cardinality λ, ". Otherwise μ^ = λ, .

Note that μ}a exists by 2.3.

Let Qi = Lέvy(λf , < λ / + 1) where λ/+1 = (λ7 + Σ α <λ / μα) + +

Let Goo Q Pa, be generic over Kand K[Goo] be our model. Note in F[Goo],

(•) [/odd=>λ/ + 1 = λ Π .
[ιeven=>λ / + 1 = λ ί ( λ / ω + 1 ) ] .
[ i H m i t ^ λ l = ( Σ y < , λ / ) + ] .

For μ = λ 2 y + i , if φ E £a

μ

a

μ has a model of cardinality > μ then it has a
model of cardinality λ (by 2.3'+ 1.7(4)). By (*) we deduce that Vp~ 1= "if φ E
£™x has a model of cardinality > λ then it has a model M, λ < | |M|| < Kλ+".

'So 1.5 is applicable to show h(£a

ω

a

ω) < h(£'Jω) (and by 1.6 and 1.7) also
2.5(3) holds.

Why h(£Z°J = /*(£«%)? Let φ* describe (L λ , E, G*, Π \Ji<δP,).
If M\=φ*, then for some a and G, M= (La,E, G), so without loss of gen-

erality equality holds. Now if λ < | a \, M f= "λ is a [regular] cardinal of L" #jf
λ is a [regular] cardinal of L. Also we know that for every ordinal f, if in L,
λ2i < Kr < λ 2 / + i , f divisible by four, then forcing by P*, collapses at most one
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of the cardinals K f+1, Kr+2, Kr+3, Kr+4 of Z; if λ;ω < f < λ ω + λ7 then exactly
one.

We assume ψ* say so, and so when κ£+ 4 < | a | the answer in M to the ques-
tion "which of Kr+1, Kr+2, Kr+3, Kr+4 is collapsed" is the right one. So when
λ2 / +i < I a I, we can in M reconstruct G^ Π P 2 / (see choice of β 2 / ) .

But F p ~ N "λ2 l +i < Kλ 2 / ( ω + 1 ) + 1 and λ2 / + 2 = ( λ 2 / + 1 ) + and for limit δ we
h a v e λ δ = ( Σ / < δ λ z ) + " .

The rest is as in [6], proof of 4.3.

3 h(£%°J is O.K. but for Λ(£*3,ω) large cardinals are needed and suffi-
cient In Section 2 we deal with the three cases for which h(Sίζ%) =
λ ( £ £ , J Here we deal with the three cases where h(£ζ°J < Λ(££,ω). The new
part is Lemma 3.2, and then in 3.3 we get the desired conclusion. For dealing
with <Cλ+,ω w e do not assume CON(ZFC) alone, we assume the existence of a
class of large cardinals (weaker than measurability). By 3.4 at least if λ > K3 +
(2*°)+, something of this sort is necessary.

Fact 3.1 The following are equivalent for ψ E £>Z% or even ψ E £»%:
(i) For every μ large enough lhLevy(κ0,<μ) "hW = °°"

(ii) For some (set) forcing notion P we have \VP "h(ψ) = oo".

Proof: Similar to the proof of 2.3.

Notation 3.1A Let the first μ satisfying (i) be μι(ψ) (and Ko if there is no

such μ).

Lemma 3.2 (V=L).
(1) For some (set) forcing notion P

\\-p"h(£™J<h(£c

ωiω)"

and this is preserved by h(£™°ω)+-complete forcing".
(2) In (1) we can use Levy(K0, <μ) for some μ> cfμ = Ko.
(3) We can use instead Cohen(μ) = {/:/a finite function from μ to (0,1)}. So

cardinals are not collapsed.

Proof: (l)Letμ* = sup{μι(ψ):ψe£™J.
We now define a finite support iteration (Pi9Qn:i < ω9n < ω) and μn as

follows:

Qo = Levy(Ko,μo)
f o r / i > 0 , μ π + 1 i s Λ ( £ ^ J κ P -

QΛ = Lέvy(Ko,μΛ).

Let μ = (Σμn) Note that Pω satisfies the μ+ - c.c.
Now VPω is our model. Note

(*) Vp« 1= G.C.H. + Ki = μ\ and V= L[R,<] for any well ordering of R.

Note that in S3 = (ω U (P(ω)κ/>ω;o,+, X,E) we can define by first-order
formulas (representing ordinals by well ordering of ω):
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(a) U/2 μn (maximal countable ordinal which is a cardinal in Lμ+)
(b) Lμ+ hence (μn:n < ω> (by induction remembering the Lowenheim-

Skolem theorem) hence the iteration (really we can omit this as Pω is just
Levy (Ko, < μ))

(c) the set R~ =def ( r G R : for some n, and G c pn generic over V,r G
V[G]}. And for r G R '

(d) Hr={φE£ζ%:L[r] )rh(φ)< ex} as it is equal to [φ G £>™ω:L[r] \=

[Note that Pn

9s are homogeneous, hence Λ(ψ) does not depend on G <Ξ P,J.
So by 3.1 and the choice of μ0, we can define in that model S3

[How? It is Π{Hr:rE R~), remembering 3.1.]
L e t λ = Λ ( £ ™ J ( i n Vp»).
Now we define a sentence φ G £„,„: it just describes (//(λ) ,G): it says

(i) Enough axioms of ZFC hold.
(ii) Every countable bounded set of ordinals is represented.

(iii) On every infinite cardinal a there is a model Ma with universe a satis-
fying some φ G H* (which we have shown is definable in any model M
oΐφ).

So we have proved the first assertion from 3.2. Now λ-complete forcing,
preserve trivially "h(φ) > μ" as it preserves satisfaction for £™°ω. It preserves
"h(ψ) < oo". As this is equivalent to "Λ(i/O < λ", the forcing adds no new model
power < λ, and the Lowenheim-Skolem theorem finishes the argument.

(2) We have proved it in the proof of (1).
(3) A similar proof, replacing μι(ψ) by μ\ = first μ such that \\-cotιen(μ)

"h(ψ) = oo" if there is one, Ko otherwise.

Conclusion 3.3 For some forcing extensions of L:
(1) H£Z%) < h(£c

ωiJ < h{£%ω) = *(££„)•
(2) A ( £ Γ J < h(£c

ω ω) = h(£%J < h(£»ω).

(3) h(£Z%) < h(£U < h(£%ω) < h(£%ω).

Proof: Combine 3.2 with Section 2.

Claim 3.4 ( i θ # ) : For λ > K3 4- (2 X °) + we have h(£%%) = h(£c

λ,ω).

Remark The logics are essentially equivalent.

Proof: If φ G £™ω says M i s , for some α, (La[A],E) (up to isomorphism),
a > 2*°, A c 2K o, every subset of ω is in L(2*o) [A], and a > ω2, and {δ < K2:
cfb = Ko in Lω2[A]} = {δ < K 2 :c/δ = Ko} then by Jensen's covering lemma
[β < \a\ => every countable subset of β is represented in the model].

Claim 3.5 Suppose that:
(*) For every χ for some μ, μ -• (ωi)J ω or βi e^ yw5ί

(**) For every χfor some μ, μ -+BG (c)J ω , wΛ/cΛ means: for every f: [μ]<ω ->
X /or some (yn:n<ω) for every a<ωι, for some Y c μ, y Λ^ orrfer (yp^
α^rfΛΛ(VwG[y]AΪ)[7Λ=/(w)].

ΓΛe«/oreι;βryλ,Λ(£^ω)<Λ(£^ω).
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Remark 3.5A
(1) The property (**) was discovered by Baumgartner and Galvin [3]; proving

μ^BG(c)<ωiffμ>h(£™ϊtω).

(2) See ([6], 4.2) (for λ = ω).

Proof: There is a sentence ψ E £c

ω ω such that for χ < μ: there is a model M of

φ, \\M\\ = μ, \PM\ = λ, iff (Vα < μ)α T S G ( O j ω .

On K = Kv(the core model of V) see Dodd [4].

Claim 3.6 Suppose V = K, and (**) (from 3.5), ίΛetf

(1) For every λ we have Λ(£JP-J < Λ(£χ+«) < Λ(£*U) = A(£&«)
(2) For every £,h(£aa) = h(£π).

Proof: (1) First inequality by the observation above, the second inequality fol-
lows from last equality + Th 2.1(3), last equality see (2).

(Note: If cfδ > Ko in ££% we can say for A c δ whether {a < δ: cfa = Ko,
α E / l ) is a stationary subset of δ).

(2) As in [6].

Observation 3.7 There is ψ G £^, ω

 s u c ^ that M^ψiffMis isomorphic to
Ka for some α.

It is known (see [3] and [4]):

Fact 3.8 If in V there is, e.g., a measurable cardinal in Card, then K N (* * ) .

Claim 3.9 Suppose V = K and (**) holds. For some forcing extension

VίG^]ofV,V[Goo]\=iί(^)andforeveryλ,h(£^J<h(£{+tJ<h(£^ω)<

h(£&,J".

Proof: Similar to 2.4(1) except that we want to preserve (**). We define by in-
duction on a an iterated forcing {Pi,Qj<a,j<oί) with set support and cardi-
nals λ, increasing such that:

(i) λo = X2.
(n) λδ = (Σ, <δλ, + | P δ | ) + .

(iii) if λ, ,P, are defined, let μ i be \t + U ίμo[ΦM : Φ e £™,λ,)

Qi = Levy(X/", μf) (in VPi) and λ/+i is minimal such that λ/+1 ->β G (c)μ^+ a n c ^
λ / + 1 < Λ ( ^ / + , ω ) .

We leave the rest to the reader.

Claim 3.10 Suppose V = K and (**) holds. For some forcing extension
ΠGoJ of V, V[Goo] H (**) (hence the conclusion of'3.7) and for every λ,

Λ(£λ*«) < *(£λ+,«) = * ( £ * U ) < Λ(£^, ω ) .

Proof: Combine the proofs of 3.9 and 2.5.

4 Lowering consistency strength We present here some alternative proofs
with lower consistency strength than in Section 3. Specifically 4.1, 4.3, and 3.2(3)
justify the restriction λ > K3 + (2K°)+ in 3.4.
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Lemma 4.1 Let V = L. Then there is a forcing notion P 6 L, not adding
reals, such that for G^P generic over V, in V[G]:

(a) *<££„)< *<££,,„).
(b) No $>ι-complete forcing notion (or even forcing notion satisfying the I-

condition, I a set of $2ίG]-complete ideals from L) changes the truth value

of"h(ψ) < co» for ψeLZω
(c) There is a sentence φ E <££ ω whose class of models of power > K2 is just

{La[G] :a > K2) (and note P <Ξ L*2[V[G]]).
(d) A(££+ tJ < A (£?*,„) = A(£ft, J .

Remark 4.1 A In the proof below, coding generic sets by the decision which
L-cardinals are collapsed is replaced here by "which L-regular cardinal have in
Fcofinality Ko and which cofinality Kj".

Proof: Let l(μ, K) be, e.g. the class of filters D which are λ-complete over some
λ (this in V), where μ < λ < K, \ U D | < /c.

We define by induction on n, an, βn, \itj9 μij, (Pi9 Qj: / < an, j < an), and
fn such that letting \ifJ = l(λ/>y ,μ / j y ) :

(A) α o = O, an+ι > an.
(B) (Pi9Qj,μj:i < an, j < an) is an RCS iteration suitable for xan =

(\ij,\j,μij,i <j<an,i not strongly inaccessible). See Shelah [9],
Ch. XI or Shelah [11], Ch. XI, particularly Definition 6.1.

(C) fn is a one-to-one function from Pt onto some ordinal βn, extending

Ue<«Λ

Ga will denote a generic subset of Pa.
For n = 0 there is nothing to do.
For Λ + 1 , note that forcing by Pan does not add new reals. So (c£^i%)K =

(£>ωuω)V[Ga"] and let {φi: / < ωi} be a list of the sentences (up to isomorphism).
We now (i.e., for defining an+\ etc.) define by induction on f < ωi, Qan+t>

xα r t + r + i as follows:

(a) <P/, Qj: / < αrt + f > is xαπ+r+1-suitable Z?CS iteration.
(b) If there is Qan+t> a P α / j + r name of a forcing notion satisfying the

l(( |P α # i + f I + sup{λ/jy: / < j < an + f))+, /c)-condition for some /c such
that lhpα + r + 1 .β "^r has arbitrarily large models" then Qan+t is like that,
otherwise it is, e.g., Levy (Ki,2Kl)

Next let μt = h(£Zo>)V[Ga"+ω>]> Qan+m = Levy ( K b ^ ) . Now (where <, > is
GodeΓs pairing function on ordinals), let in V[Gan+ωι] :An = {(fn(p),fn(q)) :
p,qe Pan \=p < q and/7 Φ q] U {(fn(p), fn(p)) :q G Gα w + ω} and let yn =
sup«/Λ(p),/Λ(^)> : A ^ G Pan+ωι}. Now we define Qα # I + ω i + / by induction on

ζ2«H+ωιisUvy (Xi,X2)v[G*"+ω>],
Qan+ω^i+n+x is Levy (Xu K2) [K[G α / I + ω i + i + 2 i+i]] ,
Qαπ+ω,+i+2i ί s Namba forcing (of V[Gan+ωι+ι+i]) if / G An and Levy

( K n K f ) ^ 0 where V(n,i) = V[Gan+ωι+ι+2i] if i£An.
Now let α π + 1 = αΛ + ωj + 27r t, λΛ + 1 = |P« π + ω i +2 7 π | , and define fn+ι.
We leave the rest to the reader. (We can make our free choices as the first

legal candidates in L.)
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Conclusion 4.2
(1) We can do the forcing from 2.4, 2.5 to the universe we got in 4.1 getting cor-

responding results {for £ωuω(Q)'s, with CH and G.C.H.): so we need
CON(Z¥C) only.

(2) The same holds for 4.3 for the £ω2,ω(QYs (so we use CON(ZFC + "the
class of ordinals in Mahlo") only) [similar proof ].

Lemma 4.3 Suppose V = L, (forsimplicity) and oo is a Mahlo cardinal (i.e.,
every closed unbounded class of cardinals has a regular member). Then there is
an accessible cardinal λ and a forcing notion P <Ξ H(λ), such that:
(a) P satisfies the λ-c. c , does not add reals and collapse every μ E (K j , λ ) : and

W-P "G.C.H. + λ is K2" and \P\ = λ.

(b) Λ ( £ £ J < *(££,«).
(c) There is a sentence ψ E £c

ω,ω whose class of models of power > X2 is just
suitable expansions of [La [ G] : a > K2}.

Proof: Like 4.1, but instead of induction on n < ω we do induction on 7 < oo,
and in the induction only we first do the coding (Qan+ωι+i, i < y) (so that for
c), we say that for some club of C of ω2, for δ E C, we are coding the set of sen-
tence in £ | δ | + [ G Π P δ ] .

Do we really need the large cardinal hypothesis in 4.3 (and so in 4.2(2))?

Claim 4.4 Suppose 0# £ V and K^ is a successor cardinal in L and 2K° = K x

then for some sentence ψ E £ω£ω» *ίs models are exactly suitable expansions of
(Lα,6 )<κ1 (a)), where a is the last L-cardinal < K^.

H e n c e , A ( £ ^ f ω ) = A(£S,2f ίΰ).

Proof: Should be clear.

Concluding Remarks 4.5 Still we do not settle the exact consistency strength.
In fact, e.g., if K^ is the first L-inaccessible, we can still prove the last sentence
of 4.4. For /*(<££%) < A(££ l f ( l )) with 2*° = K2 we can generalize Lemma 4.3 to
this case (using Shelah [11], Ch. XV). Also, there is a gap in consistency strength
in Section 3 for λ > K3 + (2K°)+. It is not hard to show that if λ > K2 + 2*°,
cfλ > Ko and for some A Qλ, A does not exist, then A(£χί ω) = A(£χ+ ω ) .

Added in proof: In Lemma 4.3 a sufficient consistency strength of "G.C.H. +
h(£ZJ<h(£c

ω2,ωΠs:

there is an inaccessible cardinal λ such that for every <ρ,xELχ if, for a class
of ordinals α, (La, E) t= ψ [x, λ] then for some λ' < λ, for a class of ordi-
nals α, ( L α , E ) \=φ[x,λ'].
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