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Classitying Pairs of Equivalence Relations
CARLO TOFFALORI

Abstract Let E,, E, be equivalence relations such that the number of Ej,-
classes or E|-classes in any class of the join of E, and E, is bounded. We
study classification theory (according to Shelah) for these pairs of equivalence
relations.

Roughly speaking, Shelah’s classification problem is to find under which con-
ditions, given a (countable) complete first-order theory T, the isomorphism types
of models of T can be characterized by invariants such as cardinal numbers or
something similar. It is simple to see that if, for all sufficiently large cardinals
A, T has too many (namely 2*) nonisomorphic models of power A, then this as-
signment of invariants cannot be done. Shelah shows that, in some sense, the
converse is also true: if 7 has fewer than 2* nonisomorphic models in some un-
countable A, then a classification of isomorphism types of models of T is pos-
sible (see Baldwin [1] for a more complete and precise exposition of the whole
matter).

Here we are interested in the classification problem for complete theories of
two equivalence relations E,, E,. The general analysis of this case is complicated
owing to the Rogers theorem that the theory of two equivalence relations is un-
decidable (Rogers [7]). Hence we limit ourselves to the theories 7 satisfying the
condition (+): if E denotes the equivalence relation generated by E, and E|,
then there exists 4 € w such that any E-class contains at most either /# Ej-classes
or h E;-classes.

The first part of the paper (Sections 1-3) is devoted to characterizing in this
context the basic tools of Shelah’s classification theory: regular types, SR types,
orthogonal types, and so on. In particular, we will see that any theory T satis-
fying (+) is superstable and monadically stable. Section 4 shows that T is present-
able and shallow and satisfies the existence property, and hence is classifiable in
the Shelah sense.

We already studied theories of pairs of equivalence relations in Toffalori [9],
where we dealt with the problem of determining the theories that are categori-
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cal in some infinite power. We assume that the reader is familiar with [9], mainly
with Sections 1 and 2. References for basic stability theories include especially
[1], but also Makkai [6] and Harrington and Makkai [4]. The existence property
is explained, for instance, in Hart [5], while monadically stable (or tree decom-
posable) theories are treated in Baldwin and Shelah [3]. As usual, we will assume
that all models of a theory T as above are elementarily embedded in a very sat-
urated model U.
Finally, let me thank the referee for suggesting several improvements.

1 M and M* Let (M, E,, E;) be a structure with two equivalence relations
Ey, E,. Let E denote the equivalence relation generated by E, and E,. We
assume

(+) there is & € w such that, for all @ € U, the E-class of @ contains at
most A classes of either E, or E;.

Notice that (+) implies that E is @J-definable. Moreover, if (+) holds, then we
can decompose M as U;<;, (M? U M}) where, for all i < h, MY = {a € M:
E(M, a) contains exactly i + 1 classes of Ep} and M}! = {a € M — U;<, M}:
E (M, a) contains exactly i + 1 classes of E;}. Notice that the models of the the-
ory of M are just the structures N of the form

N= (NPUN})
i<h

where, for all i < h and e = 0 or 1, N7 is elementarily equivalent to M{; hence,
they decompose in a uniform way as finite disjoint unions of structures whose
E-classes contain the same (finite) number of classes of either £, or E,. Then it
is straightforward to see that we can assume without loss of generality that any
E-class of M contains exactly 4 classes of Ej.

Let us build now a new structure (M*, Ey, E,, P) (where P is a 1-ary rela-
tion symbol).

(i) M™* includes M, and M™* — M consists of a new element x(X) for any
class X of E, N E, in M, and of a new element x(X,, X;) for any pair
of classes X, X; of Ey, E; respectively in M such that X, N X, = &
but, for all apg € Xp and a, e Xl, M FE(ao,al).

@ii)) P(M*) =M* — M.

(iii) For anya € M* and e = 0,1, put @, = a if a € M, a, = an element of
X if a = x(X) for some X, and a, = an element of X, if a = x(X,, X{)
for some X;, X;. Then, for all ¢, b € M*, define M* F E,(a, b) if and
only if M k E,(a,, b.) (notice that this definition does not depend on
the choice of a, and b,).

It is easy to see that the following properties hold in M™.

1. For any e = 0,1, E,(M*?) is an equivalence relation and E,(M*?) N
M? = E,(M?).

2. E(M*?) N\ M?* = E(M?).

3. Eyand E; permute in M* (hence E = RY = R} = R,, according to the no-
tation of [9]).
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4. For all a € M*, there is a’ € M such that M* F E(a,a’), and, for all
ac€ M, E(M*, a) = (E(M,a))*.

5. Foranyclass X of EgNE;in M, (EgN E;)(x(X),M*)=XU {x(X)}; for
any pair of classes Xy, X; of Eg, E; respectively in M such that X, N X =
& but, for all ap EX() and a; € Xy, MFE((I(), ay), (E()nEl)(X(X(),Xl),
M) = {x(Xo, X1)}.

6. M™* satisfies (+); furthermore, if every E-class in M contains exactly /2 E-
classes, then the same is true in M™*.

We also point out that

(a) for all @ € M™, there is a unique x € (Eo N E;)(M*, a) satisfying P(v);

(b) for all ay,a; € M such that E(ay, a,) holds in M (or, equivalently, in
M*) and Ey(M, ay) N E; (M, a;) = &, there is a unique x € M™* such
that EEy(x, ag) A E((x, ay);

(c) for all a € M* with |(Ey N E;)(M™*, x)| = 1, there exist ay, a; € M such
that M E E(ay,a;) and M™ E Ey(a,ay) A E\(a,a,).

Now let M = (M, Ey, E,), M’ = (M’, Ey, E) be structures satisfying (+). By
proceeding as in [9], one can easily show that the following propositions hold.

Pl M=M'iff M*=M"*,

P2 Let (M, E,, E,, P) satisfy (+); put M = (nP(M),E, N\ M?, E, N M?),
and assume that (a), (b), and (c) hold; then M = M*.

P3 M=M'iffM*=M"",

Therefore, if 7= Th(M) and T* = Th(M™), then the models of T* are exactly
the structures M’* with M’ E T. Furthermore,

® M’|=— M’*|= defines a bijection between the sets of isomorphism types
of models of T and T*;

e let M = (M, E,, E,, P) satisfy (+) and (a), (b), and (c), T = Th(M); if
M = =P(M) and T = Th(M), then T = T*.

Therefore there is no loss of generality for our purposes in restricting ourselves
to consider the classification problem for theories of structures (M, Ey, E,, P)
where E, and E; are permuting equivalence relations satisfying (+) (and even
admitting exactly A Ej-classes in any E-class), and P is a 1-ary relation choos-
ing an element in every E, N E;-class of M. In fact, if M satisfies the further
conditions (a), (b), and (c), then M = (~P(M))*.

Hence in the following sections T will always denote the theory of such a
structure, and L its first-order language.

2 I-types and h-types We already saw in [9] that
Theorem 1 T is superstable.

The proof relies on a simple counting types argument and, more generally, on
the analysis of the nonalgebraic 1-types over a model M of T we shall sketch be-
low. We also recall that we gave in [9] an example of a non-w-stable theory T of
the type we are studying. Then let M E T, p € S, (M), p be nonalgebraic.

(A) There is a € M such that E, (v, a) € p; with no loss of generality, we
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can suppose Ey(v, a) € p. Then, these conditions fully determine p; in partic-
ular = P(v) € p.

(B) For all m € M, ~E, (v, m) € p; there exist ag, . ..,a,_; € M pairwise
equivalent in E; and inequivalent in Ej, and ag, . .., 0;_1 € 0* U {|U|} (0* =
w — {0} from now on) such that

Ey(v,a0) €EP
“|Eo(U,a;) N E;(U,v)| = a;” is in p for all j < A.

(Notice that this condition can be expressed by a single formula when «; € w,
and by a denumberable set of formulas otherwise.) Then p is fully determined
by these formulas (and hence by the sequences ay, ..., a,_; and ag,...,05_1)
together with —E| (v, m) for all m € M and either P(v) or = P(v).

(C) For all m € M, -Ey(v, m) € p. Then p is fully determined by this con-
dition and by p [ O.

Hence we have to study S;(<). It is more convenient for our purposes to
examine the A-types over & of sequences X = (Xo, . .., X,_;) € U” satisfying

N (Ei(vi,05) A D Eo(v;, 1))

i<j<h
Let r € S, () contain this formula. Assign r the following invariants (1)-(3):

(1) The sequence 7(r) € 2" such that, for all j < A,

1 if P(v; )
T(r)(j)={ H ) €

0 otherwise.
(2) The sequence a(r) € (w* U {|U|})" such that, for all j < h,
a(r)(J) = [(Eo N Ey) (U, v))|

(r can express o (r)(j) for all j < h; in fact, if there is n € w* such that

3!nw(Eo(v;, w) A Ey (v, w)) € 1, then o (r)(J) = n, while, if 3 >nw(E(v;,

w) A Ey(vj, w)) € r for all n € w, then a(r)(j) = |U|).

Let us introduce now the invariant (3) in a more informal way. Consider a
realization x of r; let (o, ..., 5_1) be any sequence of cardinal numbers, all
greater than 0, and either finite or equalling | U|. We wish to estimate how many
E,-classes X in the E-class of ¥ in U satisfy

| X N Ey(U,x;)| =« for every j < h.

Clearly, if all the a;’s are finite, then r can express the power of the set of these
classes. Assume now that there is some j < & with «; infinite. Then we can dis-
tinguish two cases: If there is kK € w such that no Ej-class X in the E-class of X
satisfies

| X N Ey(U,xj)| = aj if «; is finite,
| X N Ey(U, x;)| is finite and >k otherwise,
then r can express how many E;-classes X in the E-class of X satisfy

| X N Ey(U,x;)| =ajfor every j < h
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(just because “= |U|” is equivalent to “>k”). Otherwise, r can only witness that
a k playing the above role does not exist (and a compactness argument gives
| U|-many E,-classes X as required).

(3) The function f(r) of (v* U {|U]})" into w U {—1,|U|} defined in the fol-
lowing way. Let (o, . -,a_1) be any sequence in (* U {|U|})";
(3.1) if o is finite for all j < A, then f(r)(ap,. .., os—1) is the power of the
set of Ej-classes X in the E-class of any realization X of r such that

| XN Ey(U,x;)| = «a; for every j < h;

(3.2) if «; is infinite for some j < A, but there is k¥ € w such that, for
all Bo,...,Bx-1 € * with 8; = «; if «; is finite, B; > k otherwise,
fr)(Bos--.,Br_1) =0, then f(r)(eg,...,on_) is defined as in (3.1);

(3.3) otherwise, f(r)(cg,...,05_1) = —1.

Lemma 1 Let r,r’ € $,(D) contain \;<j<n(E;(v;, v;) A “Ey(v;, v;)). Then
r=r"if and only if (7(r),a(r),f(r)) = (7(r'),a(r’),f(r')).

Proof: (=) is trivial.

(<) Suppose (7(r), a(r), f(r)) = (r(r'),a(r’), f(r')). Let xErn, X' Er', we
claim that there exists an isomorphism from E (U, x,) onto E(U, x;) sending ¥
into ¥’. As this isomorphism can be easily extended to an automorphism of U,
it follows that X = X’ and hence r = r".

Let ag,...,op_1 € 0* U{JU|}. If (o, .. .,op_1) satisfies the conditions
of (3.1) or (3.2), then both E(U, x,) and E (U, xj) contain exactly f(r) (o, - - - ,
ap_y) =f(r')(ag,...,ap_1) Ei-classes X satisfying, for all j < A,

[ XNEy(U,x)| =, |XNEg(U,x})| =0y
respectively.
Otherwise (3.3) holds, and f(r) (o, - - -, @r—1) = f(r') (s . .., p—1) = —1.

Also, for any k € w, there exist Ao, . . .,A\4—; € 0" such that \; = o; when «; is
finite, N; > k otherwise, and

f(r)(}\Ow . -s)\h—l) =f(r/)(>\03~ . "xh—l) ¢0

(and both r and r’ can recognize that this is the case). Consider the following for-
mulas over X

/\ EO(Uj,x:j)/\ /\ El(via vj)s

Jj<h i<j<h
/\ a!ajz(EO(vsz)/\El(vj9Z)),
«; finite

N 3> nz(Ey(v;,z) AE;(v;,2)) forall n € w,
o; infinite
N\ P(v;) (for instance).
j<h
An easy compactness argument shows that the set of these formulas is consis-

tent; furthermore it can be enlarged in a unique way to a type over x; this type
admits | U|-many pairwise E;-inequivalent realizations in U. Hence there are
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|U| E;-classes X in E(U, x,) such that, for all j < h, | X N Ey(U, x;)| equals «;
if a; is finite, and | U| otherwise.

The same holds for ¥’. Since 7(r) = 7(r’) and a(r) = a(r’), it is easy at this
point to build the required isomorphism between E(U, x,) and E(U, xg).

Now let M be a model of T, and consider nonalgebraic types r € S, (M)
containing A <j<n(E1(v;, v;) A 7 Eo(v;, v;)). One could classify them in a way
similar to the one we followed before for 1-types. We omit here the details, and
we only emphasize the particular case when, for all m € M, Ey(vy, m) & r. No-
tice that these formulas and r [ & isolate r.

Let us discuss now the connection between 1-types and A-types of the above
kind. First consider types over & and notice that every 1-type p over & can be
enlarged to a type r € S, (J) with A;jcn(E1(v;, vj) A Eg(v;, v))) € 1 just tak-
ing a sequence x in U such that xo F p and FA;<j<n (E1(X;, X;) A 2 Eo(X;, X;)),
and putting r = tp(x/J). Of course this extension r is not uniquely deter-
mined. However, if r,r’ € S,(Q) contain A ;cj<n(E:(v;, v;) A 7 Eo(v;, v))) and
No<j<nP(v;), and P(vo) € r if and only if P(vy) € r’, and p, p’ denote
tp(xo/D), tp(xy/D) respectively for X Fr and X’ Fr’, then

p=p
if and only if there is s € S;, such that s(0) = 0 and r'(vy, ..., vs—1) = r(vs(),
ey vs(h—l))'

(=) is trivial.

(=) Let xq E p, enlarge x, to a sequence X realizing r, and to a sequence ¥’
realizing r’. Define s € S, by putting, for all i,j < A,

s(i) = jiff F Eo(x{,x;) AE (X[, X;).

Then s is as claimed.

Now let us look at nonalgebraic types over a model M of 7. Here we only
notice that, if p € S| (M) contains —Ey(vy, m) for all m € M, then, just pro-
ceeding as above, one can enlarge p to a type r € S, (M). This extension is not
unique, but, if 7, r’ are such extensions, then r L r’; furthermore, both r and r’
are not orthogonal to p (this fact will be shown in the next section— Lemma 5).

Corollary The following propositions are equivalent:
(i) T is w-stable;
(ii) S;(D) is countable;
(iii) {r € Sp(D): Nicj<n(E1(vi, v;) A Eo(v;, v))) € 1} is countable.

Proof: (i) = (iii) is trivial.

(iii) = (ii). Every type p € S;(J) can be extended in at most finitely many
ways to a type r as in (iii).

(ii) = (i) follows from the analysis we gave of the 1-types over an arbitrary
model of T.

Corollary T satisfies Vaught’s Conjecture (namely T has either 2%° or at
most Ry nonisomorphic countable models).

Proof: If T is w-stable, then it suffices to refer to the Shelah theorem stating that
all w-stable theories satisfy Vaught’s conjecture (Shelah, Harrington, Makkai [8]).
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If T is not w-stable, then |S;(@)| = 2%, hence T needs 2% nonisomorphic
countable models to realize all the 1-types over &.

Notice that, consequently, Vaught’s Conjecture holds even for an arbitrary
theory of two equivalence relations satisfying (+). In order to simplify the ex-
position in the forthcoming sections, let me introduce the following conventions:

¢ From now on, A-type will always mean A-type containing the formula
Nicj<n(Ei (v, v;) A D Eg(v;, v))).

e For every h-type r (over &, or over a model M of T), we will denote by
p(r) the 1-type of x, where X is any realization of r.

e For every h-type r, we will put f(r) = f(r | D).

3 The Shelah first level

Lemma 2 Let MET,A2M,p’' € S;(A),p=p’ | M. Then p’ forks over
M if and only if one of the following conditions holds:
(i) p satisfies (A) and there is x € A such that v=x € p’;
(ii) p satisfies (B) and there is x € A such that E\(v,Xx) is in p’;
(iii) p satisfies (C) and there is x € A such that E(v,x) is in p’.

The proof is just the same as Lemma 5 in [9]. Notice also that the forking ex-
tensions of A-types over M can be characterized in a similar way. In particular,
ifMET, A2M, r € S,(A), r=r' I M, and r contains - Ey(vy, m) for all
m € M, then r’ forks over M if and only if there is x € A such that E(vy, x) € r’.

Lemma 3 Let M be a model of T, p be a nonalgebraic 1-type over M. Then
RU(p) < 3, p is regular and p is trivial.

Proof: Let p satisfy (A). For every M’ > M, p| M’ is the only extension of p over
M’ that does not represent v = w. This implies that every forking extension p’
of p over M’ is algebraic, hence RU(p) = 1 and p is regular. Furthermore, A,%

equals = in p(U), so that, for every I € p(U), independence is equivalent to pair-
wise independence in I. It follows that p is trivial.

Assume now that (B) holds. For every M’ > M, p| M’ is the only extension
of p over M’ that does not represent E; (v, w). This implies that any forking ex-
tension has RU =< 1; hence RU(p) =< 2. Also, if x realizes any forking extension
p’ of pover M’ and Yy Ep|M’, then tp(y/M’ U x) does not represent E, (v,w)
(otherwise p| M’ represents this formula, too), hence y J.. x and p’ i p|M.

Thus p is regular. Finally, M equals E; in p(U), and again, for all/cp(U), in-
dependence and pairwise independence are equivalent in 1. Therefore, p is trivial.

Suppose now that p satisfies (C). If M’ > M, then p| M’ is the only exten-
sion of p over M’ that does not contain E (v, m) for any m € M". If p’ is any
forking extension of p over M’, then for some m € M’ E(v, m) and hence
Ey(v,m) is in p. Hence RU(p’) <2 and RU(p) < 3. Also, if xEp’and y F
p|M’, then y L x, hence p’ L p|M". Then p is regular. Finally, Rg equals E in
p(U), so for sets of realizations of p, independence is equivalent to pairwise in-
dependence, and again p is trivial.
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We have implicitly shown that, for every p as above, the pregeometry
(p(U),cl) associated to p (where, for all S < p(U), cl(S) = {y € p(U):
y AJ{L S}) is degenerate.

Notice also that an argument similar to the previous one proves that every
nonalgebraic A-type r over M is regular and trivial.

The regularity of types over a model of 7 and even over any subset of U
could be proved also as a consequence of the following result.

Lemma 4 T is monadically stable (tree decomposable in the sense of Bald-
win and Shelah [3]).

Proof: We will show that T is 3-tree decomposable. Let M be any model of 7,
A = |M|. Define a tree I € \=? and a set {(M (), N(n)) : 7 € I} of pairs of mod-
els of T in the following way:

(0) M,y =M, N;y, = N is any countable elementary submodel of M.

(1) Let {X(n):n < u} be alist of E-classes in M (for a suitable u < \). Then
u is just the set of elements of I of length 1. Moreover, for every n < u, put
M(n) = NU X(5). We claim that M(7) is an elementary submodel of M (and
hence a model of T'). It suffices to show that M () satisfies the Tarski-Vaught
criterion. Suppose @ € M(n) and M F 3vp(v, @). Let b € M satisfy ¢ (v, a). If
b € M (), then we are done. If there is x € N such that EE; (b, x) (without loss
of generality FE (b, x)), then the Ey N E;~class of x in N is infinite, and we can
build an automorphism of M fixing @ and sending b in N; so, again, we are done.
Suppose now that, for all x € N, E-E; (b, x) but, for some x € N, EEy(b, x);
let xo = x, x1,...,Xx,_1 be pairwise E;-equivalent and Ej-inequivalent elements
of N, by =b,..., by, satisfy Ey(v),x;) for all j < h and E; (v;, v;) for all i <
J < h. Then tp(b/N) is defined by the previous formulas and |(Eo N E;) (U, b))|
for j < h. Hence there is k£ € w such that

{Eo(vj, %) :j < h} U (E{(v;,v)):i<j < h}
U {3 > kw(Eo(v;, w) A E1(vi, W)} F o(v, a),

hence there exists b’ € N satisfying ¢ (v, @). Finally, assume that F—E (b, x) for
all x € M(n). Then tp(x/M (7)) is fully determined by #p (b/D) U {—~E(v,x):
X € M(n)}; hence there are ¢ (v) € tp(b/J) and a finite A S M(n) such that

{F(V) U {(nE(v,x):x € A} F o(v,a).

Hence there does exist some b’ € N such that Feo(b’,@). This concludes the
proof of the claim. Hence we can put, for all n < u, N(5) = some countable ele-
mentary submodel of M(n) such that N < N(n) and N(n) N X () + O.

(2) For every n < pulet {Y(»):» <w(n)} be alist of E;-classes in X(n) (for
a suitable »(n) < u). Then the elements of 7 of length 2 are just the n ~ » for
n<up,»<v(n). Put 7=9""», and define M(7) = N(5) U Y(») (as before one
can see that this is an elementary submodel of M (5)), N(7) = a countable ele-
mentary substructure of M(7) satisfying N(n) < N(7) and N(7) N Y(») # Q.

(3) Finally, for every 7 =17 " » as above, let {c(p) : p < p(u, »)} be a list of
elements of Y (v) — N(7); let 6 =7~ p, and put M(8) = N(8) = N(7) U {c(p)}
(this is easily seen to be a submodel of M(7)); the §’s are the elements of I of
length 3.
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Clearly M = U,e;N(n), and, for 9,p € I with 9 S p, N(n) < N(p) <
M(p) < M(n). Moreover it is straightforward to define, for every 5 € I with
length <2, a set C of conditions (in the sense of [3]), and a map ¢ = o (1) from
{Eo, E1, P} to C such that M(y) is the free union with respect to ¢ over N(p)
of the M(n " p)’s for n ~ p € I, and M is the free union with respect to o over
N(n) of the M(n " p)’s (n~ p as above) together with the M(7) U N(9)’s
where 7 € I, 7 is not an initial segment of 5 but every proper initial segment of
7 is a proper initial segment of 7.

It follows that M is decomposed by {(M(n), N(n)) :n € I}. Hence Tis 3-tree
decomposable.

We want to characterize now the orthogonality relation among types. Recall
that for trivial stationary types non-orthogonality is equivalent to not almost or-
thogonality (see [2], for instance).

Lemma § Let MET, p € S;(M) be nonalgebraic, r € S;,(M) satisfy p(r) =
p.Thenp Lr.

a
Proof: As p and r are trivial, it suffices to show p L r. And this is trivial, too.

In particular, if r,r’ € S,(M), and p(r) = p(r’) =p, thenr L r’' (asr,r,p are
regular, and [ is an equivalence relation among regular types).
Lemma 6 Let MET, r,r' € S,(M) contain ~E(v, m) for all m € M. Then
the following propositions are equivalent:

@ riLr;

a

@Gi) r L r;

(iii) there is s € Sy, such that f(r) = f(s(r’)) (where s(r") denotes tp(x;( ) - - - »
Xg(n—1)/M) where (xo, . ..,Xn—1) is any realization of r’).

Proof: Clearly it suffices to show the equivalence between (ii) and (iii).

(ii) = (iii). Let X Fr, X’ F r’ satisfy )'c]&)'c’. Hence, for any i < A, there is a
unique j < A such that FEy(x;,x;). Define s(i) = j. Then s € S, and f(r) =
S(s(r')).

(iii) = (ii). Let X F r; s(r’) is fully determined by the formulas —E (v, m)
for m € M, and by (7(s(r’)), a(s(r")), f(s(r'))). Furthermore, f(r) (a(s(r')) =
F(s(r"))(a(s(r’)) # 0, hence s(r’) in realized in E(U, xy), and r 1 r.
Lemma 7 Let MET, p,p’ € S;(M) be nonalgebraic. Then the following
propositions are equivalent:

@O pLps
.o a !
(i) p L p%
(iii) p and p’ satisfy one of the conditions (1)-(3) below.
(1) There is an M such that Ey(v,a) AE;(v,a) EpNp’ (sop=p’).
(2) There are ay, . . .,a,_ € M pairwise equivalent in E, and inequivalent
in Ey, and oy, . . .;ap-1 € w* U {{U|} such that

—E(v,m) €Ep Np’ forallme M,
Ey(v,a;) € p, Ey(v,a;) € p’ for some i, j < h,
“|E (U, v) N Eog(U,a;)| = oj” isin p N p’ for all j < h.
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() Forallme M, ~E(v,m)€pNp’;ifr,r € S,(M) and p(r) = p,
p(r') =p’, then r,?. r.

Notice that, owing to Lemmas 5 and 6, the choice of r, r’ is inessential; r }_ r’
is characterized in Lemma 6.

Proof: The equivalence of (i) and (ii) follows from the triviality of p and p’, while
the equivalence of (ii) and (iii) is a straightforward consequence of Lemma 2.

Let us concentrate our attention now on the case T w-stable. SR-types (where
SR = strongly regular) play a basic role under this hypothesis. Hence let us see
which 1-types over a model M of an w-stable T are SR.

Lemma 8 Let T be w-stable, M E T, p be a nonalgebraic 1-type over M
satisfying (A) or (B). Then p is SR.

Proof: First suppose that p satisfies (A). Let x Ep, y € M(x) — M; then y AJ; X

and y = x. Hence, p is SR via the formula v = v. Assume now (B). Again, if
xFpand y € M(x) — M, then yb\% x, and so EE; (», x). Hence y E p, provided

y satisfies the conjunction of Ey(v, ag) and P(v) if FP(x), - P(v) otherwise.
Then p is SR.

It remains to examine the case (C).

Example Let T be the theory of two equivalence relations E, and E; such
that

(i) E; € Eo;
(ii) E, has infinitely many classes;
(iii) for all n € w*, every Ey-class contains exactly one E-class of power n.

Then, for all x,y € U, x =y iff |E; (U, x)| = | E; (U, y)| and FP(x)<P(y). In
particular, |S; ()| = Ry, and T is w-stable. Let M E T, p be the 1-type over M
defined by = Ey(v, m) for all m € M and 3 wE | (v, w) (besides P(v), for in-
stance). Then p satisfies (C), and p is regular. However p is not SR; in fact, con-
sider the 1-type q over M defined by —Ey(v, m) for all m € M, 3!nwE, (v, w)
for some n € w*, and P(v). First of all, g is SR; for, if xFg and y € M(x) —
M, then y X% x, so EEy(x, y) and consequently y F g provided Fa!nwE; (y, w) A

P(y). Furthermore q <gg p, but g +gx p, then p is not RK-minimal, and hence
p cannot be SR. Notice that p L q.

Then, let T be w-stable, M F T, p € S; (M) satisfy (C). We wish to find un-
der which conditions p is SR.

Let r € S, (M) be such that p(r) = p. Assume for simplicity A g<;<s P(V;) €
r, and put S(r) = {j < h:a(r)(J) is finite}. Notice that, for every xo F p, one
can build a sequence X = (xp, ..., X,_1) € M(X,) realizing r; moreover, for any
Yo € M(x0) — M, yo Asg X9, hence FE(xo, ¥o).

Case 1. There is a k € w such that, for all B, ...,B8s—1 € w* satisfying 8; =
a(r)(j) when j € S(r) and 8; > k when j € h — S(r), f(r)(Bo, .- -,Br-1) = 0.
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Notice that this is the case when S(r) = A. Then p is SR. In fact, for any
s € S, define a formula ¢(s) (W) in the following way:

(@) If f(s(r)) = f(r), then put ¢(s)(W): wo = w,.

(b) If f(s(r)) # f(r) and there is A = (g, ...,A\4—1) € (w*)” such that
F(s(r))(N\) #£(r)(N), then fix such a sequence \; if £(r) (M) is finite, then
put

@ (8) (W) : f(tp (W/ D) (N) = f(r)(N)
(this can be written by a suitable first-order formula); otherwise
f(r)(N) = |U|, but then f(s(r))(N) is finite, and we set
o(5) (W) : f(tp (W/D))(N) # f(s(r)(N).

(©) If f(s(r)) # f(r) but (b) does not hold, then there is \ = (Nos - - -5
Mi-1) € («* U {JU[})" such that \; = | U| for some j < & and f(r)(\) #
S(s(r))(N); choose such a sequence \ and notice that, as f(r) and f(s(r))
are identically equal on (w*)”, for all uo, ..., us; € 0* U {|U|},

S(r)(g) = =1 iff f(s(r))(p) = -1

In particular both_f(r)(7\) and Jf(s(r))(X) are different from —1, and
hence either f(r)(N\) or f(s(r))(N) is in w; then we can define ¢ (s) (W)
in a way similar to (b).

Finally, let ¢o(w) be the formula

N (Ei(wi, wj)) A DEg(wi, wi) A N P(w)A A

i<j<h 0<j<h JES(r)
Na(r)(Nz(Eog(wj,2) AE (Wi, 2) A N\ 3> kz
JER-S(r)
(Eo(wj, 2) AEL(Wj, 2) A N\ o(5)(W)
SESH

and let (W) be the conjunction of ¢y (W) with P(wgy) or =P (w,) provided that
P(v) € p or = P(v) € p. Then the formula

3(v) :3W (v = wo A o(W))
makes p SR. In fact & (v) € p; moreover let xo Fp, X = (xp,...,X,—;) be a re-
alization of r in M(x,); then, for every y, € M(xy) — M satisfying & (v), there

exists ¥ = (Yo, ..., Yn—1) € M(xo) such that EA;.j<x(E((¥i> ¥;) A 7 Eo(¥i, ¥j))
and

T(tp(§/D)) = 7(r), a(tp (/D)) = a(r).

Furthermore there is s € S;, such that, for all j < h, FEo(y;, Xs(j)). It follows
St (F/D)) = f(s(r)). As Eo(s)(7), it must be f(s(r)) =f(r). ThenyEr | O,
so that y Fr and y, E p.

Case 2. For all k € w, there are oy(k),...,an_1(k) € w* such that a;(k) =
a(r)(j) for any j € S(r), a;(k) > k for any j € h — S(r), and f(r)(co(k),. ..,
ap_1(k)) #0.
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The following conditions fully determine a type r(k) € S, (M):

(i) for all m € M, ~E(vy, m);
(ii) for all j < h, a(r(k))(j) = a;(k);
(i) f(r(k)) =1(r);
(iv) finally, 7(r(k)) is defined in some arbitrary way, for instance by setting
7(r(k)) = 7(r), as is possible if we assume k = 2.

Let p(k) = p(r(k)). Then S(r(k) = h, so that p(k) is SR. However
D(k) =gk p and p(k) +rk D, and consequently p is not RK-minimal, and hence
p cannot be SR. In fact it suffices to prove r(k) <zgx r, r £ rx r(k) (since
p(k) ~rg r(k) and p ~gg 1).

® r(k) <gg r: for every X F r, there is § € M (%) such that y F r(k) and

even FA j<p Eo (), X)).

o r £ri r(k): let y E r(k), suppose towards a contradiction that M( )

contains a sequence X realizing . Then X 1& ¥, and hence FE(xy, yo);

moreover there is s € S, such that, for any j < h, EEy(x;, ys(;); in par-
ticular £(r) = f(s(r(k))) = f(s(r)).
Then tp(Xx/M U y) is fully determined by these formulas:

1. Nicjcn E1(vi, 7)) A Njcn Eo(Vj, Ys())>
2. the formula expressing 7(r),
3. the formulas expressing o (r), namely:

N a(r)(J)z(Eo(v), 2) A E((v),2)) for all j € S(r),
3> nz(Ep(v;,2) AE (vj,z)) forallj€ h — S(r) and n € w.

Moreover tp(x/M U ) is isolated, and hence is determined by a finite set
A (D) of the previous formulas. Let # € w (¢ = 2) be such that, for any
formula

3> nz(Eo(vj,2) AE(vj,2)) (JER—S(r),nE€Ew)

occurring in A(?), t > n. We know that M (7) contains a sequence X’
realizing r(¢) (and even FA j<, Eo(x}, x;)). In particular FA (X’); however
X%’ does not realize r, a contradiction. Therefore r £zx r(k).

We can summarize the previous results by means of the following:

Proposition Let T be w-stable, ME T, p € S;(M) satisfy (C), r € S,(M) be
such that p(r) =p, and S(r) = {j < h:a(r)(j) € w}. Then p is SR if and only
if there is k € w such that, for all By, . . .,By—1 € w* with B; = a(r)(j) when
JES(r) and B; > k when j € h — S(r), f(r)(B) =0.

4 The Shelah second level This section is devoted to proving that every the-
ory T satisfying the assumptions of Section 1 is classifiable according to Shelah.
We already noticed that T is superstable, so we have to show that 7 is present-
able (has NDOP), shallow, and satisfies the existence property (has NOTOP).
On the other hand, T is also monadically stable, and every monadically stable
theory satisfies both NDOP and NOTOP: this fact seems to be folklore, but, as
far as I known, unpublished. So let met include here a proof for the sake of com-
pleteness.
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Theorem 2 Let T be any monadically stable theory. Then T is presentable and
has the existence property.

Proof: First let me show that, if M, M(0), M (1) are models of T such that M
is an elementary submodel of both M(0) and M (1) and M (0) AJ; M (1), then

M(0) U M (1) is a model of T. First assume that M, M(0), M (1) are a-models
of 7. Let M’ be the a-model of T a-prime over M(0) U M(1), we claim that
M’ =M (0) U M(1). Suppose toward a contradiction that there exists x € M’ —
(M(0) U M(1)); then, for everye=0or 1, x ,Z. M(l — e), so there is a sequence
J(1 —e)in M(1 —e) — M so that x ,Z. y(l — e) As T is monadically stable,
thereis y(1 —e) e M(1 —e) — M so thatxM,L y(1 —e) (see [3], 4.2.6). Again
(e)

using monadic stability, we obtain x J, y(1 —e) for any e = 0,1 (as \L c ,IL,
see [3], 4.2.12) and finally, owing to the transitivity of ,L for monadlcally stable
theories, y(0) ¢ y(1), a contradiction.

Assume now that M, M(0), and M (1) are arbitrary models of 7. Build an
independent diagram

N(0) N(1)

N,
Lo

where N, N(0), N(1) are a-models of 7T, and the arrows denote elementary
embeddings (see [6] and [4]). Then N(0) L N(1), and hence N(0) U N(1) is an
N

a-model of T. Furthermore, for every formula ¢ (7, w) and for every a € M(0) U
M(1), if there is b € N(0) U N(1) satisfying Fe¢ (b, @), then there is a’ € M(0) U
M(1) such that Fe(a’,a); then M(0) U M (1) is an elementary submodel of
N(0) U N(1), in particular M(0) U M (1) is a model of T.

At this point the existence property is trivial; in fact, for all models M, M(0),
M(1) of T satisfying M < M(0), M < M(1), and M(O)X/L;M(l), M(0) U M()
is a model of 7, clearly prime and atomic over itself.

So we have only to show that T is presentable; hence consider a-models M,
M(0), M(1) of T satisfying the previous assumptions; let p be any nonalgebraic
1-type over M(0) U M(1) (= the a-model a-prime over itself), then we need
to prove that either p £ M(0) or p L M(1). If there is e = 0,1 such that p does
not fork over M(e), then we are done. Otherwise, let x realize p, then both
xM,{,O) M(1) and xM,{,l) M(0), and we get a contradiction by proceeding just as

M(0) M(1)

above.

Theorem 3 Let T be a theory satisfying the assumptions of Section 1. Then
T is presentable, shallow with depth <3, and satisfies the existence property. In
particular, T is classifiable in the Shelah sense.
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Proof: Owing to the previous remarks, we have only to show Dp(¢) < 3. Let
M be an a-model of T, and p € S; (M) be nonalgebraic, hence regular.

First assume that p satisfies (A). Let x E p, M’ = M[x] = the a-model of T
a-prime over MU {x}, yEe M’ — M. Then y A‘!} x and hence y = x. It follows

M’ = MU {x}, and hence every nonalgebraic 1-type over M’ does not fork over
M. Hence Dp(p) =0.
Suppose now that (B) holds. Let x, M, y be as above. This time y Rﬁ X im-

plies EE; (x, ), so that M’ = MU E|(M’, x). Then let g’ be a nonalgebraic 1-
type over M". If there is @’ € M’ — M such that Ey(v,a’) AE,(v,a’) € q’, then
q’ L M and Dp(q’) = 0. In the other cases, ¢’ £ M. Hence Dp(p) < 1.

Finally, assume (C). Now M’ = MU E(M’,x). Let q’ be a nonalgebraic
1-type over M’ If q’ satisfies (A) for some a’ € M’ — M, then ¢’ L M and
Dp(q’) = 0. If ¢’ satisfies (B) for some sequence aj, . . ., a,_; of elements in
M’ — M, then ¢’ L M and Dp(q’) < 1. In the other cases g L M. Consequently
Dp(p) =2.

In conclusion, T 'is shallow and Dp(T) < 3 (we already gave implicit exam-
ples of theories T of depth 1, 2, and 3 in [9]).
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