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Classifying Pairs of Equivalence Relations

CARLO TOFFALORI

Abstract Let E0,Eχ be equivalence relations such that the number of Eo-
classes or E\ -classes in any class of the join of Eo and E\ is bounded. We
study classification theory (according to Shelah) for these pairs of equivalence
relations.

Roughly speaking, Shelah's classification problem is to find under which con-
ditions, given a (countable) complete first-order theory Γ, the isomorphism types
of models of T can be characterized by invariants such as cardinal numbers or
something similar. It is simple to see that if, for all sufficiently large cardinals
λ, Γhas too many (namely 2λ) nonisomorphic models of power λ, then this as-
signment of invariants cannot be done. Shelah shows that, in some sense, the
converse is also true: if Γhas fewer than 2 λ nonisomorphic models in some un-
countable λ, then a classification of isomorphism types of models of Γis pos-
sible (see Baldwin [1] for a more complete and precise exposition of the whole
matter).

Here we are interested in the classification problem for complete theories of
two equivalence relations EOiEx. The general analysis of this case is complicated
owing to the Rogers theorem that the theory of two equivalence relations is un-
decidable (Rogers [7]). Hence we limit ourselves to the theories Tsatisfying the
condition (+): if E denotes the equivalence relation generated by Eo and Ei9

then there exists h £ ω such that any is-class contains at most either h Eo -classes
or h E\-classes.

The first part of the paper (Sections 1-3) is devoted to characterizing in this
context the basic tools of Shelah's classification theory: regular types, SR types,
orthogonal types, and so on. In particular, we will see that any theory T satis-
fying (+) is superstable and monadically stable. Section 4 shows that Γis present-
able and shallow and satisfies the existence property, and hence is classifiable in
the Shelah sense.

We already studied theories of pairs of equivalence relations in Toffalori [9],
where we dealt with the problem of determining the theories that are categori-
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cal in some infinite power. We assume that the reader is familiar with [9], mainly
with Sections 1 and 2. References for basic stability theories include especially
[1], but also Makkai [6] and Harrington and Makkai [4]. The existence property
is explained, for instance, in Hart [5], while monadically stable (or tree decom-
posable) theories are treated in Baldwin and Shelah [3]. As usual, we will assume
that all models of a theory Γas above are elementarily embedded in a very sat-
urated model U.

Finally, let me thank the referee for suggesting several improvements.

/ M and M* Let (M, Eo, Ex) be a structure with two equivalence relations
EQ,E\. Let E denote the equivalence relation generated by Eo and E\. We
assume

(+) there is h E ω such that, for all a E U, the 2i-class of a contains at
most h classes of either Eo or E\.

Notice that (+) implies that E is 0-definable. Moreover, if (+) holds, then we
can decompose M as U/<Λ (Af° U M}) where, for all / < Λ, M? = {a E M:
E(M, a) contains exactly / + 1 classes of Eo] and Af/ = {a E M - KJj<hMf:
E(M, a) contains exactly / + 1 classes of E\}. Notice that the models of the the-
ory of M are just the structures N of the form

N=\J (N?UNh
i<h

where, for all i <h and e = 0 or 1, Nf is elementarily equivalent to Mf; hence,
they decompose in a uniform way as finite disjoint unions of structures whose
^-classes contain the same (finite) number of classes of either Eo or Ex. Then it
is straightforward to see that we can assume without loss of generality that any
is-class of M contains exactly h classes of £Ό

Let us build now a new structure (M*,E0,Eι,P) (where P is a 1-ary rela-
tion symbol).

(i) M* includes M, and M* - M consists of a new element x(X) for any
class X of Eo Π EI in M, and of a new element x( Xo, X\) for any pair
of classes X0,X\ of Eθ9Eχ respectively in M such that X0ΠXχ = 0
but, for all a0 E XQ and axE X\, M^E(ao,aι).

(ii) P(M*)=M* -M.
(iii) For any a E M* and e = 0,1, put ae = a if a E M, ae = an element of

Xif a = x(X) for some^f, and ae = an element of Xe if a = x(Xθ9Xι)
for some Xo, Xx. Then, for all a,beM*, define M* 1= Ee(a, b) if and
only if M t= Ee(ae,be) (notice that this definition does not depend on
the choice of ae and be).

It is easy to see that the following properties hold in M*.

1. For any e = 0,1, Ee(M*2) is an equivalence relation and Ee(M*2) Π
M2 = Ee(M2).

2. E(M*2)ΠM2 = E(M2).
3. Eo and Ex permute in M* (hence E = R^ = R\ = Ri, according to the no-

tation of [9]).
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4. For all a G M *, there is a' G M such that M* t= E(a, a')9 and, for all
a G M, E(M*9 a) = (E(M, a))*.

5. For any class Jf of ̂ ΌΠ^! inM, (EonEx)(x(X)iM*)=XU {x(X)};ΐor
any pair of classes XOi Xx ofE0i Ex respectively in M such that Xo Π Xx =
0but, for all aoeXoand axeXXiMbE(ao,ax), (Eor\Ex)(x(Xo,Xx),
M) = {x(X0,Xx)}.

6. M* satisfies (+); furthermore, if every is-class in Af contains exactly h Eo-
classes, then the same is true in M *.

We also point out that

(a) for all a G M*, there is a unique x G (Eo Π Ex) (M*, a) satisfying P( υ)
(b) for all a0, ax G M such that E(a0, ax) holds in M (or, equivalently, in

M*) and E0(M, a0) Π £Ί (M, ax) = 0 , there is a unique JC G M* such
that \=E0(x,a0)ΛEι(xiaι);

(c) for all aGM* with |(JSΌ Π Ex)(M*,x)\ = 1, there exist a0,ax GMsuch
that M\=E(ao,ax) and M* N£Ό(^«o) Λ ^ ί έ ϊ , ^ ) .

Now let M = (M, £Ό, £Ί), ΛΓ = (Af; JSΌ,£i) be structures satisfying (+). By
proceeding as in [9], one can easily show that the following propositions hold.

PI M~NΓiffM* = M'*. _
P2 Let (M,E0,EXiP) satisfy ( + ); put M =_(^P(M),E0 Π M2, Ex Π M2),
ύfAZί/ assume that (a), (b), dwtf (c) ΛoW; ίΛ^« M « M*.
P3 M=M'iffM*=M'*.

Therefore, if T= Th(M) and T* = Th(M*), then the models of T* are exactly
the structures AT* with M' H Γ. Furthermore,

• Λf'\^-+ M'* \s£ defines a bijection between the sets of isomorphism types
of models_of T and T* _

• let M = (M1EO,EX,P) satisfy (+) and (a), (b), and (c), T= Th(M); if
M= iP(M) and T= Th(M), then T= T*.

Therefore there is no loss of generality for our purposes in restricting ourselves
to consider the classification problem for theories of structures (M,Eθ9EX9P)
where Eo and Ex are permuting equivalence relations satisfying (+) (and even
admitting exactly h £Ό-classes in any is-class), and P is a 1-ary relation choos-
ing an element in every Eo Π Ex -class of M. In fact, if M satisfies the further
conditions (a), (b), and (c), then M- (- P(M))*.

Hence in the following sections T will always denote the theory of such a
structure, and L its first-order language.

2 1-types and h-types We already saw in [9] that

Theorem 1 T is superstable.

The proof relies on a simple counting types argument and, more generally, on
the analysis of the nonalgebraic 1-types over a model M of T we shall sketch be-
low. We also recall that we gave in [9] an example of a non-ω-stable theory Γof
the type we are studying. Then let M ¥ Γ, p G Sx (M), p be nonalgebraic.

(A) There is a G M such that Ex(v,a) G p\ with no loss of generality, we
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can suppose E0(v, a) E/7. Then, these conditions fully determine/?; in partic-
ular -*P(v) Ep.

(B) For all m EM, -ιE\ (v, m) E p\ there exist a0, - > <*h-\ Ξ ̂  pairwise
equivalent in E\ and inequivalent in Eo, and αo> > ^Λ-I E ω* U {| £/|} (ω* =
ω — {0} from now on) such that

E0(v,a0) £P

"\Eo(U9aj) ΠEι(U,v)\= a/9 is in/7 for ally < A.

(Notice that this condition can be expressed by a single formula when α,- E ω,
and by a denumberable set of formulas otherwise.) Then/7 is fully determined
by these formulas (and hence by the sequences a0,..., ah_\ and a0,..., α^-i)
together with -^Eι(v9 m) for all m E M and either P(v) or -τP(ι ).

(C) For all mEM, -^E0(v, m)Ep. Then/? is fully determined by this con-
dition and by/7 Γ 0 .

Hence we have to study Si ( 0 ) . It is more convenient for our purposes to
examine the Λ-types over 0 of sequences x = (x0,... ,*Λ-I) ^ ^ Λ satisfying

Λ (Eι(vh vj) A -*E0(υh Vj)).
i<j<h

Let rESh(0) contain this formula. Assign r the following invariants (l)-(3):

(1) The sequence τ(r) E 2h such that, for ally < A,

[l if P(Vj)Er9

r(r)(j)= Λ ^ J.

^0 otherwise.

(2) The sequence a{r) E (ω* U {| ί/|})Λ such that, for ally < h,

a(r)ϋ) = \(E0Γ\Eι)(U,Vj)\
(r can express a(r)(j) for ally < A; in fact, if there is n E ω* such that
3\nw(E0(Uj9 w) ΛEI(VJ, W)) E r, thenα(r)(y) = n, while, if 3 >nw(E0(vJf

W)ΛEI(VJ,W)) Er for all Λ E ω, thenα(r)(y) = |£/|).
Let us introduce now the invariant (3) in a more informal way. Consider a

realization Jc of r; let (αo> > «Λ-I) be any sequence of cardinal numbers, all
greater than 0, and either finite or equalling | U\. We wish to estimate how many
Eι -classes X in the ii-class of x in U satisfy

\XΠE0(U9Xj)\ = α y for everyy < A.

Clearly, if all the a/s are finite, then r can express the power of the set of these
classes. Assume now that there is somey < A with αy infinite. Then we can dis-
tinguish two cases: If there is k E ω such that no E\ -class X in the is-class of x
satisfies

\XΠEQ(U,XJ)I = oLj if a,- is finite,

IXΓi E0(U,Xj)I is finite and >k otherwise,

then r can express how many E\ -classes X in the is-class of x satisfy

\XΠ E0(U,Xj) I = (Xj for every j < A
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(just because "= | U\" is equivalent to ">£"). Otherwise, r can only witness that
a k playing the above role does not exist (and a compactness argument gives
I UI -many E\ -classes X as required).

(3) The function/(r) of (ω* U {| U\))h into ω U {-1,| U\] defined in the fol-
lowing way. Let (αo> > «Λ-I) be any sequence in (ω* U {| U\})h;
(3.1) if oίj is finite for ally < h, then/(r)(α 0 , . . . , ah-\) is the power of the

set of Eι -classes X in the ii-class of any realization x of r such that

\Xr\E0(U,Xj)\ = aj for every j < h;

(3.2) if oίj is infinite for some j < h, but there is k G ω such that, for
all j8 0,..., βh-ι E ω* with βj = oίj if OLJ is finite, βj > k otherwise,
f(r)(β0,... ,βh-ι) = 0, then/(r)(α 0 ) . ,«Λ-I) is defined as in (3.1);

(3.3) otherwise,/(r)(α 0,...,«Λ-I) = - 1 .

Lemma 1 Lei r, r' G Sh(0) contain /\i<j<h(Eι(Vj, Vj) Λ -*E0(vh Vj)). Then
r = r' if and only if (τ(r),a(r),f(r)) = (τ(r')9a(r'),f{r')).

Proof: (=>) is trivial.
(<=) Suppose (r(/"),α(A ),/(r)) = (τ(r'),a(r'),f(r')). Let JcNr, x' t=r', we

claim that there exists an isomorphism from E( U, x0) onto E(U,xb) sending x
into x'. As this isomorphism can be easily extended to an automorphism of U,
it follows that x s x' and hence r = r'.

Let QIO, , «Λ-I G ω* U (| C/|}. If (a0,..., αΛ_!) satisfies the conditions
of (3.1) or (3.2), then both E(U,x0) and E{U,x'o) contain exactly f(r)(a0,...,
«Λ-I) =/(A*')(αo,. . >α*-i) £Ί-classes ^satisfying, for ally < h,

\XnE0(U,Xj)\ =aj9 \XΠE0(U9x})\=aj

respectively.
Otherwise (3.3) holds, and/(r)(a 0 ) . .,αΛ_i) =/(r/)(«o» »«Λ-I) = - 1 .

Also, for any A: G ω, there exist λ o , . . . ,λ/ι- i^ω* such that λy = OLJ when α, is
finite, λ, > /: otherwise, and

/(r)(λ 0 , . . ,λΛ-i) = / ( r / ) ( λ 0 , . . . ,λ*-i) * 0

(and both r and r' can recognize that this is the case). Consider the following for-
mulas over x

/\E0(VJ,XJ)Λ Λ Eι(υi9Vj)9

j<h i<j<h

Λ 3laJz(E0(vj,z)ΛEι(Vj,z)),
oίj finite

f\ 3 > nz(E0(vj,z) AE^VJ^Z)) for all Λ G ω,
α/ infinite

/\ P(vj) (for instance).

An easy compactness argument shows that the set of these formulas is consis-
tent; furthermore it can be enlarged in a unique way to a type over x; this type
admits | ί/|-many pairwise E\ -inequivalent realizations in U. Hence there are
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I U\ Ex-classes Xin E(U,x0) such that, for ally < h9 \XΠE0(U9Xj)\ equals α,
if OLJ is finite, and | U\ otherwise.

The same holds for x'. Since τ(r) = τ(r') and a(r) = a(r')5 it is easy at this
point to build the required isomorphism between E( U,x0) and E(U,x'o).

Now let M be a model of Γ, and consider nonalgebraic types r E S/, (M)
containing Ai<j<h(E\(vi, Vj) A -ιE0(vi9 Vj)). One could classify them in a way
similar to the one we followed before for 1-types. We omit here the details, and
we only emphasize the particular case when, for all m E M9 Eo(vθ9 m) £ r. No-
tice that these formulas and r \ 0 isolate r.

Let us discuss now the connection between 1-types and A-types of the above
kind. First consider types over 0 and notice that every 1-type/? over 0 can be
enlarged to a type r E Sh(0) with Λ,<;</,(Ex(vi9 vβ A -tE0(vi9 Vj)) E r just tak-
ing a sequence x in U such that x0 1=/? and t=Λ/<,</,(£Ί (*/,#/) Λ -ιi?o (#/,*/))>
and putting r = tp(x/0). Of course this extension r is not uniquely deter-
mined. However, if r,r' E 5 Λ (0) contain Λ/< 7<Λ(£Ί(V, , yy) Λ -^E0(vi9 Vj)) and
/\o<j<hP(vj)9 and P(^ o ) G r if and only if P(ι;0) G r', and /?,/?' denote
//7(JCO/0), (P(JC6/0) respectively for x \= r and x' V r\ then

if and only if there is s E Sh such that s(0) = 0 and r'(vθ9..., ^_i) = A (fS(θ),
. . . , l^(Λ-i)).

(«=) is trivial.
(=0 Let ΛΓ0 t=/7, enlarge x0 to a sequence Jc realizing r, and to a sequence x'

realizing r'. Define s E S^ by putting, for all /,./ < Λ,

5(0 =j iff \=E0(x'i,Xj) AEtixj^j).

Then 5 is as claimed.
Now let us look at nonalgebraic types over a model M of T. Here we only

notice that, if p E Sx (M) contains -*E0(v09 m) for all m ELM9 then, just pro-
ceeding as above, one can enlarge/? to a type r E Sh(M). This extension is not
unique, but, if r, r' are such extensions, then r / r'\ furthermore, both r and r'
are not orthogonal top (this fact will be shown in the next section—Lemma 5).

Corollary The following propositions are equivalent:
(i) Tisω-stable;

(ii) S i (0) is countable;
(iii) {r E Sh(0): Ai<J<h(Eι(Vi9 Vj) A ̂ E0(vi9 Vj)) E r] is countable.

Proof: (i) => (iii) is trivial.
(iii) => (ii). Every type p E Si ( 0 ) can be extended in at most finitely many

ways to a type r as in (iii).
(ii) => (i) follows from the analysis we gave of the 1-types over an arbitrary

model of T.

Corollary T satisfies VaughVs Conjecture (namely T has either 2**° or at
most **o nonisomorphic countable models).

Proof: If Γis ω-stable, then it suffices to refer to the Shelah theorem stating that
all ω-stable theories satisfy Vaught's conjecture (Shelah, Harrington, Makkai [8]).
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If Γis not ω-stable, then | S i ( 0 ) | = 2*°, hence T needs 2**° nonisomorphic
countable models to realize all the 1-types over 0 .

Notice that, consequently, Vaught's Conjecture holds even for an arbitrary
theory of two equivalence relations satisfying (+). In order to simplify the ex-
position in the forthcoming sections, let me introduce the following conventions:

• From now on, Λ-type will always mean Λ-type containing the formula
f\i<j<h(Ex(υh Vj) A ^E0(vi9 vj)).

• For every Λ-type r (over 0 , or over a model M of Γ), we will denote by
p(r) the 1-type of x0 where x is any realization of r.

• For every Λ-type r, we will put/(r) = / ( r Γ 0 ) .

3 The Shelah first level

Lemma 2 Let Mt= T9 AΏ M, /?' G Sι(A), p = /?' \ M. Then p'forks over
M if and only if one of the following conditions holds:

(i) p satisfies (A) and there is x G A such that v = x G p'\
(ii) p satisfies (B) and there is x G A such that E\ (v, x) is in /?';

(iii) p satisfies (C) and there is x GA such that E(v,x) is in p'.

The proof is just the same as Lemma 5 in [9], Notice also that the forking ex-
tensions of Λ-types over Mean be characterized in a similar way. In particular,
if M 1= T, A 3 M, r' G Sh(A), r = r' Γ M, and r contains -^Eo(vθ9

m) for all
mEM, then r' forks over Mif and only if there is x G A such that E( v0, x) G r'.

Lemma 3 Let Mbea model of T,p bea nonalgebraic \-type over M. Then
RU(p) < 3, p is regular andp is trivial.

Proof: Let p satisfy (A). For every Λf'>M9p\M' is the only extension ofp over
M' that does not represent v = w. This implies that every forking extension/?'
of p over M' is algebraic, hence RU(p) = 1 and/? is regular. Furthermore, ψ

M

equals = in p (U), so that, for every /£/?((/), independence is equivalent to pair-
wise independence in /. It follows that/? is trivial.

Assume now that (B) holds. For every M' > M, /? | M' is the only extension
of/? over Mf that does not represent E\ (v, w). This implies that any forking ex-
tension has RU< 1 hence RU(p) < 2. Also, if x realizes any forking extension
/?' of/? over M' andj> \=p\M\ then tp(y/M' U x) does not represent Ex(v, w)
(otherwise p\M' represents this formula, too), hence y si x and p' J_ p\M'.

M'

Thus/? is regular. Finally, Mequals Ex in/?( U), and again, for all / c jr?( £/), in-
dependence and pairwise independence are equivalent in /. Therefore, /? is trivial.

Suppose now that p satisfies (C). If M' > M, then /? | M' is the only exten-
sion of/? over M' that does not contain E(v, m) for any w G M'. If/?' is any
forking extension of/? over M', then for some m G M' E(v9m) and hence
E0(v,m) is in/?. Hence RU(pf) < 2 and/?£/(/?) < 3. Also, if xVp1 and j 1=
p IM', then ̂  vl x, hence p' J_ p | Λf'. Then /? is regular. Finally, ψ equals £" in

M' M

/?(t/), so for sets of realizations of/?, independence is equivalent to pairwise in-
dependence, and again /? is trivial.
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We have implicitly shown that, for every p as above, the pregeometry
(p(U)9cl) associated to p (where, for all S c p(U), cl(S) = {y Ep(U):
y 4, S}) is degenerate.

Notice also that an argument similar to the previous one proves that every
nonalgebraic A-type r over M is regular and trivial.

The regularity of types over a model of T and even over any subset of U
could be proved also as a consequence of the following result.

Lemma 4 T is monadically stable {tree decomposable in the sense of Bald-
win and Shelah [3]).

Proof: We will show that Γis 3-tree decomposable. Let M be any model of T9

λ = I Af j . Define a tree / g λ~3 and a set {(M(η)9N(η)) : η E /} of pairs of mod-
els of T in the following way:

(0) M< > = My N( > = TV is any countable elementary submodel of M.
(1) Let IX(η): η < μ] be a list of ^-classes in M (for a suitable μ < λ). Then

μ is just the set of elements of / of length 1. Moreover, for every η < μ9 put
M(η) = JVU X(η). We claim that M(η) is an elementary submodel of M (and
hence a model of T). It suffices to show that M(η) satisfies the Tarski-Vaught
criterion. Suppose a E M(η) and M)rlvφ(υ9a). Let b EM satisfy φ (v, a). If
6 E M(η), then we are done. If there isxGN such that )rEχ (b, x) (without loss
of generality N£"o (b, x)), then the Eo Π Ex-class of x in TV is infinite, and we can
build an automorphism of M fixing a and sending b in TV; so, again, we are done.
Suppose now that, for all xE N, l=-ι2si (b, x) but, for some x E N, N£o(£>*);
let x0 = x, Xι,..., JCΛ_I be pairwise ^-equivalent and iίo-inequivalent elements
of N9 b0 = b9..., 6Λ_i satisfy E0(vJ9Xj) for ally < Λ and i?i (v, , ty) for all i <
j < h. Then tp(b/N) is defined by the previous formulas and |(£Ό Γ\Eι)(U9 bj)\
for j < Λ. Hence there is £ E ω such that

ίE0(υj9Xj) :j<h}U [Ex(vi9 υj) :i<j<h]

U {3> kw(E0(vi9w)ΛEι(vi,w))} hφ(v9a)9

hence there exists bf E Λ̂  satisfying φ(v9ά). Finally, assume that \=-^E(b9x) for
all xE M(η). Then tp(x/M(η)) is fully determined by tp(b/0) U [ -"£(I;,Λ:) :
JC E M(τ7)}; hence there are ΰ(v) E tp(b/0) and a finite 4̂ c M(τ/) such that

{d(v)} U {-π£"(ί;,x):xE^} h^>(ι;,ά).

Hence there does exist some b' E N such that \=φ(bf

9 a). This concludes the
proof of the claim. Hence we can put, for all η < μ9 N(η) = some countable ele-
mentary submodel of M(η) such that N<N(η) and N(η) Π X(η) Φ 0 .

(2) For every 77 < μ let { 7(Ϊ>) : v < v(η)} be a list of £Ί-classes in X(η) (for
a suitable (̂77) < μ). Then the elements of / of length 2 are just the η ~ v for
η < μ9 v < v(η). Put τ = η~ v9 and define M(τ) = ̂ (17) U y(*>) (as before one
can see that this is an elementary submodel of M(η))9 N(τ) = a countable ele-
mentary substructure of M(τ) satisfying N(η) < N(τ) and N(τ) Π Y(v) Ψ 0 .

(3) Finally, for every r = η ~ v as above, let (c(p) :p < p(μ, *>)} be a list of
elements of y(*>) - N(τ); let δ = τ~p, and put M(δ) = N(δ) = N(τ) U (c(p)}
(this is easily seen to be a submodel of M(τ)); the δ's are the elements of / of
length 3.
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Clearly M = \Jη<EiN(η), and, for η9p G / with η c p, JV(T?) < 7V(p) <
M(p) < M(ry). Moreover it is straightforward to define, for every η G / with
length <2, a set C of conditions (in the sense of [3]), and a map σ = σ(η) from
{iicii^P} to C such that M(η) is the free union with respect to σ over N(η)
of the M(η ~ p) 's for 77 ~ p G /, and M is the free union with respect to σ over
7V(η) of the M(η ~p)'s (η ~p as above) together with the M(τ) U N(η)'s
where r G /, r is not an initial segment of η but every proper initial segment of
r is a proper initial segment of 77.

It follows that Mis decomposed by [{M(η)9 N(η)) : 77 G /}. Hence Γis 3-tree
decomposable.

We want to characterize now the orthogonality relation among types. Recall
that for trivial stationary types non-orthogonality is equivalent to not almost or-
thogonality (see [2], for instance).

Lemma 5 Let M1= T, p G Sx (M) be nonalgebraic, r G Sh(M) satisfy p(r) =
p. Then p J. r.

a

Proof: Asp and r are trivial, it suffices to show/7 / r. And this is trivial, too.

In particular, if r9r' G Sh(M), and/?(r) =p(r') =/?, then r / /•' (as r,r\p are
regular, and / is an equivalence relation among regular types).

Lemma 6 Let MY Γ, r,r' G Sh (M) contain -^E(v9m) for all mEM. Then
the following propositions are equivalent:

(i) r I /•';

(ϋ) r I r'\
(iii) there iss G Sh such thatf(r) =f(s(r')) (wheres(r') denotes tp(xs{0),...,

xslh-i)/M) where (x0,...,Xh-\) is any realization ofrf).

Proof: Clearly it suffices to show the equivalence between (ii) and (iii).
(ii) => (iii). Let x 1= r, xf 1= r' satisfy x ψx'. Hence, for any i < h, there is a

M

unique j < h such that h£o(*/>*/). Define s(i) =7. Then s G Sh and/(r) =
f(s(r')).

(iii) => (ii). Let x t= /*; 5 (A*') is fully determined by the formulas ^E(v0, m)
form EM, and by (τ(s(r')),<x(s{r')),f{s(r'))). Furthermore, f(r)(a (s (r')) =
f(s(r'))(a(s(r'))) Φ 0, hence s(r') in realized in E(U,x0), and r % r'.
Lemma 7 Let M f= Γ, p,p' G S^M) 6e nonalgebraic. Then the following
propositions are equivalent:

ψ)plp'\
(iii) /? and p' satisfy one of the conditions (l)-(3) below.

(1) There is an Msuch that E0(v9a) AEx(v,a) EpΠp' (sop =p').
(2) There are aθ9..., ah_\ G Mpairwise equivalent in Eλ and inequivalent

in EOi and a0,..., α Λ _ i G ω* U (| t/ |J 5*wcΛ ^Λαί

-ι£Ί(ι;,m) epΠp'forallmeM,

E0(v, ai) G A iEΌ(ί;, Oj) G /?' /or ^orne /, j < Λ,

"1^(17,1;) Π E0(U,aj)\ =a/9isinpΠp/forallj<h.
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(3) For all m EM, -iE(v,m) E p Π /?'; ifr9r' E Sh(M) and p(r) = /?,

p(r')=p\thenrlr\

Notice that, owing to Lemmas 5 and 6, the choice of r, r' is inessential; r jL r'
is characterized in Lemma 6.

Proof: The equivalence of (i) and (ii) follows from the triviality of/? and/?', while
the equivalence of (ii) and (iii) is a straightforward consequence of Lemma 2.

Let us concentrate our attention now on the case Γ ω-stable. SR-types (where
SR = strongly regular) play a basic role under this hypothesis. Hence let us see
which 1-types over a model M of an ω-stable T are SR.

Lemma 8 Let T be ω-stable, M \= T, p be a nonalgebraic 1-type over M
satisfying (A) or (B). Then p is SR.

Proof: First suppose that/? satisfies (A). Let x 1= /?, y E M(x) - M; theny £ x
M

and y = x. Hence, p is SR via the formula v = υ. Assume now (B). Again, if
x ¥ p and y E M(x) - M, then y ψ x9 and so h£Ί (y, x). Hence y t= /?, provided
j satisfies the conjunction of E0(v,a0) and P(v) if kP(x), τP(u) otherwise.
Then/? is SR.

It remains to examine the case (C).

Example Let T be the theory of two equivalence relations Eo and E\ such
that

(i) Ex c Eo\
(ii) £Ό has infinitely many classes;

(iii) for all n E ω*, every £Ό-class contains exactly one Eλ-class of power «.

Then, for allx,j>E t/, ;c = ̂ iff \Eι(U9x)\ = |£Ί(t/,j>)| and N P ( Λ : ) ^ P ( J ) . In
particular, | S i ( 0 ) | = ̂ 0 , and Γis ω-stable. Let MN Γ,/? be the 1-type over M
defined by -i£Ό(^,m) for all m GMand 3°°wEι(v, w) (besides P(v), for in-
stance). Then/? satisfies (C), and/? is regular. Howeverp is not SR; in fact, con-
sider the 1-type q over Mdefined by ^E0(v,m) for all m GM9 3\nwEι(v, w)
for some n E ω*, and P(v). First of all, q is SR; for, if x N q and y E M(x) -
M, then y J, x9 so N£Ό(*> J) and consequently ̂  t= <? provided N3! nwEx (^, w) Λ

M
P(y). Furthermore q <RκP, but q +RKp, then/? is not i?/Γ-minimal, and hence
p cannot be SR. Notice that p / q.

Then, let Γbe ω-stable, M t= T, p E Si (M) satisfy (C). We wish to find un-
der which conditions p is SR.

Let r E Sh(M) be such that/?(r) =/?. Assume for simplicity ΛO</<ΛP(^/) £
r, and put 5(r) = {j < h :a(r)(j) is finite). Notice that, for every x0 N/?, one
can build a sequence x = {xθ9..., *A-I) Ξ M ( X 0 ) realizing r; moreover, for any
y0 E M(x0) -M9yoφ x0, hence h£(xo> JΌ)

Cα^e 7. There is a fc E ω such that, for all β0,..., )3Λ_I E ω* satisfying jS,- =
a(r)(j) wheny E S(r) and βj > k wheny G A - S(r),f(r)(β0,..., j8Λ_i) = 0.



EQUIVALENCE RELATIONS 647

Notice that this is the case when S(r) = h. Then/? is SR. In fact, for any
s E Sh, define a formula φ(s)(w) in the following way:

(a) Iff(s(r)) = /(/•), then put φ(s)(w): w0 = w0.
(b) If f(s(r)) Φ f(r) and there is λ = (λ 0 , . . . ,λΛ_!) E (ω*)h such that

f(s(r))(k) Φf(r)(λ), then fix such a sequence λ; if/(r)(λ) is finite, then
put

φ(s)(w)' f(tp(w/0))(λ) =/(r)(λ)

(this can be written by a suitable first-order formula); otherwise
/(r)(λ) = I U\, but then/(s(r))(λ) is finite, and we set

φ{s)(w) :f(tp(w/0))(\) Φf(s(r))(λ).

(c) If f(s(r)) Φf(r) but (b) does not hold, then there is λ = ( λ 0 , . . . ,
λΛ_i) E (ω* U (| U\})h such that λ, = | U\ for somey < h and/(r)(λ) Φ
f(s(r))(\); choose such a sequence λ and notice that, as/(r) and/(5(r))
are identically equal on (ω*)Λ, for all μOi..., μh-X E ω* U [\U\}9

f(r)(μ) = -l iff/(5(r))(μ) = - l .

In particular both/(r)(λ) and f(s(r))(λ) are different from —1, and
hence either/(r)(λ) or/(s(r))(λ) is in ω; then we can define φ(s)( w)
in a way similar to (b).

Finally, let φo{w) be the formula

Λ (Eι(Wi,Wj) A-iE0(Wi,Wj)) Λ Λ ^(W/)Λ Λ
i<j<h 0<j<h jeS(r)

3lα(r)(j)z(E0(Wj,z) ΛExiwjtZ)) Λ Λ 3 > kz
jGh-S(r)

(E0(WJ,Z)ΛE1(WJ,Z))Λ Λ <p(s)(w)
s^Sh

and let φ(w) be the conjunction of ̂ o(^) with P(WQ) or -^P{w0) provided that
P(v) Gp or -ιP(v) E/λ Then the formula

t?(z;) :3w(v = W O Λ^(W))

makes/? SR. In fact ϋ(v) Ep; moreover let x0 1=/?, x = (xθ9... ,^Λ-I) be a re-
alization of rinM(Xo); then, for everyy0GM(x0) -Msatisfying d(v)9 there
existsy = (y0,... ,j>Λ-i) G Λf(*0) such that ^Ai<j<h(Eι(yhyj) Λ -I£ 0 (Λ»>!/))

and

τ(tp(y/0)) = τ(r),α(tp(y/0)) = α(r).

Furthermore there is 5 E SΛ such that, for ally < Λ, h£Ό(J/>^5(y)) It follows
f(tp(y/0)) =f(s(r)). As \=φ(s)(y), it must be/(*(/•)) = / ( r ) . Then j Nr r 0 ,
so that y V r and ̂ 0 H A

Cύr^ 2. For all & E ω, there are αo(k),..., αΛ_i (A:) E ω* such that α̂  (k) =
α(r)(j) for anyy E 5(r), a y(*) > * for anyy E Λ - 5(r), and/(r)(α o (*), »
α Λ _ ! ( £ ) ) * 0 .
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The following conditions fully determine a type r(k) E Sh(M):

(i) for all rnGM, ~^E(v0, m);
(ii) for ally < ft, a{r(k))(j) = aj{k);

(ϋi)/(#•(*)) = / ( r ) ;
(iv) finally, τ(r(k)) is defined in some arbitrary way, for instance by setting

τ(r(k)) = τ(r), as is possible if we assume k > 2.

LeX /?(£) = p(r(k)). Then S(r(A:) = A, so that /?(£) is SR. However
p(k) <RKP andp(k) +RKP> and consequently p is not 7?AΓ-minimal, and hence
p cannot be SR. In fact it suffices to prove r(k) <RK r, r φ RK r(k) (since
P(k) ~Rκr(k) and/? ~RKr).

• r(k) <RK r: for every x \= r, there is y E M(x) such that y N r(k) and
even ¥/\j<hE0(yJ9Xj).

• r £RK r(k): let y 1= r(&), suppose towards a contradiction that M(y)
contains a sequence x realizing r. Then x Ĵ  y, and hence t=£r(xo,^o);

moreover there is s E Sh such that, for anyy < h, tE0(xj9ysU)); in par-
ticular f(r) =f(s(r(k))) =f(s(r)).

Then tp(x/MU y) is fully determined by these formulas:

l /\i<j<hEι(vhVj) A /\J<hE0(vj9ysU))9

2. the formula expressing τ(r)9

3. the formulas expressing a(r), namely:

3la(r)U)z(Eo(Vj9z)AEι(υj9z))foτaajSS(r)9

3 > nz(E0(vj9z) AEI(VJ9Z)) for ally G A - S(r) and « E ω.

Moreover tp(x/MUy) is isolated, and hence is determined by a finite set
A(v) of the previous formulas. Let t E ω (t > 2) be such that, for any
formula

3 > /iz(£o(Uy,z) AEι(υj9z)) U G A - S(r),/i G ω)
occurring in Δ(i ), / > Λ. We know that M(y) contains a sequence x'
realizing r(t) (and even hΛy</,iio(*/>•*/))• I n particular NΔ(x'); however
x' does not realize r, a contradiction. Therefore r ^ ^ ^ r(k).

We can summarize the previous results by means of the following:

Proposition Let T be ω-stαble, M\=T,pGSι (M) satisfy (C), r E Sh (M) be
such thatp(r) =p,andS(r) = [j < h:a(r)(j) E ω). Thenp is SR if and only
if there is k E ω such that, for all β0,..., βh-{ E ω* with βj = a (r) (j) when
j E S(r) and βj > k when j e h - S(r)9f(r) (β) = 0.

4 The Shelah second level This section is devoted to proving that every the-
ory T satisfying the assumptions of Section 1 is classifiable according to Shelah.
We already noticed that Γis superstable, so we have to show that Γis present-
able (has NDOP), shallow, and satisfies the existence property (has NOTOP).
On the other hand, Γis also monadically stable, and every monadically stable
theory satisfies both NDOP and NOTOP: this fact seems to be folklore, but, as
far as I known, unpublished. So let met include here a proof for the sake of com-
pleteness.
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Theorem 2 Let T be any monadically stable theory. Then T is presentable and
has the existence property.

Proof: First let me show that, if M, M(0), M(l) are models of T such that M
is an elementary submodel of both M(0) and M(l) and M(0) J, M(l), then

M

M(0) U M(l) is a model of T. First assume that M, M(0), M(l) are α-models
of Γ. Let M' be the α-model of Γα-prime over M(0) U M(l), we claim that
M' = M(0) U M( 1). Suppose toward a contradiction that there exists x E M' -
(M(0) UM(1)); then, for every e = 0or l9x ψ M(l —e), so there is a sequence

_ M(e)

y{\ - e) in M(l - e) - Mso that x ψ y(\ - e). As Γis monadically stable,
M(e)

there is j ( l -e)EM(l - e) - M s o that* vt y(\ - e) (see [3], 4.2.6). Again
M(e)

using monadic stability, we obtain x ψ y(\ - e) for any e = 0,1 (as ^ ^ φ,
M M(e) M

see [3], 4.2.12) and finally, owing to the transitivity of J, for monadically stable

theories, .y(O) ψ y(l)9 a contradiction.
M

Assume now that M, M(0), and M(l) are arbitrary models of T. Build an
independent diagram

7V(0) N{\)

M(0) ^ M(l)

where Â , Λ^(0), A^(l) are α-models of Γ, and the arrows denote elementary
embeddings (see [6] and [4]). Then 7V(0) φ 7V(1), and hence N(0) U N(l) is an

v
α-model of Γ. Furthermore, for every formula φ(v9 w) and for every a E M(0) U
M(l), if there is 5 E 7V(0) UiV(l) satisfying M 5 , « ) , then there is a' E M(0) U
M(l) such that t=^(α', a); then M(0) U M(l) is an elementary submodel of
N(0) U 7V(1), in particular M(0) U M(l) is a model of Γ.

At this point the existence property is trivial; in fact, for all models M, M(0),
M(l) of Tsatisfying M< M(0), M < M(l), and M(0) vLM(l), M(0) U M(l)
is a model of Γ, clearly prime and atomic over itself.

So we have only to show that Tis presentable; hence consider ^-models M,
M(0), M(l) of Tsatisfying the previous assumptions; let/? be any nonalgebraic
1-type over M(0) U M(\) (= the tf-model α-prime over itself), then we need
to prove that either p / M(0) or p / M( 1). If there is e = 0,1 such that p does
not fork over M(e), then we are done. Otherwise, let x realize /?, then both
x φ M{\) and x ψ M(0), and we get a contradiction by proceeding just as

M(0) M(l)

above.
Theorem 3 Let Tbe a theory satisfying the assumptions of Section 1. Then
T is presentable, shallow with depth <3, and satisfies the existence property. In
particular, T is classifiable in the Shelah sense.
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Proof: Owing to the previous remarks, we have only to show Dp(t) < 3. Let
M be an α-model of T, and p E S\ (M) be nonalgebraic, hence regular.

First assume that p satisfies (A). Let x 1=/?, M' = M[x] = the α-model of T
α-prime over MU [x], y E M' — M. Then y ψ, x and hencey = A:. It follows

A/

M' = MU [x], and hence every nonalgebraic 1-type over M' does not fork over
M. Hence £>/?(/?) = 0.

Suppose now that (B) holds. Let x,M\y be as above. This time y ψ x im-

plies KEΊ (x, .y), so that M' = MUEι (M\x). Then let q' be a nonalgebraic 1-

type over M'. If there is α' E AT - M such that Eo(v, α') Λ EY (y, a') E #', then

<?' _L Mand Dp(q') = 0. In the other cases, tf' / M. Hence />/?(/?) < 1.
Finally, assume (C). Now M' = M U E(M',x). Let <?' be a nonalgebraic

1-type over M'. If ^ ' satisfies (A) for some af E M' — M, then q' L M and
Dp(q') = 0. If #' satisfies (B) for some sequence #ό, > #Λ-I °f elements in
M' - M, then g' JL Mand Dp(q') < 1. In the other cases # / M. Consequently

In conclusion, Γis shallow and Dp(T) < 3 (we already gave implicit exam-
ples of theories Γof depth 1, 2, and 3 in [9]).
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