Classifying Pairs of Equivalence Relations

CARLO TOFFALORI

Abstract Let E_0 , E_1 be equivalence relations such that the number of E_0 -classes or E_1 -classes in any class of the join of E_0 and E_1 is bounded. We study classification theory (according to Shelah) for these pairs of equivalence relations.

Roughly speaking, Shelah's classification problem is to find under which conditions, given a (countable) complete first-order theory T, the isomorphism types of models of T can be characterized by invariants such as cardinal numbers or something similar. It is simple to see that if, for all sufficiently large cardinals λ , T has too many (namely 2^{λ}) nonisomorphic models of power λ , then this assignment of invariants cannot be done. Shelah shows that, in some sense, the converse is also true: if T has fewer than 2^{λ} nonisomorphic models in some uncountable λ , then a classification of isomorphism types of models of T is possible (see Baldwin [1] for a more complete and precise exposition of the whole matter).

Here we are interested in the classification problem for complete theories of two equivalence relations E_0 , E_1 . The general analysis of this case is complicated owing to the Rogers theorem that the theory of two equivalence relations is undecidable (Rogers [7]). Hence we limit ourselves to the theories T satisfying the condition (+): if E denotes the equivalence relation generated by E_0 and E_1 , then there exists $h \in \omega$ such that any E-class contains at most either h E_0 -classes or h E_1 -classes.

The first part of the paper (Sections 1-3) is devoted to characterizing in this context the basic tools of Shelah's classification theory: regular types, SR types, orthogonal types, and so on. In particular, we will see that any theory T satisfying (+) is superstable and monadically stable. Section 4 shows that T is presentable and shallow and satisfies the existence property, and hence is classifiable in the Shelah sense.

We already studied theories of pairs of equivalence relations in Toffalori [9], where we dealt with the problem of determining the theories that are categori-

cal in some infinite power. We assume that the reader is familiar with [9], mainly with Sections 1 and 2. References for basic stability theories include especially [1], but also Makkai [6] and Harrington and Makkai [4]. The existence property is explained, for instance, in Hart [5], while monadically stable (or tree decomposable) theories are treated in Baldwin and Shelah [3]. As usual, we will assume that all models of a theory T as above are elementarily embedded in a very saturated model U.

Finally, let me thank the referee for suggesting several improvements.

1 M and M^* Let (M, E_0, E_1) be a structure with two equivalence relations E_0, E_1 . Let E denote the equivalence relation generated by E_0 and E_1 . We assume

(+) there is $h \in \omega$ such that, for all $a \in U$, the *E*-class of *a* contains at most *h* classes of either E_0 or E_1 .

Notice that (+) implies that E is \emptyset -definable. Moreover, if (+) holds, then we can decompose M as $\bigcup_{i < h} (M_i^0 \cup M_i^1)$ where, for all i < h, $M_i^0 = \{a \in M: E(M, a) \text{ contains exactly } i+1 \text{ classes of } E_0\}$ and $M_i^1 = \{a \in M - \bigcup_{j < h} M_j^0: E(M, a) \text{ contains exactly } i+1 \text{ classes of } E_1\}$. Notice that the models of the theory of M are just the structures N of the form

$$N = \bigcup_{i < h} \; (N_i^0 \cup N_i^1)$$

where, for all i < h and e = 0 or 1, N_i^e is elementarily equivalent to M_i^e ; hence, they decompose in a uniform way as finite disjoint unions of structures whose E-classes contain the same (finite) number of classes of either E_0 or E_1 . Then it is straightforward to see that we can assume without loss of generality that any E-class of M contains exactly h classes of E_0 .

Let us build now a new structure (M^*, E_0, E_1, P) (where P is a 1-ary relation symbol).

- (i) M^* includes M, and $M^* M$ consists of a new element x(X) for any class X of $E_0 \cap E_1$ in M, and of a new element $x(X_0, X_1)$ for any pair of classes X_0, X_1 of E_0, E_1 respectively in M such that $X_0 \cap X_1 = \emptyset$ but, for all $a_0 \in X_0$ and $a_1 \in X_1$, $M \models E(a_0, a_1)$.
- (ii) $P(M^*) = M^* M$.
- (iii) For any $a \in M^*$ and e = 0, 1, put $a_e = a$ if $a \in M$, $a_e =$ an element of X if a = x(X) for some X, and $a_e =$ an element of X_e if $a = x(X_0, X_1)$ for some X_0, X_1 . Then, for all $a, b \in M^*$, define $M^* \models E_e(a, b)$ if and only if $M \models E_e(a_e, b_e)$ (notice that this definition does not depend on the choice of a_e and a_e).

It is easy to see that the following properties hold in M^* .

- 1. For any e = 0, 1, $E_e(M^{*2})$ is an equivalence relation and $E_e(M^{*2}) \cap M^2 = E_e(M^2)$.
- 2. $E(M^{*2}) \cap M^2 = E(M^2)$.
- 3. E_0 and E_1 permute in M^* (hence $E = R_2^0 = R_2^1 = R_2$, according to the notation of [9]).

- 4. For all $a \in M^*$, there is $a' \in M$ such that $M^* \models E(a, a')$, and, for all $a \in M$, $E(M^*, a) = (E(M, a))^*$.
- 5. For any class X of $E_0 \cap E_1$ in M, $(E_0 \cap E_1)(x(X), M^*) = X \cup \{x(X)\}$; for any pair of classes X_0, X_1 of E_0, E_1 respectively in M such that $X_0 \cap X_1 = \emptyset$ but, for all $a_0 \in X_0$ and $a_1 \in X_1, M \models E(a_0, a_1), (E_0 \cap E_1)(x(X_0, X_1), M) = \{x(X_0, X_1)\}.$
- 6. M^* satisfies (+); furthermore, if every *E*-class in *M* contains exactly $h E_0$ -classes, then the same is true in M^* .

We also point out that

- (a) for all $a \in M^*$, there is a unique $x \in (E_0 \cap E_1)(M^*, a)$ satisfying P(v);
- (b) for all $a_0, a_1 \in M$ such that $E(a_0, a_1)$ holds in M (or, equivalently, in M^*) and $E_0(M, a_0) \cap E_1(M, a_1) = \emptyset$, there is a unique $x \in M^*$ such that $\models E_0(x, a_0) \land E_1(x, a_1)$;
- (c) for all $a \in M^*$ with $|(E_0 \cap E_1)(M^*, x)| = 1$, there exist $a_0, a_1 \in M$ such that $M \models E(a_0, a_1)$ and $M^* \models E_0(a, a_0) \land E_1(a, a_1)$.

Now let $M = (M, E_0, E_1)$, $M' = (M', E_0, E_1)$ be structures satisfying (+). By proceeding as in [9], one can easily show that the following propositions hold.

- **P1** $M \simeq M'$ iff $M^* \simeq M'^*$.
- **P2** Let $(\overline{M}, E_0, E_1, P)$ satisfy (+); put $M = (\neg P(\overline{M}), E_0 \cap M^2, E_1 \cap M^2)$, and assume that (a), (b), and (c) hold; then $\overline{M} \simeq M^*$.
- **P3** $M \equiv M' \text{ iff } M^* \equiv M'^*.$

Therefore, if T = Th(M) and $T^* = Th(M^*)$, then the models of T^* are exactly the structures M'^* with $M' \models T$. Furthermore,

- $M' \mid \simeq \to M'^* \mid \simeq$ defines a bijection between the sets of isomorphism types of models of T and T^* ;
- let $\overline{M} = (\overline{M}, E_0, E_1, P)$ satisfy (+) and (a), (b), and (c), $\overline{T} = Th(\overline{M})$; if $M = \neg P(\overline{M})$ and T = Th(M), then $\overline{T} = T^*$.

Therefore there is no loss of generality for our purposes in restricting ourselves to consider the classification problem for theories of structures (M, E_0, E_1, P) where E_0 and E_1 are permuting equivalence relations satisfying (+) (and even admitting exactly h E_0 -classes in any E-class), and P is a 1-ary relation choosing an element in every $E_0 \cap E_1$ -class of M. In fact, if M satisfies the further conditions (a), (b), and (c), then $M \simeq (\neg P(M))^*$.

Hence in the following sections T will always denote the theory of such a structure, and L its first-order language.

2 1-types and h-types We already saw in [9] that

Theorem 1 *T is superstable.*

The proof relies on a simple counting types argument and, more generally, on the analysis of the nonalgebraic 1-types over a model M of T we shall sketch below. We also recall that we gave in [9] an example of a non- ω -stable theory T of the type we are studying. Then let $M \models T$, $p \in S_1(M)$, p be nonalgebraic.

(A) There is $a \in M$ such that $E_1(v, a) \in p$; with no loss of generality, we

can suppose $E_0(v, a) \in p$. Then, these conditions fully determine p; in particular $\neg P(v) \in p$.

(B) For all $m \in M$, $\neg E_1(v, m) \in p$; there exist $a_0, \ldots, a_{h-1} \in M$ pairwise equivalent in E_1 and inequivalent in E_0 , and $\alpha_0, \ldots, \alpha_{h-1} \in \omega^* \cup \{|U|\}$ ($\omega^* = \omega - \{0\}$ from now on) such that

$$E_0(v,a_0)\in p$$

"
$$|E_0(U, a_j) \cap E_1(U, v)| = \alpha_j$$
" is in p for all $j < h$.

(Notice that this condition can be expressed by a single formula when $\alpha_j \in \omega$, and by a denumberable set of formulas otherwise.) Then p is fully determined by these formulas (and hence by the sequences a_0, \ldots, a_{h-1} and $\alpha_0, \ldots, \alpha_{h-1}$) together with $\neg E_1(v, m)$ for all $m \in M$ and either P(v) or $\neg P(v)$.

(C) For all $m \in M$, $\neg E_0(v, m) \in p$. Then p is fully determined by this condition and by $p \upharpoonright \emptyset$.

Hence we have to study $S_1(\emptyset)$. It is more convenient for our purposes to examine the h-types over \emptyset of sequences $\bar{x} = (x_0, \dots, x_{h-1}) \in U^h$ satisfying

$$\bigwedge_{i < j < h} (E_1(v_i, v_j) \wedge \neg E_0(v_i, v_j)).$$

Let $r \in S_h(\emptyset)$ contain this formula. Assign r the following invariants (1)-(3):

(1) The sequence $\tau(r) \in 2^h$ such that, for all j < h,

$$\tau(r)(j) = \begin{cases} 1 & \text{if } P(v_j) \in r, \\ 0 & \text{otherwise.} \end{cases}$$

(2) The sequence $\alpha(r) \in (\omega^* \cup \{|U|\})^h$ such that, for all j < h,

$$\alpha(r)(j) = |(E_0 \cap E_1)(U, v_i)|$$

(r can express $\alpha(r)(j)$ for all j < h; in fact, if there is $n \in \omega^*$ such that $\exists ! nw(E_0(v_j, w) \land E_1(v_j, w)) \in r$, then $\alpha(r)(j) = n$, while, if $\exists > nw(E_0(v_j, w)) \land E_1(v_j, w) \in r$ for all $n \in \omega$, then $\alpha(r)(j) = |U|$.

Let us introduce now the invariant (3) in a more informal way. Consider a realization \bar{x} of r; let $(\alpha_0, \ldots, \alpha_{h-1})$ be any sequence of cardinal numbers, all greater than 0, and either finite or equalling |U|. We wish to estimate how many E_1 -classes X in the E-class of \bar{x} in U satisfy

$$|X \cap E_0(U, x_j)| = \alpha_j$$
 for every $j < h$.

Clearly, if all the a_j 's are finite, then r can express the power of the set of these classes. Assume now that there is some j < h with α_j infinite. Then we can distinguish two cases: If there is $k \in \omega$ such that no E_1 -class X in the E-class of \bar{x} satisfies

$$|X \cap E_0(U, x_j)| = \alpha_j$$
 if α_j is finite,
 $|X \cap E_0(U, x_i)|$ is finite and $>k$ otherwise,

then r can express how many E_1 -classes X in the E-class of \bar{x} satisfy

$$|X \cap E_0(U, x_j)| = \alpha_j$$
 for every $j < h$

(just because "= |U|" is equivalent to ">k"). Otherwise, r can only witness that a k playing the above role does not exist (and a compactness argument gives |U|-many E_1 -classes X as required).

- (3) The function f(r) of $(\omega^* \cup \{|U|\})^h$ into $\omega \cup \{-1, |U|\}$ defined in the following way. Let $(\alpha_0, \ldots, \alpha_{h-1})$ be any sequence in $(\omega^* \cup \{|U|\})^h$;
 - (3.1) if α_j is finite for all j < h, then $f(r)(\alpha_0, \ldots, \alpha_{h-1})$ is the power of the set of E_1 -classes X in the E-class of any realization \bar{x} of r such that

$$|X \cap E_0(U, x_i)| = \alpha_i$$
 for every $j < h$;

- (3.2) if α_j is infinite for some j < h, but there is $k \in \omega$ such that, for all $\beta_0, \ldots, \beta_{h-1} \in \omega^*$ with $\beta_j = \alpha_j$ if α_j is finite, $\beta_j > k$ otherwise, $f(r)(\beta_0, \ldots, \beta_{h-1}) = 0$, then $f(r)(\alpha_0, \ldots, \alpha_{h-1})$ is defined as in (3.1);
- (3.3) otherwise, $f(r)(\alpha_0, ..., \alpha_{h-1}) = -1$.

Lemma 1 Let $r, r' \in S_h(\emptyset)$ contain $\bigwedge_{i < j < h} (E_1(v_i, v_j) \land \neg E_0(v_i, v_j))$. Then r = r' if and only if $(\tau(r), \alpha(r), f(r)) = (\tau(r'), \alpha(r'), f(r'))$.

Proof: (\Rightarrow) is trivial.

(\Leftarrow) Suppose $(\tau(r), \alpha(r), f(r)) = (\tau(r'), \alpha(r'), f(r'))$. Let $\bar{x} \models r, \bar{x}' \models r'$, we claim that there exists an isomorphism from $E(U, x_0)$ onto $E(U, x_0')$ sending \bar{x} into \bar{x}' . As this isomorphism can be easily extended to an automorphism of U, it follows that $\bar{x} \equiv \bar{x}'$ and hence r = r'.

Let $\alpha_0, \ldots, \alpha_{h-1} \in \omega^* \cup \{|U|\}$. If $(\alpha_0, \ldots, \alpha_{h-1})$ satisfies the conditions of (3.1) or (3.2), then both $E(U, x_0)$ and $E(U, x_0')$ contain exactly $f(r)(\alpha_0, \ldots, \alpha_{h-1}) = f(r')(\alpha_0, \ldots, \alpha_{h-1}) E_1$ -classes X satisfying, for all j < h,

$$|X \cap E_0(U,x_j)| = \alpha_j, \quad |X \cap E_0(U,x_j')| = \alpha_j$$

respectively.

Otherwise (3.3) holds, and $f(r)(\alpha_0, \ldots, \alpha_{h-1}) = f(r')(\alpha_0, \ldots, \alpha_{h-1}) = -1$. Also, for any $k \in \omega$, there exist $\lambda_0, \ldots, \lambda_{h-1} \in \omega^*$ such that $\lambda_j = \alpha_j$ when α_j is finite, $\lambda_i > k$ otherwise, and

$$f(r)(\lambda_0,\ldots,\lambda_{h-1})=f(r')(\lambda_0,\ldots,\lambda_{h-1})\neq 0$$

(and both r and r' can recognize that this is the case). Consider the following formulas over \bar{x}

$$\bigwedge_{j < h} E_0(v_j, x_j) \wedge \bigwedge_{i < j < h} E_1(v_i, v_j),$$

$$\bigwedge_{\alpha_j \text{ finite}} \exists ! \alpha_j z (E_0(v_j, z) \wedge E_1(v_j, z)),$$

$$\bigwedge_{\alpha_j \text{ infinite}} \exists > nz (E_0(v_j, z) \wedge E_1(v_j, z)) \text{ for all } n \in \omega,$$

$$\bigwedge_{i < h} P(v_j) \text{ (for instance)}.$$

An easy compactness argument shows that the set of these formulas is consistent; furthermore it can be enlarged in a unique way to a type over \bar{x} ; this type admits |U|-many pairwise E_1 -inequivalent realizations in U. Hence there are

|U| E_1 -classes X in $E(U, x_0)$ such that, for all j < h, $|X \cap E_0(U, x_j)|$ equals α_j if α_j is finite, and |U| otherwise.

The same holds for \bar{x}' . Since $\tau(r) = \tau(r')$ and $\alpha(r) = \alpha(r')$, it is easy at this point to build the required isomorphism between $E(U, x_0)$ and $E(U, x_0')$.

Now let M be a model of T, and consider nonalgebraic types $r \in S_h(M)$ containing $\bigwedge_{i < j < h} (E_1(v_i, v_j) \land \neg E_0(v_i, v_j))$. One could classify them in a way similar to the one we followed before for 1-types. We omit here the details, and we only emphasize the particular case when, for all $m \in M$, $E_0(v_0, m) \notin r$. Notice that these formulas and $r \upharpoonright \emptyset$ isolate r.

Let us discuss now the connection between 1-types and h-types of the above kind. First consider types over \varnothing and notice that every 1-type p over \varnothing can be enlarged to a type $r \in S_h(\varnothing)$ with $\bigwedge_{i < j < h}(E_1(v_i, v_j) \wedge \neg E_0(v_i, v_j)) \in r$ just taking a sequence x in U such that $x_0 \models p$ and $\models \bigwedge_{i < j < h}(E_1(x_i, x_j) \wedge \neg E_0(x_i, x_j))$, and putting $r = tp(\bar{x}/\varnothing)$. Of course this extension r is not uniquely determined. However, if $r, r' \in S_h(\varnothing)$ contain $\bigwedge_{i < j < h}(E_1(v_i, v_j) \wedge \neg E_0(v_i, v_j))$ and $\bigwedge_{0 < j < h}P(v_j)$, and $P(v_0) \in r$ if and only if $P(v_0) \in r'$, and p, p' denote $tp(x_0/\varnothing)$, $tp(x_0'/\varnothing)$ respectively for $\bar{x} \models r$ and $\bar{x}' \models r'$, then

$$p = p'$$

if and only if there is $s \in S_h$ such that s(0) = 0 and $r'(v_0, \ldots, v_{h-1}) = r(v_{s(0)}, \ldots, v_{s(h-1)})$.

- (⇐) is trivial.
- (\Rightarrow) Let $x_0 \models p$, enlarge x_0 to a sequence \bar{x} realizing r, and to a sequence \bar{x}' realizing r'. Define $s \in S_h$ by putting, for all i, j < h,

$$s(i) = j \text{ iff } \models E_0(x_i', x_i) \land E_1(x_i', x_i).$$

Then s is as claimed.

Now let us look at nonalgebraic types over a model M of T. Here we only notice that, if $p \in S_1(M)$ contains $\neg E_0(v_0, m)$ for all $m \in M$, then, just proceeding as above, one can enlarge p to a type $r \in S_h(M)$. This extension is not unique, but, if r, r' are such extensions, then $r \not\perp r'$; furthermore, both r and r' are not orthogonal to p (this fact will be shown in the next section—Lemma 5).

Corollary The following propositions are equivalent:

- (i) T is ω -stable;
- (ii) $S_1(\emptyset)$ is countable;
- (iii) $\{r \in S_h(\emptyset) : \bigwedge_{i < j < h} (E_1(v_i, v_j) \land \neg E_0(v_i, v_j)) \in r\}$ is countable.

Proof: (i) \Rightarrow (iii) is trivial.

- (iii) \Rightarrow (ii). Every type $p \in S_1(\emptyset)$ can be extended in at most finitely many ways to a type r as in (iii).
- (ii) \Rightarrow (i) follows from the analysis we gave of the 1-types over an arbitrary model of T.

Corollary T satisfies Vaught's Conjecture (namely T has either 2^{\aleph_0} or at most \aleph_0 nonisomorphic countable models).

Proof: If T is ω -stable, then it suffices to refer to the Shelah theorem stating that all ω -stable theories satisfy Vaught's conjecture (Shelah, Harrington, Makkai [8]).

If T is not ω -stable, then $|S_1(\emptyset)| = 2^{\aleph_0}$, hence T needs 2^{\aleph_0} nonisomorphic countable models to realize all the 1-types over \emptyset .

Notice that, consequently, Vaught's Conjecture holds even for an arbitrary theory of two equivalence relations satisfying (+). In order to simplify the exposition in the forthcoming sections, let me introduce the following conventions:

- From now on, h-type will always mean h-type containing the formula $\bigwedge_{i < j < h} (E_1(v_i, v_i) \land \neg E_0(v_i, v_i))$.
- For every h-type r (over \emptyset , or over a model M of T), we will denote by p(r) the 1-type of x_0 where \bar{x} is any realization of r.
- For every h-type r, we will put $f(r) = f(r \upharpoonright \emptyset)$.

3 The Shelah first level

Lemma 2 Let $M \models T$, $A \supseteq M$, $p' \in S_1(A)$, $p = p' \upharpoonright M$. Then p' forks over M if and only if one of the following conditions holds:

- (i) p satisfies (A) and there is $x \in A$ such that $v = x \in p'$;
- (ii) p satisfies (B) and there is $x \in A$ such that $E_1(v, x)$ is in p';
- (iii) p satisfies (C) and there is $x \in A$ such that E(v, x) is in p'.

The proof is just the same as Lemma 5 in [9]. Notice also that the forking extensions of h-types over M can be characterized in a similar way. In particular, if $M \models T$, $A \supseteq M$, $r' \in S_h(A)$, $r = r' \upharpoonright M$, and r contains $\neg E_0(v_0, m)$ for all $m \in M$, then r' forks over M if and only if there is $x \in A$ such that $E(v_0, x) \in r'$.

Lemma 3 Let M be a model of T, p be a nonalgebraic 1-type over M. Then $RU(p) \le 3$, p is regular and p is trivial.

Proof: Let p satisfy (A). For every M' > M, $p \mid M'$ is the only extension of p over M' that does not represent v = w. This implies that every forking extension p' of p over M' is algebraic, hence RU(p) = 1 and p is regular. Furthermore, ψ equals $= \operatorname{in} p(U)$, so that, for every $I \subseteq p(U)$, independence is equivalent to pairwise independence in I. It follows that p is trivial.

Assume now that (B) holds. For every M' > M, $p \mid M'$ is the only extension of p over M' that does not represent $E_1(v, w)$. This implies that any forking extension has $RU \le 1$; hence $RU(p) \le 2$. Also, if x realizes any forking extension p' of p over M' and $y \models p \mid M'$, then $tp(y/M' \cup x)$ does not represent $E_1(v, w)$ (otherwise $p \mid M'$ represents this formula, too), hence $y \downarrow x$ and $p' \downarrow x p \mid M'$. Thus p is regular. Finally, M equals E_1 in p(U), and again, for all $I \subseteq p(U)$, independence and pairwise independence are equivalent in I. Therefore, p is trivial.

Suppose now that p satisfies (C). If M' > M, then $p \mid M'$ is the only extension of p over M' that does not contain E(v, m) for any $m \in M'$. If p' is any forking extension of p over M', then for some $m \in M'$ E(v, m) and hence $E_0(v, m)$ is in p. Hence $RU(p') \le 2$ and $RU(p) \le 3$. Also, if $x \models p'$ and $y \models p \mid M'$, then $y \downarrow x$, hence $p' \perp p \mid M'$. Then p is regular. Finally, ψ equals E in p(U), so for sets of realizations of p, independence is equivalent to pairwise independence, and again p is trivial.

We have implicitly shown that, for every p as above, the pregeometry (p(U), cl) associated to p (where, for all $S \subseteq p(U)$, $cl(S) = \{y \in p(U): y \not\downarrow S\}$) is degenerate.

Motice also that an argument similar to the previous one proves that every nonalgebraic h-type r over M is regular and trivial.

The regularity of types over a model of T and even over any subset of U could be proved also as a consequence of the following result.

Lemma 4 T is monadically stable (tree decomposable in the sense of Baldwin and Shelah [3]).

Proof: We will show that T is 3-tree decomposable. Let M be any model of T, $\lambda = |M|$. Define a tree $I \subseteq \lambda^{\leq 3}$ and a set $\{(M(\eta), N(\eta)) : \eta \in I\}$ of pairs of models of T in the following way:

- (0) $M_{\langle \rangle} = M$, $N_{\langle \rangle} = N$ is any countable elementary submodel of M.
- (1) Let $\{X(\eta):\eta<\mu\}$ be a list of E-classes in M (for a suitable $\mu\leq\lambda$). Then μ is just the set of elements of I of length 1. Moreover, for every $\eta<\mu$, put $M(\eta)=N\cup X(\eta)$. We claim that $M(\eta)$ is an elementary submodel of M (and hence a model of T). It suffices to show that $M(\eta)$ satisfies the Tarski-Vaught criterion. Suppose $\bar{a}\in M(\eta)$ and $M\models\exists v\varphi(v,\bar{a})$. Let $b\in M$ satisfy $\varphi(v,\bar{a})$. If $b\in M(\eta)$, then we are done. If there is $x\in N$ such that $\models E_1(b,x)$ (without loss of generality $\models E_0(b,x)$), then the $E_0\cap E_1$ -class of x in N is infinite, and we can build an automorphism of M fixing \bar{a} and sending b in N; so, again, we are done. Suppose now that, for all $x\in N$, $\models \neg E_1(b,x)$ but, for some $x\in N$, $\models E_0(b,x)$; let $x_0=x,x_1,\ldots,x_{h-1}$ be pairwise E_1 -equivalent and E_0 -inequivalent elements of N, $b_0=b,\ldots,b_{h-1}$ satisfy $E_0(v_j,x_j)$ for all j< h and $E_1(v_i,v_j)$ for all i< j< h. Then $tp(\bar{b}/N)$ is defined by the previous formulas and $|(E_0\cap E_1)(U,b_j)|$ for j< h. Hence there is $k\in\omega$ such that

$$\begin{aligned} \{E_0(v_j, x_j) : j < h\} & \cup \{E_1(v_i, v_j) : i < j < h\} \\ & \cup \{\exists > kw(E_0(v_i, w) \land E_1(v_i, w))\} \vdash \varphi(v, \bar{a}), \end{aligned}$$

hence there exists $b' \in N$ satisfying $\varphi(v, \bar{a})$. Finally, assume that $\vdash \neg E(b, x)$ for all $x \in M(\eta)$. Then $tp(x/M(\eta))$ is fully determined by $tp(b/\emptyset) \cup \{\neg E(v, x) : x \in M(\eta)\}$; hence there are $\vartheta(v) \in tp(b/\emptyset)$ and a finite $A \subseteq M(\eta)$ such that

$$\{\vartheta(v)\} \cup \{\neg E(v,x) : x \in A\} \vdash \varphi(v,\bar{a}).$$

Hence there does exist some $b' \in N$ such that $\models \varphi(b', \bar{a})$. This concludes the proof of the claim. Hence we can put, for all $\eta < \mu$, $N(\eta) =$ some countable elementary submodel of $M(\eta)$ such that $N < N(\eta)$ and $N(\eta) \cap X(\eta) \neq \emptyset$.

- (2) For every $\eta < \mu$ let $\{Y(\nu) : \nu < \nu(\eta)\}$ be a list of E_1 -classes in $X(\eta)$ (for a suitable $\nu(\eta) \le \mu$). Then the elements of I of length 2 are just the $\eta \cap \nu$ for $\eta < \mu$, $\nu < \nu(\eta)$. Put $\tau = \eta \cap \nu$, and define $M(\tau) = N(\eta) \cup Y(\nu)$ (as before one can see that this is an elementary submodel of $M(\eta)$), $N(\tau) = a$ countable elementary substructure of $M(\tau)$ satisfying $N(\eta) < N(\tau)$ and $N(\tau) \cap Y(\nu) \ne \emptyset$.
- (3) Finally, for every $\tau = \eta \cap \nu$ as above, let $\{c(\rho) : \rho < \rho(\mu, \nu)\}$ be a list of elements of $Y(\nu) N(\tau)$; let $\delta = \tau \cap \rho$, and put $M(\delta) = N(\delta) = N(\tau) \cup \{c(\rho)\}$ (this is easily seen to be a submodel of $M(\tau)$); the δ 's are the elements of I of length 3.

Clearly $M = \bigcup_{\eta \in I} N(\eta)$, and, for $\eta, \rho \in I$ with $\eta \subseteq \rho$, $N(\eta) < N(\rho) < M(\rho) < M(\eta)$. Moreover it is straightforward to define, for every $\eta \in I$ with length ≤ 2 , a set C of conditions (in the sense of [3]), and a map $\sigma = \sigma(\eta)$ from $\{E_0, E_1, P\}$ to C such that $M(\eta)$ is the free union with respect to σ over $N(\eta)$ of the $M(\eta \cap \rho)$'s for $\eta \cap \rho \in I$, and M is the free union with respect to σ over $N(\eta)$ of the $M(\eta \cap \rho)$'s $(\eta \cap \rho)$ as above) together with the $M(\tau) \cup N(\eta)$'s where $\tau \in I$, τ is not an initial segment of η but every proper initial segment of τ is a proper initial segment of η .

It follows that M is decomposed by $\{(M(\eta), N(\eta)) : \eta \in I\}$. Hence T is 3-tree decomposable.

We want to characterize now the orthogonality relation among types. Recall that for trivial stationary types non-orthogonality is equivalent to not almost orthogonality (see [2], for instance).

Lemma 5 Let $M \models T$, $p \in S_1(M)$ be nonalgebraic, $r \in S_h(M)$ satisfy p(r) = p. Then $p \not\perp r$.

Proof: As p and r are trivial, it suffices to show $p \not\perp r$. And this is trivial, too.

In particular, if $r, r' \in S_h(M)$, and p(r) = p(r') = p, then $r \not\perp r'$ (as r, r', p are regular, and $\not\perp$ is an equivalence relation among regular types).

Lemma 6 Let $M \models T$, $r, r' \in S_h(M)$ contain $\neg E(v, m)$ for all $m \in M$. Then the following propositions are equivalent:

- (i) $r \not\perp r'$;
- (ii) $r \stackrel{a}{\not\perp} r'$;
- (iii) there is $s \in S_h$ such that f(r) = f(s(r')) (where s(r') denotes $tp(x_{s(0)}, \ldots, x_{s(h-1)}/M)$ where (x_0, \ldots, x_{h-1}) is any realization of r').

Proof: Clearly it suffices to show the equivalence between (ii) and (iii).

- (ii) \Rightarrow (iii). Let $\bar{x} \models r$, $\bar{x}' \models r'$ satisfy $\bar{x} \not \downarrow \bar{x}'$. Hence, for any i < h, there is a unique j < h such that $\models E_0(x_i, x_j')$. Define s(i) = j. Then $s \in S_h$ and f(r) = f(s(r')).
- (iii) \Rightarrow (ii). Let $\bar{x} \models r$; s(r') is fully determined by the formulas $\neg E(v_0, m)$ for $m \in M$, and by $(\tau(s(r')), \alpha(s(r')), f(s(r')))$. Furthermore, $f(r)(\alpha(s(r'))) = f(s(r'))(\alpha(s(r'))) \neq 0$, hence s(r') in realized in $E(U, x_0)$, and $r \not\perp r'$.

Lemma 7 Let M
varphi T, $p, p' \in S_1(M)$ be nonalgebraic. Then the following propositions are equivalent:

- (i) $p \not\perp p'$;
- (ii) $p \not\perp p'$;
- (iii) p and p' satisfy one of the conditions (1)-(3) below.
 - (1) There is an M such that $E_0(v, a) \wedge E_1(v, a) \in p \cap p'$ (so p = p').
 - (2) There are $a_0, \ldots, a_{h-1} \in M$ pairwise equivalent in E_1 and inequivalent in E_0 , and $\alpha_0, \ldots, \alpha_{h-1} \in \omega^* \cup \{|U|\}$ such that

$$\neg E_1(v, m) \in p \cap p' \text{ for all } m \in M,$$

$$E_0(v, a_i) \in p$$
, $E_0(v, a_j) \in p'$ for some $i, j < h$,

" $|E_1(U, v) \cap E_0(U, a_j)| = \alpha_j$ " is in $p \cap p'$ for all j < h.

(3) For all $m \in M$, $\neg E(v, m) \in p \cap p'$; if $r, r' \in S_h(M)$ and p(r) = p, p(r') = p', then $r \not\perp r'$.

Notice that, owing to Lemmas 5 and 6, the choice of r, r' is inessential; $r \not\perp r'$ is characterized in Lemma 6.

Proof: The equivalence of (i) and (ii) follows from the triviality of p and p', while the equivalence of (ii) and (iii) is a straightforward consequence of Lemma 2.

Let us concentrate our attention now on the case T ω -stable. SR-types (where SR = strongly regular) play a basic role under this hypothesis. Hence let us see which 1-types over a model M of an ω -stable T are SR.

Lemma 8 Let T be ω -stable, $M \models T$, p be a nonalgebraic 1-type over M satisfying (A) or (B). Then p is SR.

Proof: First suppose that p satisfies (A). Let $x \models p$, $y \in M(x) - M$; then $y \not\downarrow x$ and y = x. Hence, p is SR via the formula v = v. Assume now (B). Again, if $x \models p$ and $y \in M(x) - M$, then $y \not\downarrow x$, and so $\models E_1(y,x)$. Hence $y \models p$, provided y satisfies the conjunction of $E_0(v,a_0)$ and P(v) if $\models P(x)$, $\neg P(v)$ otherwise. Then p is SR.

It remains to examine the case (C).

Example Let T be the theory of two equivalence relations E_0 and E_1 such that

- (i) $E_1 \subseteq E_0$;
- (ii) E_0 has infinitely many classes;
- (iii) for all $n \in \omega^*$, every E_0 -class contains exactly one E_1 -class of power n.

Then, for all $x, y \in U$, $x \equiv y$ iff $|E_1(U,x)| = |E_1(U,y)|$ and $\models P(x) \leftrightarrow P(y)$. In particular, $|S_1(\emptyset)| = \aleph_0$, and T is ω -stable. Let $M \models T$, p be the 1-type over M defined by $\neg E_0(v, m)$ for all $m \in M$ and $\exists^\infty w E_1(v, w)$ (besides P(v), for instance). Then p satisfies (C), and p is regular. However p is not SR; in fact, consider the 1-type q over M defined by $\neg E_0(v, m)$ for all $m \in M$, $\exists! nw E_1(v, w)$ for some $n \in \omega^*$, and P(v). First of all, q is SR; for, if $x \models q$ and $y \in M(x) - M$, then $y \not\downarrow x$, so $\models E_0(x, y)$ and consequently $y \models q$ provided $\models \exists! nw E_1(y, w) \land P(y)$. Furthermore $q \leq_{RK} p$, but $q \not\vdash_{RK} p$, then p is not RK-minimal, and hence p cannot be SR. Notice that $p \not\downarrow q$.

Then, let T be ω -stable, $M \models T$, $p \in S_1(M)$ satisfy (C). We wish to find under which conditions p is SR.

Let $r \in S_h(M)$ be such that p(r) = p. Assume for simplicity $\bigwedge_{0 < i < h} P(v_i) \in r$, and put $S(r) = \{j < h : \alpha(r)(j) \text{ is finite}\}$. Notice that, for every $x_0 \models p$, one can build a sequence $\bar{x} = (x_0, \dots, x_{h-1}) \in M(x_0)$ realizing r; moreover, for any $y_0 \in M(x_0) - M$, $y_0 \notin x_0$, hence $\models E(x_0, y_0)$.

Case 1. There is a $k \in \omega$ such that, for all $\beta_0, \ldots, \beta_{h-1} \in \omega^*$ satisfying $\beta_j = \alpha(r)(j)$ when $j \in S(r)$ and $\beta_j > k$ when $j \in h - S(r), f(r)(\beta_0, \ldots, \beta_{h-1}) = 0$.

Notice that this is the case when S(r) = h. Then p is SR. In fact, for any $s \in S_h$, define a formula $\varphi(s)(\overline{w})$ in the following way:

- (a) If f(s(r)) = f(r), then put $\varphi(s)(\overline{w}) : w_0 = w_0$.
- (b) If $f(s(r)) \neq f(r)$ and there is $\bar{\lambda} = (\lambda_0, \dots, \lambda_{h-1}) \in (\omega^*)^h$ such that $f(s(r))(\bar{\lambda}) \neq f(r)(\bar{\lambda})$, then fix such a sequence $\bar{\lambda}$; if $f(r)(\bar{\lambda})$ is finite, then put

$$\varphi(s)(\overline{w}): f(tp(\overline{w}/\emptyset))(\overline{\lambda}) = f(r)(\overline{\lambda})$$

(this can be written by a suitable first-order formula); otherwise $f(r)(\bar{\lambda}) = |U|$, but then $f(s(r))(\bar{\lambda})$ is finite, and we set

$$\varphi(s)(\overline{w}): f(tp(\overline{w}/\emptyset))(\overline{\lambda}) \neq f(s(r))(\overline{\lambda}).$$

(c) If $f(s(r)) \neq f(r)$ but (b) does not hold, then there is $\bar{\lambda} = (\lambda_0, \ldots, \lambda_{h-1}) \in (\omega^* \cup \{|U|\})^h$ such that $\lambda_j = |U|$ for some j < h and $f(r)(\bar{\lambda}) \neq f(s(r))(\bar{\lambda})$; choose such a sequence $\bar{\lambda}$ and notice that, as f(r) and f(s(r)) are identically equal on $(\omega^*)^h$, for all $\mu_0, \ldots, \mu_{h-1} \in \omega^* \cup \{|U|\}$,

$$f(r)(\bar{\mu}) = -1$$
 iff $f(s(r))(\bar{\mu}) = -1$.

In particular both $f(r)(\bar{\lambda})$ and $f(s(r))(\bar{\lambda})$ are different from -1, and hence either $f(r)(\bar{\lambda})$ or $f(s(r))(\bar{\lambda})$ is in ω ; then we can define $\varphi(s)(\bar{w})$ in a way similar to (b).

Finally, let $\varphi_0(\overline{w})$ be the formula

$$\bigwedge_{i < j < h} \left(E_1(w_i, w_j) \land \neg E_0(w_i, w_j) \right) \land \bigwedge_{0 < j < h} P(w_j) \land \bigwedge_{j \in S(r)}$$

$$\exists \,!\, \alpha(r)(j)z(E_0(w_j,z) \land E_1(w_j,z)) \land \bigwedge_{j\in h-S(r)} \exists > kz$$

$$(E_0(w_j,z)\wedge E_1(w_j,z))\wedge \bigwedge_{s\in S_h}\varphi(s)(\overline{w})$$

and let $\varphi(\overline{w})$ be the conjunction of $\varphi_0(\overline{w})$ with $P(w_0)$ or $\neg P(w_0)$ provided that $P(v) \in p$ or $\neg P(v) \in p$. Then the formula

$$\vartheta(v):\exists\overline{w}(v=w_0\land\varphi(\overline{w}))$$

makes p SR. In fact $\vartheta(v) \in p$; moreover let $x_0 \models p$, $\bar{x} = (x_0, \dots, x_{h-1})$ be a realization of r in $M(x_0)$; then, for every $y_0 \in M(x_0) - M$ satisfying $\vartheta(v)$, there exists $\bar{y} = (y_0, \dots, y_{h-1}) \in M(x_0)$ such that $\models \bigwedge_{i < j < h} (E_1(y_i, y_j) \land \neg E_0(y_i, y_j))$ and

$$\tau(tp(\bar{y}/\varnothing)) = \tau(r), \alpha(tp(\bar{y}/\varnothing)) = \alpha(r).$$

Furthermore there is $s \in S_h$ such that, for all j < h, $\models E_0(y_j, x_{s(j)})$. It follows $f(tp(\bar{y}/\emptyset)) = f(s(r))$. As $\models \varphi(s)(\bar{y})$, it must be f(s(r)) = f(r). Then $\bar{y} \models r \upharpoonright \emptyset$, so that $\bar{y} \models r$ and $y_0 \models p$.

Case 2. For all $k \in \omega$, there are $\alpha_0(k), \ldots, \alpha_{h-1}(k) \in \omega^*$ such that $\alpha_j(k) = \alpha(r)(j)$ for any $j \in S(r)$, $\alpha_j(k) > k$ for any $j \in h - S(r)$, and $f(r)(\alpha_0(k), \ldots, \alpha_{h-1}(k)) \neq 0$.

The following conditions fully determine a type $r(k) \in S_h(M)$:

- (i) for all $m \in M$, $\neg E(v_0, m)$;
- (ii) for all j < h, $\alpha(r(k))(j) = \alpha_i(k)$;
- (iii) f(r(k)) = f(r);
- (iv) finally, $\tau(r(k))$ is defined in some arbitrary way, for instance by setting $\tau(r(k)) = \tau(r)$, as is possible if we assume $k \ge 2$.

Let p(k) = p(r(k)). Then S(r(k) = h), so that p(k) is SR. However $p(k) \leq_{RK} p$ and $p(k) \neq_{RK} p$, and consequently p is not RK-minimal, and hence p cannot be SR. In fact it suffices to prove $r(k) \leq_{RK} r$, $r \not\leq_{RK} r(k)$ (since $p(k) \sim_{RK} r(k)$ and $p \sim_{RK} r$).

- $r(k) \leq_{RK} r$: for every $\bar{x} \models r$, there is $\bar{y} \in M(\bar{x})$ such that $\bar{y} \models r(k)$ and even $\models \bigwedge_{j < h} E_0(y_j, x_j)$.
- $r \not \leq_{RK} r(k)$: let $\bar{y} \models r(k)$, suppose towards a contradiction that $M(\bar{y})$ contains a sequence \bar{x} realizing r. Then $\bar{x} \not \downarrow \bar{y}$, and hence $\models E(x_0, y_0)$; moreover there is $s \in S_h$ such that, for any j < h, $\models E_0(x_j, y_{s(j)})$; in particular f(r) = f(s(r(k))) = f(s(r)).

Then $tp(\bar{x}/M \cup \bar{y})$ is fully determined by these formulas:

- 1. $\bigwedge_{i < j < h} E_1(v_i, v_j) \wedge \bigwedge_{j < h} E_0(v_j, y_{s(j)}),$
- 2. the formula expressing $\tau(r)$,
- 3. the formulas expressing $\alpha(r)$, namely:

$$\exists ! \alpha(r)(j)z(E_0(v_i,z) \land E_1(v_i,z))$$
 for all $j \in S(r)$,

$$\exists > nz(E_0(v_i, z) \land E_1(v_i, z))$$
 for all $j \in h - S(r)$ and $n \in \omega$.

Moreover $tp(\bar{x}/M \cup \bar{y})$ is isolated, and hence is determined by a finite set $\Delta(\bar{v})$ of the previous formulas. Let $t \in \omega$ $(t \ge 2)$ be such that, for any formula

$$\exists > nz(E_0(v_i, z) \land E_1(v_i, z)) \quad (j \in h - S(r), n \in \omega)$$

occurring in $\Delta(\bar{v})$, t > n. We know that $M(\bar{v})$ contains a sequence \bar{x}' realizing r(t) (and even $\models \bigwedge_{j < h} E_0(x_j', x_j)$). In particular $\models \Delta(\bar{x}')$; however \bar{x}' does not realize r, a contradiction. Therefore $r \nleq_{RK} r(k)$.

We can summarize the previous results by means of the following:

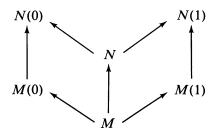
Proposition Let T be ω -stable, $M \models T$, $p \in S_1(M)$ satisfy (C), $r \in S_h(M)$ be such that p(r) = p, and $S(r) = \{j < h : \alpha(r)(j) \in \omega\}$. Then p is SR if and only if there is $k \in \omega$ such that, for all $\beta_0, \ldots, \beta_{h-1} \in \omega^*$ with $\beta_j = \alpha(r)(j)$ when $j \in S(r)$ and $\beta_j > k$ when $j \in h - S(r)$, $f(r)(\bar{\beta}) = 0$.

4 The Shelah second level This section is devoted to proving that every theory T satisfying the assumptions of Section 1 is classifiable according to Shelah. We already noticed that T is superstable, so we have to show that T is presentable (has NDOP), shallow, and satisfies the existence property (has NOTOP). On the other hand, T is also monadically stable, and every monadically stable theory satisfies both NDOP and NOTOP: this fact seems to be folklore, but, as far as I known, unpublished. So let met include here a proof for the sake of completeness.

Theorem 2 Let T be any monadically stable theory. Then T is presentable and has the existence property.

Proof: First let me show that, if M, M(0), M(1) are models of T such that M is an elementary submodel of both M(0) and M(1) and $M(0) \downarrow M(1)$, then $M(0) \cup M(1)$ is a model of T. First assume that M, M(0), M(1) are a-models of T. Let M' be the a-model of T a-prime over $M(0) \cup M(1)$, we claim that $M' = M(0) \cup M(1)$. Suppose toward a contradiction that there exists $x \in M' - (M(0) \cup M(1))$; then, for every e = 0 or $1, x \not\downarrow M(1 - e)$, so there is a sequence $\bar{y}(1 - e)$ in M(1 - e) - M so that $x \not\downarrow \bar{y}(1 - e)$. As T is monadically stable, there is $y(1 - e) \in M(1 - e) - M$ so that $x \not\downarrow y(1 - e)$ (see [3], 4.2.6). Again using monadic stability, we obtain $x \not\downarrow y(1 - e)$ for any e = 0, 1 (as $y \subseteq y$, see [3], 4.2.12) and finally, owing to the transitivity of y for monadically stable theories, $y(0) \not\downarrow y(1)$, a contradiction.

Assume now that M, M(0), and M(1) are arbitrary models of T. Build an independent diagram



where N, N(0), N(1) are a-models of T, and the arrows denote elementary embeddings (see [6] and [4]). Then $N(0) \underset{N}{\downarrow} N(1)$, and hence $N(0) \cup N(1)$ is an a-model of T. Furthermore, for every formula $\varphi(\bar{v}, \bar{w})$ and for every $\bar{a} \in M(0) \cup M(1)$, if there is $\bar{b} \in N(0) \cup N(1)$ satisfying $\models \varphi(\bar{b}, \bar{a})$, then there is $\bar{a}' \in M(0) \cup M(1)$ such that $\models \varphi(\bar{a}', \bar{a})$; then $M(0) \cup M(1)$ is an elementary submodel of $N(0) \cup N(1)$, in particular $M(0) \cup M(1)$ is a model of T.

At this point the existence property is trivial; in fact, for all models M, M(0), M(1) of T satisfying M < M(0), M < M(1), and $M(0) \downarrow M(1)$, $M(0) \cup M(1)$ is a model of T, clearly prime and atomic over itself.

So we have only to show that T is presentable; hence consider a-models M, M(0), M(1) of T satisfying the previous assumptions; let p be any nonalgebraic 1-type over $M(0) \cup M(1)$ (= the a-model a-prime over itself), then we need to prove that either $p \not\perp M(0)$ or $p \not\perp M(1)$. If there is e = 0, 1 such that p does not fork over M(e), then we are done. Otherwise, let x realize p, then both $x \not\downarrow M(1)$ and $x \not\downarrow M(0)$, and we get a contradiction by proceeding just as above.

Theorem 3 Let T be a theory satisfying the assumptions of Section 1. Then T is presentable, shallow with depth ≤ 3 , and satisfies the existence property. In particular, T is classifiable in the Shelah sense.

Proof: Owing to the previous remarks, we have only to show $Dp(t) \le 3$. Let M be an a-model of T, and $p \in S_1(M)$ be nonalgebraic, hence regular.

First assume that p satisfies (A). Let $x \models p$, M' = M[x] = the a-model of T a-prime over $M \cup \{x\}$, $y \in M' - M$. Then $y \not\downarrow x$ and hence y = x. It follows $M' = M \cup \{x\}$, and hence every nonalgebraic 1-type over M' does not fork over M. Hence Dp(p) = 0.

Suppose now that (B) holds. Let x, M', y be as above. This time $y \not\downarrow x$ implies $\models E_1(x, y)$, so that $M' = M \cup E_1(M', x)$. Then let q' be a nonalgebraic 1-type over M'. If there is $a' \in M' - M$ such that $E_0(v, a') \land E_1(v, a') \in q'$, then $q' \perp M$ and Dp(q') = 0. In the other cases, $q' \not\perp M$. Hence $Dp(p) \leq 1$.

Finally, assume (C). Now $M' = M \cup E(M', x)$. Let q' be a nonalgebraic 1-type over M'. If q' satisfies (A) for some $a' \in M' - M$, then $q' \perp M$ and Dp(q') = 0. If q' satisfies (B) for some sequence a'_0, \ldots, a'_{h-1} of elements in M' - M, then $q' \perp M$ and $Dp(q') \leq 1$. In the other cases $q \not\perp M$. Consequently $Dp(p) \leq 2$.

In conclusion, T is shallow and $Dp(T) \le 3$ (we already gave implicit examples of theories T of depth 1, 2, and 3 in [9]).

REFERENCES

- [1] Baldwin, J. T., Fundamentals of Stability Theory, Springer, Berlin, 1988.
- [2] Baldwin, J. T. and L. Harrington, "Trivial pursuit: Remarks on the main gap," Annals of Pure and Applied Logic, vol. 34 (1987), pp. 209-230.
- [3] Baldwin, J. T. and S. Shelah, "Second order quantifiers and the complexity of theories," *Notre Dame Journal of Formal Logic*, vol. 26 (1985), pp. 229-302.
- [4] Harrington, L. and M. Makkai, "An exposition of Shelah's main gap: Counting uncountable models of ω -stable and superstable theories," *Notre Dame Journal of Formal Logic*, vol. 26 (1985), pp. 139-177.
- [5] Hart, B., "An exposition of OTOP," pp. 107-126 in Classification Theory: Chicago, 1985 Proceedings of the U.S.-Israel Binational Workshop on Model Theory in Mathematical Logic edited by J. T. Baldwin, Springer, Berlin, 1987, Lecture Notes in Mathematics, 1292, pp. 107-126.
- [6] Makkai, M., "An introduction to stability theory, with particular emphasis on orthogonality and regular types," *Israel Journal of Mathematics*, vol. 49 (1984), pp. 181-238.
- [7] Rogers, H., "Certain logical reduction and decision problems," *Annals of Mathematics*, vol. 64 (1956), pp. 264–284.
- [8] Shelah, S., L. Harrington and M. Makkai, "A proof of Vaught's Conjecture for ω-stable theories," *Israel Journal of Mathematics*, vol. 49 (1984), pp. 259-278.
- [9] Toffalori, C., "Stability for pairs of equivalence relations," Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 112-128.

Dipartimento di Matematica e Fisica Università di Camerino Via Madonna delle Carceri 62032 Camerino (Italy)