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Minimal Satisfaction Classes with an Application

to Rigid Models of Peano Arithmetic

ROMAN KOSSAK and JAMES H. SCHMERL

Abstract For each regular K, models of Peano Arithmetic are constructed
which are rigid, recursively saturated, and κ-like. The construction relies on
a theorem asserting that countable, recursively saturated models of PA have
many minimal, inductive satisfaction classes.

After Kaufmann's rather classless model, i.e. an ωi-like recursively saturated
model of PA all of whose classes are definable (cf. Kaufmann [1]), other exam-
ples of ωrlike recursively saturated models of PA, with properties different
from those of countable recursively saturated models, are no longer surprising.
However, it is still worthwhile to investigate questions about the existence of
ωi-like recursively saturated models with various second-order properties. One
reason is that questions about ωi-like models can usually be translated to ques-
tions about their countable elementary initial segments, and these questions often
turn out to be interesting in their own right.

In this paper we construct an ωrlike recursively saturated model of PA
which is rigid (that is, it has no nontrivial automorphisms) and even has no non-
trivial elementary embeddings into itself. A theorem asserting the existence of
rigid ωrlike recursively saturated models of PA was stated, without proof, in
Kossak and Kotlarski [3] as a corollary of a result about automorphisms of
countable recursively saturated models. That construction depended on the set-
theoretic principle 0. The construction presented here is based on a MacDowell-
Specker type argument, using minimal inductive satisfaction classes, and needs
no set-theoretic assumptions. We use it in Theorem 10 and Corollary 11 to con-
struct rigid, κ-like recursively saturated models for all uncountable K.

A satisfaction class S for a model Mis minimal if (M, S) has no proper ele-
mentary substructures. We will prove a theorem showing the existence of many
minimal inductive satisfaction classes for countable models of PA. A slightly
weaker version of this result was stated first without proof in Kossak [2].
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Let L be the language of PA. We denote by Qn the closure of the set of all
Σn formulas of L under negation, conjunction, and bounded quantification, and
by goo the set of all formulas of L. If M is a model of PA and either e = oo or
e is an element of M, then Qe(M) is the set of Qe formulas in the sense of M
(under a fixed arithmetization). A subset 5 of Mis a (^-satisfaction class of M
if S consists of (codes of) pairs of the form {φ, a), where φ is in Qe(M) and a
is (a code of) a valuation for φ, and the usual conditions of Tarski for the def-
inition of satisfaction hold.

Let L* be an arbitrary finite language extending L. Then let PA* be the L*-
theory consisting of PA and all instances of the induction schema in the extended
language. We say that S is an inductive Qe-satisfaction class, or briefly a Qe-
class, for a model M, if S is a (^-satisfaction class for M and (M, 5) h PA*.
Well-known simple facts about Qe -classes are summarized in the next propo-
sition.

Proposition 1 Let M be a model of PA.
(i) For every standard n, there is a unique Qn~classfor M.

(ii) IfM is countable, then M is recursively saturated iff for some nonstandard
e E M there exists a Qe-class for M.

(iii) If S and D are Qe-classes for M and (M, S,D) NPA*, then S = D. (Infact
Πι-induction is enough here.)

We will say that a subset X of M is minimal if (M, X) has no proper elemen-
tary submodels. Subsets X, Y are elementarily equivalent if (M, X) and (M, Y)
are elementarily equivalent. For M V PA* we let Def (M) be the set of all para-
metrically definable subsets of M. If M, iV are models of PA, and M is an ini-
tial segment of TV, then we say that the subset X <Ξ M is coded in TV if X— YΠ
M for some Y E Def (TV). The standard system of a model M, denoted by
SSy(M), is the set of subsets of ω which are coded in M. Recall that a Scott set
X is a set of subsets of ω which forms an ω-model of WKL0. If M1= PA, then
SSy(M) is a Scott set.

We say that an L* -theory T represents a set X £ ω if there is an L* -formula
φ(x) such that for each n E ω,

neX^Tbφin),

and

n £ X**T\--Λφ{n).

Rep(Γ) is the set of sets represented by T. When needed, we will identify a the-
ory T with the set of Gόdel numbers of its sentences.

The following is essentially the basic result of Scott [6] on Scott sets.

Lemma 2 Let To 2 PA* be an L*-theory which represents itself and let χ be
a countable Scott set such that To E χ. Then there is a complete, consistent L*-
theory ΓΞ2 To such that χ = Rep(Γ). Moreover, there are continuum many such
theories.

Our main result about minimal satisfaction classes is a direct application of
Lemma 2.
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Theorem 3 If a nonstandard countable model M V PA has a Qe-class, where
either e = oo or else eGM is nonstandard, then M has continuum many pair-
wise elementarily inequivalent minimal Qe-classes.

Proof: We consider only the case that e G M, the case e = oo being very simi-
lar. Let L*=LU{S,e}, and let To = Th((M, e)) U {"S is a ee-class"}. Standard
facts about recursive saturation imply that To E Reρ(Γ0) Π SSy(M). Applying
Lemma 2, we get continuum many completions T of To such that Rep(Γ) =
SSy(M). For each such Γ, let (Mτ,eτ,Sτ) be its minimal model. Then
SSy(MΓ) = SSy(M) and Mτ is recursively saturated since it has a Qer-class, so
there is an isomorphism/: Mτ-> Msuch that f(eτ) = e. Since eτ is definable in
(MT9 Sτ), it follows that Sτ is a minimal βer-class, so that f"Sτ is a minimal
ζ>e-class for M. Clearly, different completions T yield elementarily inequivalent
Qe -classes S.

If 5 is a Qe-class for M and d < e, then we denote by S | d the restriction of
S to <2</ formulas in the sense of M. Of course, for every d < e the restriction
S|rfis a Qrf-class for M. We denote by Ύτn(w, υ) a An+X truth predicate for Qn.
The next lemma is due to Henryk Kotlarski.

Lemma 4 If S is a Qe-class for a model M 1= PA, and d E M is such that
d + ω < e, then the structure (M, S\d) is recursively saturated (so that
Th((M,S|rf))ESSy(M)).

Proof (sketch): By induction on φ we can show that for every d < e

(M,S)ϊVφGζ2dvb(S(φ,b)**S(ττd(w,v)Λ<P,b))).

Hence, by replacing every subformula of 5(α, /) of φ by Trd(a, v), every for-
mula φ of L(S) is translated to a Qd+n formula φ* in the sense of M, for some
n < ω, such that for each b E M,

(Λf,Srf)l=φ(Z>) iff (Λ#,S)t=S(φ ,&).

Then we can use the above equivalence and overspill in (M, S) to prove that S | <i
is recursively saturated.

Notice that if S is a Qe-class for M and d + n = e9 where « E ω, then S E
Def (M, 51 rf). We remark that by use of Lemma 4, we can improve Theorem 3
as follows: If Mt= PA is countable, Sis a ββ-class for Mwhere either eGMor
e = oo, and rf + ω < e, then Mhas continuum many pairwise inequivalent Qe-
classes D such that D\d = S\d and (M,D,d) is minimal.

The next lemma is a special case of Tarski's theorem on the undefinability
of truth.

Lemma 5 If X is a minimal subset of M and (M,X) H PA*, then
Th((M,*))£SSy(M).

If X is a minimal subset of M and (M, ΛQ N PA*, then every element of M
is definable in (M,X); hence, (M9X) is rigid and, moreover, there is no non-
trivial elementary embedding of (M, X) into itself.

Recall the theorem of Kotlarski [5] and of Schmerl [7] which asserts that if
AT is a cofinal extension of a model M and (M, X) N PA*, then there is a unique
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ϊ g i V s u c h that (M,X) < (N,X). In particular, if 5is a Qe-class for M, then
S is a Qe-class for N.

Lemma 6 Suppose N < M is a cofinal substructure, either e GN or e = oo,
and S<Ξ:Nis a minimal Qe-classfor N. Iff:N-> Mis a cofinal embedding such
that either f(e) G N or e = <χ> and such that^S G Def ((M, S)), then f is the
identity function.

Proof: First consider the case that e G N, and let d = f(e). We will show
that d = e. If not, then without loss of generality we can assume d < e (for
if d > e then/"S is a minimal Q^-class for/'W, a n d / " 1 (/"S) = S =ΓS\ e G
Def((M,/"S)), so just consider/"1 :/"iV->Minstead). Consequently, we even
get that d + ω < e. By_Lemma 5, Th ((iV,S)) £ SSy(iV). On the other hand,
by Proposition l(iii), f'S = S\d, and then Ίh((N,S)) = Th((/'W,/"S)) =
Th((M,/"S)) = Ύh((M,S\d)) = Ύh((N,S\d)) G SSy(N), by Lemma 4. Thus
we get d = e.

In either case (d = e or e = oo) we get thatΓS = S, so that (N, S) < (M, S)
and (f"N,f"S) < (M,S). Both of these substructures are minimal; consequently
(N9S) = lf"NJ"S)y a n d / being an automorphism of (N,S) must be the
identity.

We will need Lemma 6 to get a κ-like, recursively saturated model of PA hav-
ing no nontrivial embeddings into itself for arbitrary uncountable regular K. How-
ever, for K = ωi, we can get by with just the following immediate corollary of
Lemma 6.

Corollary 7 If S is a minimal Qe-classfor M, where either e G M or e = oo,
then each cofinal embedding / : M-+ Mfor which f'S G Def ((M, S)) is the iden-
tity function.

Corollary 8 Let Mbe a countable, recursively saturated model of PA. Then
there is a countable, elementary end extension N such that ifNr is any elemen-
tary end extension of N andf: N' -> N' is an elementary embedding such that
f"M is cofinal in M, then f\M is the identity function.

Proof: Let S be a minimal inductive satisfaction class for M. Let (N9D) be a
conservative, countable, elementary end extension of (M,5). (Conservativeness
means that every subset of M which is coded in N is definable in (M, S). The
existence of such extensions follows from a suitable version of the MacDowell-
Specker Theorem.) Thus, Def((M, S)) is the family of subsets of M which are
coded in N, and Def ((M, 5)) is also the family of subsets of M which are coded
in an elementary end extension N' of N. If f:N'-+ N' is an elementary embed-
ding and/"M is cofinal in M, then/ 7 ^ G Def ((M, 5)), so by Corollary 7, / 1 M
must be the identity.

Theorem 9 Every countable, recursively saturated model of PA has an ω r

like, recursively saturated, elementary end extension M which has no nontrivial
elementary embeddings into itself

Proof: Let Mo be a countable, recursively saturated model of PA. Using Cor-
ollary 8, obtain a continuous chain (Ma: a < ω\) of countable, recursively sat-
urated elementary end extensions, and let Mbe the union of this chain. Clearly
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Mis an α^-like, recursively saturated elementary end extension of Mo. Now sup-
pose that f:M -+ M is an elementary embedding. There are arbitrarily large
a <ωχ such thatf"Ma is a cofinal subset of Ma, so by Corollary 8,/ |M α is the
identity function. Therefore/ is the identity function.

Notice that by using elementarily inequivalent satisfaction classes in the con-
struction in the proof of Corollary 8, we can obtain 2**1 models M satisfying
the conditions of Theorem 9 no one of which is embeddable in another one. To
construct these models, first let {A",,: ̂  < 2*1} be a set of stationary subsets of
ω! which are distinct modulo the filter of closed, unbounded subsets of α>i. That
is, whenever C c ω i is closed and unbounded, and μ < v < 2**1, then CΠXμΦ
C Π Xv. Let M be a countable, recursively saturated model of PA and let
nonstandard e E M be such that M has a Qe-class. Let So, S\ be elementarily
inequivalent minimal Qe-classes. Now obtain Mv as the union of the chain
{Mv

a: a < ωj>, as done in the proof of Theorem 9 where, at stage a, we use a
minimal ζ^-class S of Mv

a such that (AT*, S) = (M, So) if v E Xa and (M*, S) =
(M9S{) if vφXa.

Looking at the proofs of Theorem 9 and Corollary 8, we see that the model
M of Theorem 9 was obtained as the union of a continuous chain <Mα: a < ω\ >
of countable models, where for each a < ω\ there is nonstandard ea E Mα, a
minimal Qβa -class Sa for Ma and a Qea -class 5^ for Λ/α+J such that (Mα + 1,5^)
is a conservative extension of (Mα, Sa). By exercising some care, we can arrange
for M to have some additional properties. We consider two examples.

We can obtain an α^-like recursively saturated M which has no nontrivial
elementary embeddings into itself and which has no inductive satisfaction classes.
To do this, we require that for each nonstandard e E Mo, {a < ωi: ea < e] be
stationary. (By Theorem 3 this is possible.) Of course, Kaufmann's model is also
an example of an o^-like, recursively saturated model without an inductive satis-
faction class. Another construction, using different properties of satisfaction
classes, will appear in [4].

To obtain an c^-like, recursively saturated M which has no nontrivial
embeddings into itself but which does have an inductive satisfaction class, pro-
ceed as follows. Let So be a minimal Q2e-class for Mo, where e E Mo is non-
standard. Now just arrange that each Sa is a minimal ζ^e-class for β < a,
(M, (Sβ I e)) < (M, (Sa I e)). (By the remark following Lemma 4 this is possible.)
Then M will have a Qe-class which is U {Sα | e: a < ω{}.

We next extend Theorem 9 to all uncountable regular cardinals.

Theorem 10 Let MtPAbe recursively saturated and have countable cofi-
nality, and suppose κ> \M\ is regular. Then M has a κ-like, recursively saturated,
elementary end extension which has no nontrivial embeddings into itself.

Proof: We will obtain an elementary chain (Mv: v < K) of models with each Mv

having a universe which is an ordinal in K. Without loss of generality we can as-
sume that M E K. Let Mo = M, and let iV0 < Mo be countable, recursively satu-
rated, and cofinal in M. Let Do £ JV0 be a minimal Q 2*r cl a s s f° r ^o> where e E
No is nonstandard. Let So £ Mo be the unique class such that (Nθ9 Do) < (Mo, So).
Let [Xa:a < K] be a partition of the stationary set {v < κ:cί(v) = ω] into
stationary sets, where Xa Φ Xβ whenever α < β < K. NOW obtain the chain
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{Mv: v < κ> of models, with each Mv having an inductive satisfaction class Sv,
as follows:

(1) If v is a successor ordinal, or if v is a limit ordinal and cf(^) > ω, then
let (Mv+ι,Sv+ι) be any conservative extension of (MV,SV) such that
Mv+\ G K.

(2) If v is a limit ordinal, then let Mv = \Jy<v My and 5,, = \Jy<v (Sy \ e).
(3) If v is a limit ordinal and cf(*>) = ω, then let a be such that v G Xa. Let

Ny < Mv be countable, recursively saturated and cofinal in Mv such that
eGNv and α G TV,, provided a G Mv, Let Dv be a minimal Q2e-class for
Nv such that Dv \ e = Sv Π Nv, and then let S = ΪTV. Finally, let (Mv+ι,
Sv+ι) be a conservative extension of (Mv, S) such that Mv+X G /c.

The model TV = \JV<KMV will be the desired model. Clearly TV is /c-like
and it is an elementary end extension of M. Also, TV is recursively saturated
as Uv<κ Sv\eisa Qe -class for N. We need to show that TV has no nontrivial ele-
mentary embeddings into itself. Let f:N->Nbe an embedding and consider
some β G N. Let a = <β9f(e))9 and let v G Xa be such that α G M , and/ 'M, is a
cofinal subset of M,. Then β, f(e) GTV, since a E_NV. Clearly, f\Nv:Nv^Mv

is a cofinal embedding such that f"Dv G Def((M,£>„)), so by Lemma 6,f(β) =
|8. Thus / : 7V-> TV is the identity.

Corollary 11 Lei M1= PA fe recursively saturated and suppose K > \ SSy (M) |.
Then there is a rigid, κ-like, recursively saturated N == M such that SSy(N) =
SSy(M).

Proof: Theorem 10 handles the case that K is regular, so assume that K is singu-
lar. Let λ = cf(K), and let (κv: v < λ> be a continuous, increasing sequence of
cardinals whose supremum is K such that κ0 = |SSy(M)| and κv+\ is regular for
each v < λ. Let Mo < Mbe recursively saturated and have countable cofinality
such that I Mo I = κ0 and SSy(M0) = SSy(M). Let S be a Q2i?-class for Mo for
some nonstandard e9 and let So = S | e. By Lemma 4, (Mo, So) is recursively sat-
urated. We will obtain a continuous, elementary chain (Mp, Sv) of recursively
saturated structures, where Mv is /ĉ -like whenever 0 < v < λ. Suppose that J> <
λ, and that we already have (Mv, Sv). By (the proof of) Theorem 10, there is an
elementary end-extension (Mp+ι, Sv+\) which is rigid, recursively saturated, and
Kp+i-like. Let 7V= \Jv<χMv. Clearly, TV is also rigid and recursively saturated,
and TV= M, TV is /c-like and SSy (TV) = SSy(M).

Corollary 12 Suppose M1= PA and K > 2**°. Then there is rigid, κ-like, No-
saturatedN=M. Furthermore, if K is regular, then TV has no nontrivial embed-
dings into itself

There is a question left unanswered by the results here. If K is singular, does
there exist a /c-like, recursively saturated TV 1= PA which has no nontrivial ele-
mentary embeddings into itself?
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