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Abstract There are three main results; all are contributions to the intui-
tionistic metatheory of intuitionistic systems. First, pure intuitionistic predi-
cate logic is provably incomplete with respect to ordinary model-theoretic
semantics, provided that the metatheory is suitably intuitionistic. With the
same proviso, intuitionistic propositional logic is also incomplete; in fact, the
concept of validity for formulas in one propositional variable is not arithmet-
ically definable. Also, one cannot prove—in standard intuitionistic meta-
theories—an existence theorem for countable models, even when the relevant
theory is that of subfinite sets in the language of pure identity.

1 Introduction The three main results are all contributions to the intuitionis-
tic metatheory of intuitionistic systems. In more detail, the first theorem shows
the intuitionistic predicate logic to be, in the presence of a weak form of Church's
Thesis (WCT), neither complete nor almost complete. The proof itself is fully
constructive: there is a single formula φ such that Con(φ) is provable in a frag-
ment of Heyting arithmetic while WCT implies that φ has no model. Although
the conclusion of the proof, that intuitionistic predicate logic is incomplete, is
not especially new, it seems that the proof given here is simpler and more
straightforward than existing published proofs of similar results. Our proof joins
the incompleteness of intuitionistic logic directly to standard classical proofs of
the incompleteness of first-order arithmetic. Basically, WCT blocks the construc-
tion of classically possible structures ft because, in those structures, truth in d
would be definable—in contradiction to the Gδdel-Tarski fixed-point theorem,
which is correct both classically and constructively.

The second result, on intuitionistic propositional logic, shows that complete-
ness theorems for propositional logic are almost as elusive as those for predicate
logic. In the proof, the axioms of intuitionistic set theory together with Church's
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Thesis, Dependent Choice, and Markov's Principle (MP) are seen to be jointly
inconsistent with the statement that propositional logic is complete with respect
to Tarskian semantics. In fact, there is a relatively short quantifier-free formula
Ψ which is, in the presence of the Extended Church's Thesis (ECT) and Markov's
Principle, valid. Ψ, however, also has the following properties:

• It is not provable in intuitionistic propositional logic.
• Ψ has an arithmetic instance Ψσj τ which is also valid but independent of

any classically correct r.e. Harrop extension of Heyting arithmetic.
• Moreover, there is an instance Ψ7 of Ψ in the language of set theory such

that, if classical set theory is consistent, then Ψ7 is unprovable in intui-
tionistic set theory.

Ψ is a formula in two propositional variables. As coda to the investigation
of the metamathematical properties of Ψ, we observe that there may be no ap-
preciable improvement in the "completeness picture" should attention be re-
stricted to propositional formulas in a single variable only. By examining a
topological model for intuitionistic set theory constructed over Sierpinski space,
we find that intuitionistic set theory cannot prove that validity for single-variable
formulas is arithmetically definable.

Given the classical associations between completeness and countable mod-
els theorems, we thought it reasonable to close with a brief remark on the intui-
tionistic status of the claim that every satisfiable theory in a countable first-order
language has a countable model. It is shown that, even if restricted to theories
of subfinite sets in the language of pure identity, the countable models claim im-
plies Kripke's Scheme (KS), a principle which features large in discussions of
Brouwer's theory of the creative subject. An obvious consequence is that Henkin-
style maximal set constructions are unavailable in all the more familiar exten-
sions of intuitionistic set theory.

Proofs of these results and the requisite formal details have been postponed
until Section 4. In the meantime, there are matters of philosophical and histor-
ical orientation toward completeness issues in intuitionism. These take up the in-
tervening sections.

2 Philosophical orientation In many respects, philosophy of mathematics
is a study in the prejudices of an age. One might even say that it is a specially
valuable avenue to that study. Rarely do the inadequacies of conventional phi-
losophy come out in so plain a light as when they appear centerstage with the
clarities of mathematics in the background. As far as our age is concerned, a
principal prejudice is that mathematics is anagrammatic, that it is a clever or even
demonic rearrangement or obscuring of the intelligible. Philosophers tell us that
mathematics stands in dire need of a certain style of philosophical rewriting or
reinterpretation, a new rendering of mathematics into an idiom that we do un-
derstand.

Behind or next to this prejudice lies another: that, paradoxical as it may
sound, mathematics is of apiece with a family of languages and symbolic tech-
niques and, yet, these languages and techniques do not speak to us directly. To
put it another way, it is made to seem as if, even though we understand mathe-
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matical techniques, we do not understand them "really". According to the phi-
losophers, if mathematics speaks at all, its ordinary organs of speech are
defective. It appears virtually mute, since the voice of mathematics to which phi-
losophers can harken seems so very subtle. It does not seem to be the voice to
which we are accustomed, the voice, for instance, of the mathematics classroom.

Philosophers feel that they need to explicate mathematics, that it needs to
be made plain to us. This feeling—and its wide acceptance—is a fair measure of
the conceptual ground we have lost since the days in which Galileo could hold
that the book of nature is written in the language of mathematics. In many ways,
this book now seems closed. Many would have us believe that we can only guess
at this book's contents by extrapolation from the contents of another, a book
of philosophical elucidations, a book such as Frege's Grundlagen.

This situation is all the more strange when we reflect on the volume and clar-
ity with which secondary-school mathematics speaks. What could be more di-
rect and persuasive than the Euclidean proof that the sum of the angles of a
triangle is 180 degrees? What could be more eloquent than Descartes' analysis
of the conic sections? Such mathematical vocality is hardly limited to the more
elementary branches of the subject. Galois theory is a fine example of mathe-
matics which is of great beauty and import, yet (nowadays) hardly calls for a phi-
losopher to tell us what it "really" means.

In a Heideggerian or Deweyan (re)history of mathematical thought might ap-
pear the statement that this pretended muteness, this "philosophical status" for
mathematics, derives ultimately from a real social prejudice, the Platonistic prej-
udice against the artisan, the engineer, or the practitioner. Shoemaking and even
bridge-building require a knowledge of special ways of speaking, special lan-
guages. They both call up specific techniques —formal and informal. Yet neither
of these has a "philosophical status"; they do not impress us as mysteries. The
relevant techniques and languages have been allowed to speak plainly, in their
own voice. These are not the object of any "philosophy of".

But mathematics has been placed at a distance from these. Plato may have
been the first to try to forge an alliance between (Greek) mathematics and other
voices, the ones which philosophers pretend to speak for mathematics. These are
generally voices concerned with the unvoiced grammatical structure of a sentence,
hidden voices, such as the voice of the daimon which so obsessed Socrates. In
Plato, the foremost mysterious voice is that of grammar or sentential structure,
a voice in which Plato thought to hear the doctrine of the forms. It is obvious
that there can be no word in a sentence which captures the sentential form of the
sentence, one which guarantees that a group of words will be viewed as a sen-
tence rather than as a mere list. With Plato, the work of the mathematician (and
not of the shoemaker) is placed on the side of grammar and is assimilated with
the unvoiced in the sentence. Perhaps it was originally a political or social need—
to assimilate the mathematician and the grammarian. At any rate, mathemat-
ics came to be seen as needing a rewording, as fundamentally structural and, so,
as calling for a new word to record those structural features. (It ought to be
remarked that Wittgenstein was the first, in the present century, to realize that
the only appropriate rendering of the silent voice of grammar is by silence, by
making a gap in the course of standard philosophizing.)

As is characteristic of conventional philosophy, the outcome of the need to
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replace plain and indicative silence with metaphysics is paradox. This time, the
paradox lies in the contrast between the end result and the starting point. The
philosopher began the reinterpretation of mathematics by shunning the domain
of the artisan but finishes by describing "the nature" of mathematics in terms
which would only be suitable to the description of tedious domestic arrange-
ments, trite scenarios such as the placement of pots on a countertop or the sorting
of cards into a deck. In other words, the presumptive foundations of mathemat-
ics turn out, at the hands of the philosophers, to issue in terms which would be
utterly insufficient to explain in detail the manufacture of a paper clip.

Wittgenstein, repeating an expression of Littlewood, referred to the pseu-
doexplanations of mathematical philosophy as '"gas". Our contention is not that
all such gases are absolutely useless; a restatement of a mathematical result in
intuitive terms may well be the key to a range of applications. It is the purely phil-
osophical business of rereadings which interests us; it is the idea that what the
philosopher has to say about mathematics is deep, that it exposes a form of re-
ality which is hidden by the straightforward expression of a mathematical result.
It is the presumptive fundamentality or ultimacy of these readings which give us
most concern. The impression is created that the philosophical voicings and reex-
pressions of mathematics are descriptions, even accurate descriptions, of a realm
which lies "below" mathematics and serves as a foundation for it. Rather than
treating philosophy of mathematics as a collection of rhetorical flourishes and
political slogans which belong more to the cultural neighborhood of mathemat-
ics than to the development of mathematics proper, the putative descriptions are
compared with the fundamental principles of physics and accorded a correlative
explanatory status. High on the list of principles which are often accorded this
ultimacy or explanatory depth is the statement of completeness for a formal logic
(cf. Dummett [7]). It is among the purposes of the present writing to bring this
ultimacy into question, to bring the reader to wonder whether it might well be
essential for the coherence of the intuitionistic mathematical enterprise that first-
order predicate logic be incomplete.

We do not labor under the illusion that such a change in mind could be the
result of new philosophical principles alone. A complete accounting for the state
of contemporary philosophy is not to be found in "principles" or (what philos-
ophers call) "positions." One must also look to deeply ingrained philosophical
attitudes toward mathematical thinking. For example, it is very much a part of
Frege's philosophy that he felt a prima facie need to coat the mathematical con-
cept of a function by dipping it into the mysteries of incomplete entities and un-
saturatedness. The recognition—in Frege and in the reader —of such a need is
essential for understanding Frege's philosophy. But such a need is no part of
Frege's "official" philosophy; it is not a consequence of any statement of the
Fregean position. It is in the changing of such fundamental attitudes that intui-
tionistic mathematics has a special role to play.

2.1 Intuitionism and philosophy of mathematics The dangerous idea of a
"natural reading" of a branch or result of mathematics is one kind of thinking
which a familiarity with intuitionism might prevent. There is a bad tendency in
philosophy to forget fulness; philosophers of mathematics forget that they labor
not in mathematics but in a land of readings or renditions of mathematics. Some-
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times the readings are treated as if they were themselves the mathematical state-
ments or even as if they were more important than the mathematics itself. (This
is perhaps another symptom of the notion that philosophical readings of math-
ematics are fundamental.) How often have we worried over the "fact" that Gόdel
has demonstrated that there are ineffable truths of arithmetic, one of which may
be the statement of the coherence of arithmetic itself? We rarely turn away from
Godel, even momentarily, to reflect that this is a reading of a mathematical tech-
nique and of the consequences of adopting that technique. We do not often ques-
tion that reading by asking whether the relation between the truths of Hilbertian
metamathematics and those of what we call 'ordinary arithmetic' is truly the iden-
tity or the inclusion the reading seems to presuppose. How often is it said that
Lowenheim and Skolem proved that syntax does not determine semantics and,
hence, that there must be a separate, nonformalistic study of interpretation? We
rarely pause to ask whether what is here read as 'syntax', with its close attach-
ment to the finite, bears so obvious a resemblance to words, the everyday expres-
sions of meaning, with their close attachments to the unbounded.

This is one regard—the investigation of "natural" presumptions—in which
intuitionistic mathematics is of tremendous help. It teaches us not to be so san-
guine about the seemingly casual or natural relation between the metamathe-
matics of classical logic and its philosophical reexpressions. In the intuitionistic
context, naturality is not so readily come by. A reading or intuitive expression
of a significant intuitionistic theorem is well worth having, but it comes at the
price of a salutary rethinking of what is "normal" or "natural" in the classical
case. Among other things, we are thereby reminded that a theorem of mathemat-
ics does not carry any particular rendering as a matter of course. Also, we are
encouraged to address the mathematics with a bit more respect when we come
to interpret it. Intuitionism encourages us to treat its mathematics more in the
way we treat quantum mechanics, where it is nowise obvious how to reexpress
our formal findings in terms suitable for describing domestic arrangements and
where our understanding suffers if we choose a reexpression unwisely.

In the face of intuitionistic mathematics, much that we have found "natu-
ral" in philosophy of mathematics withers away; if we insist upon applying clas-
sical ideas of normalcy or naturality to intuitionism, we often land in confusion.
Here is an example of how confusion can stem from the desire to carry over, into
intuitionistic mathematics, the "natural" distinction between the logical and non-
logical, that is, between scheme and content. Certain expositors make much of
the fact that, as they describe it, intuitionists may accept an "axiom" of count-
able choice, namely,

VA2 G cN3j> G A. Φ(n9y) -> 3/: (<N-+A)vn. φ(njn),

more or less as a matter of course, rather in the way in which the classical math-
ematician treats a theorem of logic. Viewed "naturally" by the expositor, logic
is supposed to be "pure" and divorced from mathematical content, hence the in-
tuitionistic attitude toward the so-called mathematical axiom seems strange. The
conventional idea which is the cause of the seeming strangeness is that mathe-
matics is just one kind of content with which the neutral schema of logic can be
filled and that mathematical results ought not to be consequences of a pure logic.
The difficulty here is the importation of a wholly anti-intuitionistic conception
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of logic, one on which mathematics has a merely incidental relation to logic, one
on which mathematics is just one kind of content, among countless others, over
which the schemes of logic can be interpreted. In intuitionism, what is called
'logic' is only one of the crucial features of mathematical reasoning.

Another fine (and more important) example is the almost ubiquitous chat-
ter about the "weakness" of intuitionistic logic. Within classical confines, it is
natural to make reasonable comparisons among systems of logic by looking to
the inscriptions which they produce. But to extend such elementary comparisons
across the gap between classical and intuitionistic mathematics is to court disas-
ter. Admittedly, there are certain inscriptions that formal systems which purport
to represent intuitionistic reasoning cannot produce; one such is the inscription
*P v ~*p\ But that is not to say that there are any laws of classical logic or the-
orems of classical mathematics that intuitionistic mathematics does not respect,
where a law or a theorem is not an inscription but might well, in a given con-
text, be captured by such an inscription. For one thing, the negative translation
results which stem from the original ideas of Gόdel, Glivenko, and Gentzen (cf.
Leivant [32]) have been read as a general permission for the intuitionist to speak
of classical work as an abbreviation or truncation of intuitionistic thought. This
appears to open up the prospect that all laws and theorems of classical set the-
ory, for example, can be captured by inscriptions derivable in intuitionistic sys-
tems. Should we want to speak of mathematics as offering us a form of evidence
for philosophical views, here is evidence that intuitionistic mathematics does not
conceal weakness but exhibits tremendous strength, strength sufficient to incor-
porate classical set theory.

Of course, we need not wander as far as intuitionism to begin to question
the naturalness of our graduate school renderings of metamathematical theorems.
It was commonplace in traditional logic (and is still commonplace in some treat-
ments of philosophy of mind) to speak as if propositions were containers filled
up with bits of information. In close company with this container idea came the
unpacking account of correct inference, according to which a valid argument
serves to unpack some part of the information contained in the premises and
bundle it up again in the conclusion. It is then but a short step to the idea that
there is an "inference engine" in the mind, a faculty for making and evaluating
inferences. It is conceived as a kind of spiritual or computational mailroom in
which all this packing and unpacking can occur. But, unless one has so deformed
the concept of information that it becomes indistinguishable from the concept
of truth-value, it will be difficult to square even the simplest observations about
inference with the unpacking metaphor. For instance, consider the invalidity of
the scheme

p v -1/7 => q A -ιq.

On the containment model, this would have to count as a valid inference, since
claims of the form p v -i/? convey no appreciable information. Hence, despite
the seeming naturalness of the container metaphor, it must be rejected as a true
account of classical inference. Moreover, there is nothing particularly classical
about the shortcomings of the container idea; the same sort of observations could
be made with respect to the intuitionistic invalidity of the scheme

(P-+P) =><7Λ ->(?.
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In fact, the status conventionally conferred upon the completeness theorem
for first-order logic is a fine example of the mismatch between mathematics and
its metaphors. It is standard in many treatments of logic for the author to wax
almost poetical on the benefits which follow from completeness, when, in truth,
it is nowise clear that completeness is a font of unalloyed benefice. One need only
recall that an immediate consequence of the strong completeness theorem is the
compactness theorem. Also, a direct result of Henkin's proof of completeness
is the countable models theorem —or a simple form of downward Lόwenheim-
Skolem. In contemporary philosophy of classical mathematics, these latter two
results stand most plainly for a "dark side" in metamathematics, chapter head-
ings in the book of logic's shortcomings. Thanks to compactness, first-order
means are said to be incapable of the expression of as salient a mathematical no-
tion as "finite group" or "well-ordered set." Thanks to the countable models the-
orem and the observations of Skolem, the same means —applied to the language
of set theory—are thought incapable of capturing adequately the notion of un-
countable set. These shortcomings on the part of classical first-order logic are
taken to show that, if we would like to retain for symbolic logic some vestige of
Leibniz's ideal of a characteristica universalis, the attainment of which Godel [14]
thought not wholly chimerical, then we must extend the realm of the logical well
beyond that of elementary or first-order logic. Therefore, if we rely only upon
conventional standards, we ought to adopt a more balanced view of complete-
ness, one on which it seems to do as much to weaken the claims of first-order
logic to being a mathematical logic as it does to strengthen them.

Incidentally, there is an historical connection between the flawed logical the-
ory based upon the "container" and the completeness issue in intuitionistic logic.
The connection arose from articles such as Kreisel [27] and especially Troelstra
[52]. Their idea was that, rather than fearing the prospect of incompleteness, we
ought to expect it of intuitionism. Incompleteness was there viewed as a certifi-
cation or verification of our ingrained suspicions —suspicions organized into the
intuitive picture of the container —that, as "containers", intuitionistic proposi-
tions are far more capacious than their classical cousins. Hence, or so goes the
suggestion, an intuitionistic statement of the form "scheme Φ is valid" is not likely
to be reducible to the Σ? number-theoretic information supposedly contained in
the statement "Φ is derivable" and, so, we ought to expect incompleteness. In this
way, it was thought that a lack of completeness confirmed an intuitively plau-
sible logical theory for intuitionism, that of the information container.

We agree that the incompleteness phenomena are not to be construed as
symptoms of a mathematical debility in intuitionism. However, we will not agree,
at least on the basis of the idea of the "information container", that incomplete-
ness is to be expected. We refuse to console our feelings with this line of thought.
First, it is thoroughly wed to the disenfranchised container metaphor. Second,
even if we ignore the failings of the container idea, this treatment of complete-
ness does damage to the schoolboy readings of constructive mathematics which
give to the container what (little) credit it deserves. On such a reading, "construc-
tive" Σ? statements are supposed to "contain more information" than their clas-
sical analogues. It is said that the constructive truth of a statement of the form
lnφ(n) requires the provision both of a specific m and of a constructive proof
of φ(m) and, hence, that the statement in question contains more information.
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This is, or so the reading goes, what explains the relative difficulty in proving
statements constructively. But, according to the considerations that are supposed
to make us expect intuitionistic incompleteness, we can only come to expect it
if we, at the same time, belittle the amount of information that might be con-
tained in Σ? statements. These considerations would have us think that, even
though such statements contain a great amount of information, this is not
enough to encompass the information contained in a claim of validity. If we are
being consistent and apply the container metaphor to constructive mathematics,
we cannot both expect incompleteness for the above reasons and yet insist that
extra information is contained in constructive existential claims. After all, the
bonus of information putatively contained in constructive Σ? might well be
enough to regain completeness intuitionistically.

There are independent grounds for refusing to take the container idea, as ap-
plied to intuitionism, very seriously. The "container" picture and the idea that
intuitionistic propositions are relatively more capacious as containers than cor-
relative classical propositions serves the conventional derogatory treatments of
intuitionistic thought. They work together to allow one to think that there is some
objective "information theoretic" ground on which intuitionistic logic is truly
weaker than classical logic. The "more information" idea encourages one to think
that an instance of a formula which is classically valid may fail to be intuitionisti-
cally valid because, when understood in the latter way, the formula would re-
quire more information for its truth and, hence, require more of its proof. It is
supposed to follow that not every classically valid scheme is intuitionistically valid
and that intuitionism is, thereby, inherently weaker than classical mathematics.
Such reasoning also requires that the classical notion of a logical scheme carry
over relatively unaltered from classical to intuitionistic contexts. However, there
seems to be no such ready "carrying over": the classical concept of a scheme re-
lies upon a particular construal of the specifically logical constants. In intuitionis-
tic mathematics, there is no construal that compares with the satisfying analysis
of logical constants in terms of Boolean functions.

Needless to say, the theorems of this paper are not intended to contribute (at
least in the sense of 'contribute' usually in question) to the imaginary debate be-
tween classical and intuitionistic mathematicians. As everyone knows, there is
either no such debate or, at best, very little of it. If debates between intuitionistic
and nonintuitionistic mathematicians do ever occur, they are staged as an amuse-
ment or raree at a logic conference: people come to see the actors; they certainly
don't come for the plot. What is called 'the debate' between classical and intui-
tionistic mathematics seems to be a political confrontation between the slogans
or gases which surround one side or the other of the "dispute". The belief that
such a confrontation is of real foundational importance is symptomatic of the
idea that banalities about "building up numbers constructively" or "theories of
meaning" stand in an enlightening rather than obscuring relation to mathemat-
ics. To think in terms of an important debate, one which needs to be resolved,
is to think, in an alternative form, of philosophy as uncovering the subtle and
significant underpinning to mathematics, one revealing conceptual problems to
be solved by philosophical means.

Instead, the results in this paper are conceived as an aid to letting intuitionism
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speak for itself, without philosophical accompaniment. This, in turn, will require
a general clearing of the philosophical air around intuitionism.

2.2 On the importance of being incomplete For the reader to gauge the
bearing of our philosophical dealings with the incompleteness theorems, it will
be necessary to get slightly ahead of the story and offer a preliminary outline of
the proofs of the theorems and the ideas which they involve. It should be em-
phasized that this outline serves a very limited dialectical end: we are not trying
to locate a foundation beneath our mathematics but are trying to draw a frame
around it so as to set it off.

One cannot begin a consideration of intuitionistic reasoning outside of a con-
sideration of the objects of intuitionistic mathematics. Intuitionistic propositions
are themselves collections, or better, species of abstract entities. Species may, un-
like sets or Frege's Wertverlάufe, be individuated nonextensionally. The abstract
entities in question are always one or another of a kind of data objects. These
are not to be thought of as intuitionistic proofs themselves — of either the for-
mal or the informal sort. For purposes of this discussion, we can think of a typ-
ical data object as an abstract machine —not a syntactic entity, a mere
program-form—but as a fully interpreted device. By 'fully interpreted', we mean
that the machine serves as a presentation or intention for the graph of a trans-
formation. In keeping with this, our concept of machine is very generous; the
machines might be Turing machines, but there is no need to insist, from the start,
that they are. We would also allow that a neighborhood assignment determin-
ing a continuous map from Baire space into Baire space counts as a suitable "ma-
chine". Or machines might be generators for the r.e. subsets of the Scott-Plotkin
graph model. Of course, there are some features which a suitable abstract ma-
chine must have—but not many. For instance, it may be essential that the class
of machines be able to accept (possibly coded) versions of themselves or other
machines as inputs.

It is in terms of the mathematics of a class of generalized machines and of
the transformations computed by them that we define validity. A scheme

Φ h *

is to be valid when there is a data object or machine which, given any interpre-
tation * of the scheme, computes a function mapping the species determined by
Φ* into that determined by Ϋ*. It is important that there is no a priori limit set
on the mathematical complexity of the transformation which underwrites the va-
lidity of an inference; it might well be given by (or have as its intension) a Tur-
ing machine the convergence of which can only be proved in a theory the strength
of intuitionistic set theory.

To further illustrate and elucidate the incompleteness phenomenon, we need
to consider intuitionistic truth and its role in counterexamples to TND, the law
of the excluded third. (We want to lend no credence to the unfortunate impres-
sion, one often suggested by the expository habits of the early intuitionists and
of their contemporary commentators, that the very idea of intuitionistic math-
ematics is tightly linked to objections to classical logical laws. That the formula
scheme which represents TND classically fails of universal intuitionistic valid-
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ity is a feature, but not a foundational one, of intuitionistic mathematics and
rests upon several nontrivial mathematical assumptions. This feature, which is
sometimes elevated to the status of a defining characteristic of intuitionism, is
not required for the cogency of intuitionistic reasoning.) The condition that an
intuitionistic proposition be true is that there is a data object which belongs to
its species. To take a specific example, a data object M belongs to the species de-
termined by a fully interpreted formula

Vx(Ψ(x) v -iΨ(x))

only if M, as a machine, accepts each item a in the range of the variable x as an
input and outputs two data objects, a natural number M(a)ι and a machine
M(a)2 such that either

• M(a)ι = 0 and M(a)2 belongs to Ψ(α)'s species or
• M(a)χ Ψ 0 and M(a)2 belongs to -iγ(α)'s species.

To put it another way, when a universally quantified disjunction is intuitionisti-
cally true, then, for each relevant item a, one or the other of the disjuncts is in-
tuitionistically true on a and, uniformly in a, one must be able to determine
which disjunct is true.

To see that φ v -ιφ is not universally valid, we need only assume that our
mathematical language suffices for the expression of "data object unsolvable
properties": that there are intuitionistic propositions φ(x) such that no data ob-
ject serves as a machine M which determines uniformly on possible substituends
a whether or not M(a)2 belongs to φ(a). If we are serious about the idea that
the data objects are computing machines of a sort, the assumption represents no
real limitation. If we had imagined that out data objects are one and all Turing
machines —in other words, if we had adopted a version of Church's Thesis
(v./.)—then a suitable "data object unsolvable property" would be an expression,
in the language of elementary arithmetic, of the halting problem for Turing ma-
chines.

As Heyting often stressed (cf. [17]), if we care to speak of a court of last ap-
peal for intuitionistic mathematics, then it is neither syntactical nor metaphysical
but mathematical. If you care to say that there is a foundation "beneath" intui-
tionistic mathematics, then it is just more mathematics; in particular, it will be,
in part, the mathematics of data objects. Moreover, this will be an articulate
mathematics. Whatever we may choose to serve as members in the category of
data objects, those objects will be the objects of a suitable mathematical theory
T. One way in which to think of data objects as "machines" which can perform
"computations" is to insist that the input-output behavior of the machines is ex-
pressible in T: if machine M accepts a and outputs b, then T \-M(a) = b. For
the sake of exposition, we can take it that T extends elementary intuitionistic or
Heyting arithmetic and, hence, that it extends an intuitionistic version of Rob-
inson's theory Q,.

With the mathematics of data objects as a background, we can describe a
simple instance of the incompleteness phenomenon. Let T be the theory just de-
scribed and assume that T c / is a "classical version" of it. You can think of the
classical version as standing to T in the way that Peano arithmetic stands to
Heyting arithmetic; in other words, we can produce T c / from T by inverting the
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negative translation. It is also assumed that T c / is provably consistent—the
proof being carried out in a suitable intuitionistic metatheory. We show that, if
we work intuitionistically, T c / has no models, and, hence, that Tc/1= J_ while
T c / \f -L. It follows immediately that intuitionistic predicate logic is not strongly
complete.

Assume that & 1= T c /, i.e., that d is, intuitionistically, a model for T c / .
Since T c / is classical, it satisfies TND with respect to the propositions expressed
in the language of T. Therefore, for any such φ,

either a \= φ or G # φ

holds in our intuitionistic metatheory. Since intuitionistic truth commutes with
disjunction and we are thinking of data objects as generalized machines, it fol-
lows that there is a machine M, which, if φ is interpreted over β, determines
whether φ is true in β or not. We might as well say there is a machine M such that

M(φ) = 0 iff d¥φ.

(Were we to suppose that M is a Turing machine, then Church's Thesis would
have been invoked.) Since we can, by assumption, express the behavior of data
objects in the theory T c /, M(φ) = 0 is (equivalent to) a predicate of T c / such
that

a\=[M(φ) =0] iff α h ψ .

Therefore, the predicate "M(φ) = 0" serves as an internal truth predicate for G.
T extends Robinson's Q,, so this is a violation of Tarski's indefinability theorem.

The proof is almost done. We now know that T c / has no models or Tc/1= ±.
But, since we can, by assumption, prove in the metatheory that T c / is consistent,
we cannot derive ± from T c / or T c / 1/ ±. Therefore, intuitionistic predicate
logic in the language of arithmetic is not strongly complete.

In order for the incompleteness results, the proofs of which follow the out-
line we have just given, to achieve the desired end, the fair expression of the
character of intuitionistic mathematics and the loosening of the bonds of "nat-
uralness", it will be necessary to prevent pedestrian, kneejerk reactions. One of
those reactions is this: "These incompleteness theorems simply confirm the widely
held view that intuitionistic logic is inadequate". Another is expressed by say-
ing "The incompleteness phenomena for intuitionistic logic with respect to model-
theoretic semantics only shows that ordinary or Tarskian or model-theoretic
semantics is ill-suited for the metamathematical study of intuitionistic entail-
ment". And, since our theorems seem to rely upon forms of (intuitionistic)
Church's Thesis, a third would be "These incompleteness theorems simply show
what weird results (ones contradicting what we already know by classical means)
will ensue if we adopt classically repugnant forms of Church's Thesis".

The first reaction is easily dealt with. Incompleteness for intuitionistic logic
does not reveal defects in intuitionistic reasoning, at least if one has not prejudged
a variety of issues and proclaimed the parochial properties of classical logic to
be requirements for any logic whatsoever. Just as, in the classical case, it would
be hasty and shortsighted to declare that completeness confirms the "rightness"
of the logic, so also would it be foolish to claim that incompleteness demonstrates
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the "wrongness" of intuitionistic logic. To claim that incompleteness is wrong
or unnatural is, at best, to adopt a classical version of a dubious "naturalness".

Also, one should be reminded that intuitionistic logic does not bear to intui-
tionistic mathematics the same sort of foundational role as classical logic is some-
times thought to bear to classical mathematics. According to some philosophers,
classical mathematics ought to look to logic, the general study of inference, for
a foundation. So, if mathematics is in need of a justification, it is natural to shift
the justificatory burden onto logic. Hence, the justification of a logic becomes,
on this classical picture at least, an issue of real foundational concern. In intui-
tionism, there is no general study of inference; there is nothing more fundamental
than the mathematics—and that includes logic. Logic is not a collection of prin-
ciples more general and "less contentful" than mathematics itself but a motley
collection of the fruits of mathematical work. Despite the many and inspiring
efforts of Professer Dummett and colleagues (as in [7]), the prospect of justifying
the "rightness" of an intuitionistic logic will not supply us with an epistemic ba-
sis on which to support a further intuitionistic mathematics. We know of no suit-
able development of what is called 'intuitionistic logic' on which it is anything
else but a branch of intuitionistic mathematics. Now, that a logic is viewed as
"inadequate" by someone who looks to the presumed "adequacies" of classical
mathematics for a standard is of reduced foundational concern for the intui-
tionist. A justification of intuitionistic mathematics cannot be thought to rest
upon a separate justification of logic, one without which the mathematics is
somehow insecure. The claim that our logic is, at its stands, incomplete may just
turn out to be the claim that, in logic, we have more mathematical work to do.

2.3 Intuitionism, truth and model theory To deal with the second sort of
reaction, that there is some kind of disaffection or infelicity between intuitionistic
mathematics and the sorts of semantical investigations represented by the work
of Tarski, we need to address the putative relations between intuitionism and con-
cepts of truth. First, as Dummett has rightly emphasized in his "Preface" to Truth
and Other Enigmas [7], there is no conceptual conflict between intuitionistic
mathematics and what is called "truth theoretic semantics". At one time, it was
common in philosophy of mathematics to pretend that the very notion of a "truth
predicate" which commutes with the logical signs and, so, satisfies the "T-
schemes" which Tarski set down in his Wahrheitsbegriff is intuitionistically in-
appropriate. The popular impression was that intuitionism has a "proof" or
"evidential" semantics and that this kind of semantical explanation is at odds with
a concept of "Tarski style" truth. In response, we point out that there seems to
be no incoherence in the idea that a "proof semantics" has room for a recogniz-
able and familiar conception of truth, one on which the truth predicate commutes
with the logical signs. Even traditional intuitionists were willing to offer an ex-
plication or definition of intuitionistic truth: that a proposition is true when, as
we would say, its species of data objects has a member. One can, given the or-
dinary (or Heyting) explanation of the expression "data object a is a member of
the species associated with proposition φ", use this definition of truth and ax-
ioms governing data objects to verify Tarskian "T-schemes" such as

True(</> v φ) iff True(φ) or True(^).
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To those who like to think in terms of a debate between classical and intui-
tionistic mathematicians, it should be pointed out that, if the traditional intui-
tionistic attitude toward classical inference is to be granted any credibility, then
the intuitionist and the classical mathematician must share at least the outlines
of a concept of valid argument, namely, one on which the truth of the premises
guarantees the truth of the conclusion. Also, it should be remarked that, in his
arguments against the law of excluded middle, the intuitionist is already assuming
that truth commutes with connectives such as disjunction and conjunction. One
of the surest ways, then, to give cogency to the arguments in what is called the
'intuitionistic critique' of classical inference would be to grant that the intuitionist
has an appreciable notion of truth, one which has the feature of commutation
with the logical signs and in terms of which validity is to be explained. This will
provide some notion of a base on which classical and intuitionistic interlocutors
can stand to begin a productive discussion of logical laws.

One who questions the use of Tarskian semantics in an intuitionistic context
may not be questioning the introduction of a concept of truth but, rather, casting
doubt on the suitability to constructive mathematics of the ordinary conception
of model structure, a relational structure having an inhabited set as its domain.
In reply, it is worth emphasizing that no very abstruse property of model struc-
tures is presupposed in what we do here. It seems that, in showing as we do that
there are formulas which are syntactically consistent and yet have no model, we
are not making any real restriction on the sort of object we have in mind as a
model structure, other than the fact that we can define satisfaction with respect
to it in the usual way. For instance, satisfaction is defined so that it commutes
with the logical signs. If Q is a model structure, then β (= -ιφ if and only if
d ¥ φ for sentences φ. Whether we choose the domain of a structure to be an
extensional set, an intensionally individuated species, or a collection of natural
numbers on which an equivalence relation is defined seems to be of little moment
to the result. Similiar remarks apply to the extensional conceptions of relation
and function which feature in our understanding of model structure.

Second, even if we grant that Tarski's concept of a model is not the last word
in intuitionistic semantics, we must, it seems, allow that it may be the first word.
Recall that there must be an appreciable intuitionistic concept of valid scheme
and, as we have set it out above, that concept relies upon the notion of a class
of interpretations * of certain elements of the scheme. Whatever kind of math-
ematical device we discover to fulfill the need for interpretations, it seems that
it cannot be, in effect, much different from a Tarskian conception of model
structure. We will require a domain over which quantifiers are to be interpreted
and we will need functions and relations defined over the domain to act as val-
ues for scheme elements of type relation and type function. Hence, the model
structure notion acts as a "least common denominator" concept for use in ac-
counts and studies of formal validity. After all, the model structure concept is
so convenient, attractive and streamlined that, were we ever to agree upon an ul-
timate explication of intuitionistic validity, we would either employ the concept
of model directly or be forced to explain the connection between the explication
and that notion.

Doubtless, the ultimate intuitionistic notion of interpretation must be far
more articulate than Tarski's; the ultimate notion should make clear the bear-
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ing upon intuitionistic logic of any number of items missing from the Tarski ac-
count: constructive operations, constructive functions, and, perhaps, choice
sequences and species. Nonetheless, there remain reasons for thinking that any
acceptable interpretation of intuitionistic formalism could not be fundamentally
at odds with Tarski's idea of interpretation with respect to a structure. One of
the reasons is that the concept of validity as truth with respect to all assignments
over all structures is so simple and persuasive that one would find it difficult to
countenance any validity concept which is not consonant with it.

Please note also that the present paper includes results on propositional logic,
results for which the notion of model drops out entirely. There, we ask only that
truth commute with the connectives and that a formula of propositional logic
be valid when it is satisfied by assignments of individual propositions to its vari-
ables. As always, a proposition will be a subset of {0}. There seems little one
could object to here but these propositional results are, in a way, the most sur-
prising of all.

2.4 Varieties of Church's Thesis Lastly, we come to the individual who ob-
jects that the negative completeness results confirm the already widespread im-
pression that forms of Church's Thesis, on which some of the results rely, are
"bad" or "weird". In general, what is called Church's Thesis in intuitionistic con-
texts can be represented as the assertion that the analysis of computation offered
originally by Turing applies as well to the computations indicated by data ob-
jects. Put in mathematical terms, Church's Thesis (CT) is the claim that, with
'ft,' 6m\ and 'e' ranging over the natural numbers,

VnVmφ(n9m) -• 3eVn[([e] (n)l Λ φ(n,{e] (n)))].

Here, e is an index for a Turing machine and the notation '[e] (n)l' means that
the Turing machine with index e eventually halts when started on input n. Hence,
CT implies that every total natural number function is computed by a data ob-
ject which is a Turing machine.

Of the forms of CT which feature in the article, the strongest (which enters
into the proof of incompleteness for propositional logic using Rose's formula)
is Extended Church's Thesis (ECT). ECT is a relativized form of Church's Thesis:

vx[φ(x) -* iyψ(x,y)] -+ 3evx[φ(x) -+ {{e} (x)l A φ(x9[e} (x)))].

Individual variables x, y, and z range over the natural numbers and φ ranges over
the "ω-stable" predicates. A predicate θ(x) is ω-stable when, for all natural num-
bers n,

-i-iθ(ft) ~>θ(rt)

is constructively true. (McCarty [34] and Hyland [20] contain much more infor-
mation on ω-stable sets and predicates.) Shortly put, ECT is a principle of
relativized "effective choice" or "effective uniformization" for properties of the
natural numbers, provided that the relativization is ω-stable.

A weaker form of CT and the form which features most prominently in our
incompleteness arguments is WCT, Weak Church's Thesis:

[WCT] Vn(P(n)v -^P(n)) -> -«-iae.Vπ[P(«) <-• lm.T(e,n,m)].
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T(e, n, m) is the unary Kleene "Tpredicate". Note that what we call WCT is a
variation on the principle which appears in the literature under the title 'Weak
Church's Thesis'; details on both versions are obtainable from Beeson [1].

As far as a good deal of ordinary intuitionistic mathematics is concerned,
there is little scope for objection to ECT; it is known to be consistent with pow-
erful extensions of the intuitionistic set theory IZF, extensions which include
Brouwer's Theorem on continuous functions and variations on the axiom of
choice. Hence, there is a limited mathematical resistance to the identification of
data objects with Turing machines. Moreover, whatever reasons one has for
adopting Church's Thesis in the context of recursion theory ought to apply ceteris
paribus to computations in intuitionistic mathematics generally. (One should re-
call that recursion theory is not a province solely of classical mathematics but
can be developed intuitionistically as well.) As we have argued in McCarty [38],
there is little room for telling objections of a nonmathematical sort; those which
have appeared in the literature (cf. [1]) have been based upon an evaluation of
intuitionistic mathematics from standards which are decidedly classical. For in-
stance, that ECT allows one to derive results in real analysis which offend one's
classical sensibilities is no objection whatsoever. On the contrary, given that
Brouwer's Theorem, a hallmark of traditional intuitionism, is flagrantly "anti-
classical", that CT extends our ability to derive "anticlassical" theorems is
something of a compliment. Also, it should be emphasized that attributions of
"weirdness" to intuitionistic results are often based upon the prejudices allied with
judgments of intuitive naturalness for classical theorems. These are the sorts of
prejudices we especially want to call into question.

WCT is, constructively and intuitionistically, a more plausible principle than
Church's Thesis itself, as the intuitive semantical picture suggests. Were CT to
be intuitionistically true, there would need to be available a uniform computable
transformation which converts arbitrary proofs of, say, arithmetic V3 statements,
into indices for effective uniformizations of the matrices of those statements.
WCT does not require nearly so much. According to Beeson ([1], p. 57):

WCT is a principle which is widely regarded as very plausible, although we have
no proof of it. Since it contradicts classical mathematics, we will not find a
proof for it in Bishop-style mathematics. Various metamathematical results sug-
gest that we shall never prove it from something simpler.

Highly germane to this discussion is the metamathematical fact that historically
important principles of Brouwerian intuitionism, such as the Fan Theorem, are
consistent not with CT but with WCT (cf. Moschavakis [40]).

A further principle, one which is not intrinsically connected with comput-
ability, is Markov's Principle (MP). It also features in one of our proofs of in-
completeness for propositional logic. We can represent MP as the claim that

3y. T(e, x, y) is ω-stable.

MP is not derivable in most standard intuitionistic formal systems. Beyond that,
there has been little inclination to look askance at the influence upon intuitionistic
mathematics of MP since it has been taken (on the basis of the syntax of its ex-
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pression) to be "classically correct". One should note (since it enters into the
proofs to come) that, under the influence of MP, the predicate

vx[φ(x) -> (ίe) (x)i Λ ψ(x,[e) (x)))]

from the right side of ECT can be written as an ω-stable predicate provided that
φ(x9 y) can be.

3 Historical preliminaries There are, of course, intuitionistic completeness
theorems for validity with respect to various more-or-less contrived concepts of
interpretation. First, intuitionistic propositional logic is complete and construc-
tively so with respect to interpretations on the frames in the Jaskowski sequence
(Dummett [6]). Evert Beth [3] offered a proof of completeness for constructive
predicate logic with respect to what is now called "Beth semantics". As proved
by Dyson and Kreisel [8], Beth's proof was only constructively correct modulo
a covert appeal to a form of Markov's Principle. Much more recently, Veldman
and De Swart (De Swart [48], Veldman [54], and Lopez-Escobar and Veldman
[33]) have discovered intuitionistic completeness proofs for predicate logic with
respect to interpretations over generalized Beth and Kripke trees.

In contrast, it is known that unaided intuitionistic set theory is wholly in-
capable of proving the completeness of predicate and propositional logic for
the structural semantics of Tarski. First, it should be noted that "Henkin-style"
completeness proofs for classical predicate logic are themselves essentially non-
constructive. For one thing, it is impossible to prove in constructive metamath-
ematics that all "nontheorems" of intuitionistic propositional logic IPL have
countermodels, where a countermodel for sentence φ is a structure β such that
GL#φ. Famously,

f/(φv-.φ)

and this will not imply that

3β. Gh -i(φ v -iφ).

The reason is that -i-ι (φ v -•</>) is a theorem of IPL and, by soundness,

V«. α^-«(0v- iφ) .

Second, the familiar "maximal set" construction that produces a countable
model from a countable consistent theory cannot be carried out in any of the or-
dinary constructive formalisms, including set theory plus choice principles. The
countable models theorem, even if restricted to theories of subfinite structures
in the language of pure identity, implies Kripke's Scheme, which is independent
of those formalisms. (As we said, the last section of the present paper contains
a proof of this fact.)

Most telling of extant results is the fact originally discovered by Gόdel and
described by Kreisel in [26]: that general validity for formulas of intuitionistic
predicate logic implies the truth of the primitive recursive form of Markov's Prin-
ciple. The latter is independent of set theory (and was not in general use by tra-
ditional intuitionists), so the completeness theorem for the attendant validity
concept is unprovable in set theory.
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Kreisel, in [27], showed that, under the assumption of Church's Thesis, in-
tuitionistic validity for predicate formulas is not recursively enumerable. It
follows that there is no axiomatization for the internal logic of the Kleene realiz-
ability structure. KreisePs theorem received improvement at the hands of van
Dalen [5] and of Leivant [29], who showed that a weaker form of CT can be used
to get KreiseFs result. In [37], there is a proof that, under Weak Church's Thesis
and Markov's Principle, first-order arithmetic is categorical and, hence, that
validity is nonarithmetic. Among other things, this means that, even if we were
to add as axioms sets of formulas defined by arithmetic predicates of arbitrary
complexity, we still could not capture the logic internal to Kleene's realizability.

Kreisel had earlier demonstrated, in [26], that, when interpretations are pa-
rameterized with choice sequences, there are formulas of predicate logic which
are valid but are not intuitionistic theorems. In the note [11], Friedman claimed
to have used a form of Church's Thesis for a similar constructive incomplete-
ness theorem with respect to Tarski-style interpretations without choice param-
eters. So far as we know, a complete proof for Friedman's result has yet to
appear (cf. [31] and [32]). The sketchy remarks of [11] suggest that the proof
method intended there differs from that described in the present account. It re-
mains to be seen whether these results require CT or merely WCT.

There have also been a number of limited intuitionistic completeness the-
orems for Tarski-like semantics. In Kreisel [25], there is a proof that, if one
makes nonclassical assumptions concerning lawless sequences, various fragments
of intuitionistic predicate logic are provably complete. In [11], again under ax-
ioms for lawless sequences, a proof of completeness for the negation-free frag-
ment of intuitionistic logic is sketched. A similar result can be found in [6] as
a corollary of the completeness theorems of [48] and [54].

4 Classical arithmetic is semantically inconsistent

4.1 Detailed prospectus of results What follows in this and the next main
sections is a simple proof—along the outlines of the informal arguments recently
sketched—that WCT, a weak form of Church's Thesis, entails that the standard
intuitionistic (and classical) predicate logics are both incomplete with respect to
Tarskian semantics. The classical reader who is nonplussed by such an outcome
is reminded that WCT is a so-called "anticlassical" axiom of intuitionistic math-
ematics. When added to intuitionistic arithmetic or set theory, WCT will have
consequences which, if interpreted naively, appear to contradict well-known the-
orems of classical mathematics. In the present section, we see that it has as a con-
sequence a seeming contradiction to Gόdel's completeness theorem. The mainstay
of the proof is the construction, from the Gόdel-Tarski fixed-point theorem, of
a modest formula which is valid but not provable in either Heyting's predicate
logic IPL or, for that matter, in the classical predicate logic CPL. Intuitively,
the formula is a register of the recursion-theoretic reasons for the intuitionistic
failure of the law of excluded middle. Section 6 of the present paper then fur-
ther refines the basic theorem by showing that there is room for incompleteness
even within the closer confines of pure predicate logic.

It is not our contention that results such as these are entirely new. Similar
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theorems have been proved by Kreisel, as reported in [26], and have been claimed
by Friedman in [10] and [11]. Friedman's results are described, without proofs,
in [32]. It is our contention, however, that there is value in the relative simplic-
ity and directness of our proofs of these theorems.

The incompleteness theorem for propositional logic (appearing in Sections
7 and 8) is an application of a theorem of Rose [44] to the question of the com-
pleteness of propositional logic under Tarskian interpretations. Here, extended
Church's Thesis (ECT) and Markov's Principle (MP) come into play. The con-
sequence is this: there is a valid propositional formula Ψ in two variables such
that, within second-order arithmetic, ECT and MP imply that Ψ is not provable
in Heyting's propositional logic. It will follow that intuitionistic Zermelo-
Fraenkel set theory, extended with realizably true principles such as ECT and
MP, is inconsistent with the claim that the intuitionistic propositional calculus
is complete in the conventional sense of the term. Also, we show that there is a
single arithmetic instance of Ψ which is independent of all classical Harrop ex-
tensions of Heyting arithmetic and there is a set-theoretic instance of Ψ which
is independent of intuitionistic set theory.

We have chosen to include material on the completeness of propositional
logic because, insofar as incompleteness is concerned, predicate logic had received
a surfeit of attention. It is certainly worth redressing the imbalance and emphasiz-
ing the fact that the intuitionistic failure of completeness has as much to do with
propositions as with predicates or quantifiers. Rose's theorem, from which we
extracted the independent propositional formula Ψ, is well-known in a certain
classical context: it falsifies Kleene's conjecture that intuitionistic propositional
logic is complete with respect to arithmetical substitutions under standard realiz-
ability. It has not, at least as far as we know, been put to work to give an inde-
pendence result for Tarskian completeness within an intuitionistic metatheory.

Rose's formula contains two propositional variables. The natural question
arises: Is it possible to prove that intuitionistic logic is complete with respect to
Tarskian semantics for propositional formulas containing at most one proposi-
tional variable? The correct answer turns out to be negative: as we see in Sec-
tion 9, the intuitionistic set theory IZF, together with Brouwer's Theorem, cannot
prowQ that propositional logic in one variable is complete. In fact, it is consis-
tent with IZF to assume that validity for propositional formulas in one variable
is not arithmetically definable.

Our tour of incompleteness concludes with a remark on a surprising connec-
tion between a countable models theorem for theories of pure identity and
Kripke's Scheme, a principle proposed for the axiomatization of Brouwer's ideas
on the creative subject.

4.2 Strong incompleteness Classical first-order Peano arithmetic (PA) is a
finite extension neither of Heyting arithmetic (HA) —PA's constructive frag-
ment—nor a fortiori of intuitionistic logic. Consequently, an intuitionistic proof
that Peano arithmetic has no models directly entails only an infinitary or strong
incompleteness theorem for constructive logic. Such a strong incompleteness re-
sult is the subject of the present section. It stands as a useful prolegomenon to
the next section, where we use the same proof idea to give a proof of single-
formula or weak incompleteness, which is, of course, a stronger result.
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For the moment, IPL will stand for constructive first-order predicate logic
with identity; each of [6], [22], and [50] offers a menu of alternative formaliza-
tions of it. Throughout the sequel, the derivability relation, h, will be that of
IPL. CPL will refer to the classical system obtained by adjoining to IPL the gen-
eral principle of the excluded third. The object language for the first incomplete-
ness theorems will be that of Peano arithmetic, which is assumed to contain a
sign _L for distinguished logical falsehood.

The metatheory, which we call Γ, need not be precisely given. It should con-
tain arithmetic and sufficient resources to manipulate arbitrary sets as the
universes of structures and to define satisfaction for an arbitrary structure along
Tarskian lines. The arithmetic should be sufficient to prove something like the
Gδdel-Glivenko translation of PA into HA so that T h (Con(PA) <-> Con(HA)).
We also take it as given that T proves Con(HA). IZF (intuitionistic Zermelo
Fraenkel) would do as T, as would HAS (intuitionistic second-order arithmetic)
or any number of alternative constructive systems. Letters such as Q range over
structures of appropriate signature. eW is the standard model of arithmetic. The
function λx. \x] is a primitive recursive coding of formulas as integers. Hence,
we say that \ψ] is the Gόdel number of formula ψ. The sole anticlassical as-
sumption of the incompleteness proof is Weak Church's Thesis (WCT), as de-
scribed above.

The results of this section give incompleteness results with respect to some
of the completeness concepts canvassed in the literature.

Definitions

1. IPL is strongly complete if and only if, for all sets Γ of formulas and in-
dividual formulas φ,

Γ h φ whenever Γ N φ.

2. IPL is strongly almost complete if and only if, for all sets Γ of formulas
and formulas φ,

-i -i (Γ h φ) whenever Γ 1= φ.

These are some of the more familiar of the completeness notions described
in sources such as [6] and [51], to which the reader is referred for further details.
Terminology is nowise standard; the notions are named to suit ourselves. The
relation between strong completeness and strong almost completeness is very sim-
ple, as the next proposition shows.

Proposition 4.1 If IPL is strongly complete, then it is strongly almost com-
plete. The converse fails in general.

In the following theorem, the metatheory Γplus WCT implies that PA has
no models and, hence, is semantically inconsistent. By assumption, Γalso proves
that PA is syntactically consistent. Therefore, in Γplus WCT, IPL is sound but
not strongly almost complete while CPL is both unsound and not strongly al-
most complete.

Theorem 4.1 (In Tplus WCT) PA 1= ±.
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Proof: Let β 1= PA. The law of excluded third is a theorem of PA; so, for any
sentence φ,

either G 1= φ or a # φ.

As the intuitionists would say, this means that the predicate {\φ] :(£ 1= φ] is
decidable over those integers which are Godel numbers of sentences. Hence, CΎ
implies that the predicate is recursive. Therefore, there is a total recursive func-
tion with index e such that, for all Godel number [φ~|,

[e}(\φ]) = 0 iff β(=φand

{e}(\φ] = 1 iff β h - i φ .

By the property of numeralwise representability for PA (or its intuitionistic ver-
sion HA), we know that there is a formula Σ(x) in one free variable such that,
for any arithmetic sentence φ,

a 1= Σ( \φ]) just in case <S 1= φ.

However, the Gόdel-Tarski fixed-point theorem for PA shows that there can be
no such formula. Therefore, PA has no models or PA N ±.

This conclusion, that PA has no models, is stable; in other words, as a prop-
osition, "PA has no models'* is closed under double negation or "PA has no mod-
els" is equivalent to "-1-1PA has no models". Now, as the argument we have just
completed shows, the latter statement will follow just as smoothly from the as-
sumption that the predicate {\φ] : Gί t= φ] is not not (~>->) recursive. The latter
is just the consequent of WCT. Therefore, the claim that PA has no models fol-
lows as properly from WCT as it does from CT.

Corollary 4.1 (In Tplus WCT) IPL is not strongly almost complete and,
therefore, not strongly complete.

Proof: By [13], Tproves that

Con(PA) <+ Con(HA).

Therefore, with WCT, T proves

PA|/J_andPAI=_L.

We have the same result, in our intuitionistic metatheory, for classical predi-
cate logic CPL:

Corollary 4.2 (In Tplus WCT) CPL is consistent, but neither sound nor
strongly almost complete. Hence, it is not strongly complete.

Proof: Immediate.

5 A consistent formula which implies i. To apply the reasoning of the pre-
ceding section to a single formula, one need only locate a finitely axiomatizable
theory in which arbitrary recursive functions are represented and for which the
internal fixed-point property holds. The candidate theory, which we call S, has
equality as its only basic predicate. Its set of primitive function signs contains
a nullary sign 0 for zero and a unary sign for successor. Consequently, it includes
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the usual numerals. We take n to be the numeral denoting the number n. The
language for S also includes a binary function sign Sub for the metamathemat-
ical substitution function, a 4-ary sign T for Kleene's computation, and result-
extraction functions and signs for whatever primitive recursive functions would
appear in typical Gόdel-Herbrand derivations for Sub and T.

Sub, which represents the Gόdel substitution function has the property that,
for all n9

Sub(\φ]9n) = \φ[x/n]],

provided that φ has at most the variable x free. Our T predicate represents a
primitive recursive computation-and-output function, in other words, a logical
conjunction of Kleene's computation and result-extraction functions. We assume
that, for all n, m9 p, and q9

either T(n9m9p9q) = 0 or T(n9m9p9q) = 1,

and T(n9m9p9q) = 0 precisely when/? codes the complete computation of the
Turing machine n on input m and the output of that computation is q.

Only finitely many equational axioms are needed to guarantee for S the ob-
vious representation properties. Specifically, we insist that for all natural num-
bers n9 m9 p and q,

Sub(n9m) = p iff S h Sub(n9m) = p and

T(n9m9p,q) = 0 iff S h T(n9m,P,q) = Q.

(Here, the occurrences of Sub and Γon the lefthand sides of each of the preced-
ing biconditionals refer to the nonformal, intuitive versions of the substitution
and computation functions, respectively.) The axioms required to afford such
a guarantee should also include an axiom forcing Γto be functional in its third
and fourth arguments, i.e., that

T(x9y9z, w) Λ T(x9y9a9b) -»(z = a Λ w = 6).

The last axiom of S expresses the universal testability (another instance of
traditional intuitionistic terminology) of the halting problem:

Vxvy [ -. 3zT(x9 Λ z, 0) = 0 v -i -i 3zT(x9 y9 z9 0) = 0].

Note Historically, a statement φ of intuitionistic mathematics was consid-
ered testable whenever

-ιφ V -i-iφ

is true. Similarly, a predicate P(n) was taken to be universally testable if

VΛ[-IP(«) v -ι-ιP(fl)].

Brouwer and Heyting found the notion of testability to arise naturally in the pro-
cess of giving weak counterexamples to theorems of classical analysis (cf. [17]).

Definition Any sentence of the form

-i3zT(n9Sub(m9rn)9z,Q) = 0 .

is said to be an instance of T or, simply, an instance.
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Because S contains the axiom of testability for the halting problem, any
model for S will contain a recursive truth predicate for all instances. Therefore,
it follows from the fixed-point theorem that S, like PA, is semantically incon-
sistent. This is the content of the next theorem.

Theorem 5.1 (In Tplus WCT) S 1= ±.

Proof: We follow a proof-idea similar to that used in the case of PA. Let Q, N
S. From the testability of the halting problem, we know that, for any instance φ,

either G 1= φ or a # φ.

CT implies that the predicate {[φ] : β 1= φ] is recursive on the Gόdel numbers
of instances. Because of representability and functionality for T9 there is an n
such that, for all instances φ,

a N 3z. T(n9 ΓΦ1,z,Q) = 0 iff β N φ.

We now construct a fixed point for the formula

-<3zT(n9Sub(x9x)9z9Q) = 0 .

Let m be Gόdel number of the above formula and let σ be the instance which re-
sults from "self-referential" substitution:

-i3zT(n9Sub(m,m),z,Q) =0.

It should be clear that

S\-σ++-ilzT(n9\σ]9z,Q) =0.

and, hence, that

a t= σ if f a ¥ σ.

Therefore, S has no models.
This conclusion that S has no models is stable, so it follows not only from

CT but from WCT as well.

To each of the infinitary completeness notions, there corresponds a notion
for finite sets of formulas:

Definitions

1. IPL is complete if and only if, for all formulas φ,

\-φ whenever \=φ

2. IPL is almost complete if and only if, for all formulas φ9

"i -i (hφ) whenever Nφ.

Corollary 5.1 (In Tplus WCT) IPL is neither complete nor almost complete
for single sentences.

Proof: In PA, there is a proof of Con(S) and Con(S) is a negative sentence.
Therefore, by the Gδdel-Gentzen translation theorem [13], there is a proof of
S 1/ -L in T. Hence, there is a proof of V - S in T. But, by the theorem above,
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Γ + WCT proves that ->S is valid. Hence, Γplus WCT proves that IPL is nei-
ther complete nor almost complete.

By the same token, there is a similar result for classical logic:

Corollary 5.2 (In Tplus WCT) CPL is consistent but neither sound nor com-
plete for single sentences. It also fails to be almost complete.

Just for the record, we list results which follow immediately from the last cor-
ollary but one. ECT is Extended Church's Thesis, MPS is Markov's Principle for
sets, RDC is Relativized Dependent Choice, BP is Brouwer's Principle for Num-
bers, UP is Troelstra's Uniformity Principle, PAC is the Blass-Aczel Presenta-
tion Axiom of Choice. ECT has already been introduced; fairly authoritative
descriptions of the others can be had from [1].

Corollary 5.3 The almost completeness of IPL/OA single sentences is incon-
sistent with each the theories

• IZF + ECT + MPS + RDC + PAC + UP and
• IZF + WCT + MPS + RDC + BP.

Proof: The first claim is proved by noting that the axioms there mentioned hold
under the "1945" Kleene realizability interpretation for set theory and that ECT
implies WCT. For the second, one checks that the axioms listed hold under the
"realizability" interpretation which draws realizability witnesses from the r.e. sub-
structure of the Plotkin-Scott graph model. Full details are available in [1], from
which it will be clear that other principles, e.g., for local and uniform continu-
ity, could well be added to these lists.

6 Incompleteness in pure predicate logic The incompleteness theorem just
obtained for first-order logic with functions and identity can be transfered to pure
constructive predicate logic. The proof of this fact, which proceeds by axiomatiz-
ing a theory of primitive recursive functions as predicates, is standard, so our
exposition will be brief. A reader who needs more convincing is advised to con-
sult either [26] or [6].

An appropriate language will contain as primitives a unary predicate Z and
binary predicates Su and E, for zero, successor, and equality, respectively. Then,
for each primitive recursive function f(xo,... ,xn-\) other than successor which
featured in the old system S, there will be an n + 1-ary predicate symbol Pf. The
theory in this language which corresponds to S will be called SP and is axioma-
tized (finitely) by the sentences of the following five groups. All open formulas
are to be given a universal reading.

I. Axioms for equality
l.Exx
2. (Exy A Ezy) -> Ezx.

II. Axioms for zero and successor
1. ixZx
2. VxlySxy
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3. (ZxAZy)^Exy
4. (ZxASyz)-* ~^Exz
5. (Sxy Λ Sxz) -> Eyz
6. (Syx A Szx)-+Eyz.

III. Axioms for substitution
For each primitive Λ-ary predicate P and i < n,

( P ( * o , , X h > * * - i ) Λ E x t y ) -• P ( x o > . . . , ^ , . . . , * f ! - i ) .

IV. Axioms for primitive recursive functions
For each primitive recursive function sign/ occurring in the axioms for S,

there is a set consisting of either two or three axioms governing the correlative
predicate Pf. These ensure P/s representability. For example, if / is a binary
primitive recursive function, then the axioms will entail that, for all n, m, and
A f(n, m) = p if and only if

[ZXQASXQXI A.../\Sxr^xr] ->Vz[Pf(xn,xm,z)++Ezxp]

is derivable. Here, ΛΓO> ^I> ««xr-i>Xr is the first sequence of distinct variables
which is longer than the largest integer value which features in a minimal Gδdel-
Herbrand derivation for/(rt, m) =p. Recall that open formulas in this section
are to be given a universal reading.

We will not set out all the requisite axioms; a single example should suffice
to get the idea across. If/, g, and h are primitive recursive functions featuring
in S and if, for all n,

f(n)=h(g(n)),

then the relevant axioms will be

1. (Pfxy A Pfxz)-+Eyz
2.(PgxyAPhyz)-+Pfxz.

Lastly, there are

V. Axioms for the functionality and testability of the computation predicate
1. (Pτxyzw A Pτxyuυ) -> (Ezu A EWV)
2. Zu -> (-ilzPrxyzu v -i-ι3zPτxyzu).

Let SP be the conjunction of the axioms from groups I through V. Using
representability for the substitution function, one can easily see that SP gives de-
finable fixed-points:

Definition For each r9 N(r) abbreviates the formula

ZXQ A SXQX\ A . . . Λ Sxr—\Xr

where JCO,JCI, .. .xr-Uxr are the first r + 1 distinct variables.

Proposition 6.1 For any formula Σ(x) in the single free variable x, there is
a sentence σ and a number m such that the Gόdel number q of σ is Sub(m, m)
and SP proves that

N(r)^[σ~Σ(xg)].
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Here, r is the least integer greater than all those appearing in a minimal deriva-
tion of Sub(m,m) = q.

Proof: The usual proof of the fixed-point theorem is easily converted into a
purely predicate form.

Once again, our principal interest will be the fixed-point of an instance of
the computation predicate:

Definition A sentence of the form

N(r) -• Vy(PSubXmXmy-+-ι*zPτXnyzxo),

where r is chosen sufficiently large, is called an instance of T.

Now we can simply follow—using predicates—the argument of the last sec-
tion to prove

Theorem 6.1 {In Tplus WCT) SP h _L.

The incompleteness results recorded in the corollaries of Section 4 also ap-
ply to pure IPL and pure CPL.

Finally, we note that a minor change to the axioms of SP suffices to put the
incompleteness theorem into a very sharp form.

Theorem 6.2 (Tplus WCT) There is a sentence φ of the language of pure
predicate logic which is negated prenex and contains only one appearance o/v
such that φ is valid but unprovable in both IPL and CPL.

Proof: To the axioms for SP one adds the decidability of zero,

Zx\ι -iZx

and replaces the testability of the halting problem with its decidability,

Zu -» {izPγxyzu v -*3zPτxyzu).

Let Spi stand for the conjunction of the resulting axioms. Since SPί implies SP

and the latter entails ±, so does the former. But, neither -ιSPΪ nor ->SP is clas-
sically or intuitionistically provable. As is familiar, the v-subformula of the dis-
played decidability condition on Pτ can be replaced by an equivalent formula
written solely in terms of 3, -*, and Λ. After such replacements are made, SP\
is readily put into prenex form.

7 Incompleteness for propositional logic From Markov's Principle (MP)
and ECT, Γwill prove that there is a simple propositional formula Ψ which is
valid but derivable neither in constructive propositional logic nor in any of its
classically correct Harrop extensions. Ψ is the following formula in two variables
from the {->,-sv} fragment:

[(-τ-|</) -• φ) -» (-ι-ιφ V -10)] -• ( - i - φ V -•</>)

where φ is

->/7 v -ι<7
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for atoms p and q. Ψ was first employed by G. F. Rose in [44] as a counterex-
ample to Kleene's conjecture that a propositional form is a theorem of construc-
tive logic if all its arithmetic substitutions are realizable. Rose's original argument
was classical; the plan of our proof is to constructivize Rose's argument by ap-
plying ECT and MP (restricted to primitive recursive predicates). For the pur-
pose at hand, we need to assume that the metatheory T extends HA and includes
quantification over arbitrary subsets of <Λί.

As we said earlier, ECT is a relativized form of Church's Thesis:

vx[φ(x) - iyφ(x,y)] -> levx[φ(x) -> ([e] (x)i Λ φ(xΛe] (x)))].

Individual variables x, y and z range over the natural numbers and φ ranges over
the "ω-stable" predicates. The notation 6{e] ( x ) i ' means that the Turing machine
with index e eventually halts when started on input x. Again, a predicate Θ(Λ:)
is ω-stable when, for all natural numbers n,

-.iθ(Λ)-θ(/!)

is constructively true.
The reader will also recall that MP is Markov's Principle restricted to primitive

recursive predicates and is expressible as the single statement that ly. T(e,x,y)
is ω-stable.

IPropL is the propositional fragment of Heyting's predicate logic. Under
standard Tarskian semantics, a propositional formula

θ(p,q,r)

in the atoms p, q9 and r will be valid provided that, for every assignment v of
subsets of {0} to/7, q, and r, the usual extension v* of v assigns {0} to θ .

Theorem 7.1 (T+ ECT + MP) Ψ is valid but provable neither in IPropL nor
in IPL.

Proof: In proving that Ϋ is valid, we drop explicit reference to the assignment
function υ.

Under interpretation, the antecedent of Ψ expresses the claim that

0e t(- -iφ->φ)-> (i-iφv -iφ)].

Obviously, -i-iφ (under any specific interpretation) defines an ω-stable property
of natural numbers. Therefore, ECT (in T) proves the embedded antecedent
(-i -ιφ -> φ) of the above-displayed statement equivalent to

3evn[n€: - ι - n φ - > [e](n)i

Λ ({e} (n) < 2) Λ ({e} ( n ) = O ^ θ € π p ) Λ ({<?} (n) = 1 -> 0 G -*q)].

This formula, minus its leading existential quantifier, we call χ(e) and remark
that, by our earlier note on the influence of MP on ECT, it is ω-stable. Conse-
quently, ECT is again applicable and, together with MP, it proves the original
antecedent of Ψ equivalent to the formula

lgve[χ(e) - ({g} (e)i Λ ({g} (e) < 2) Λ ({g} (e) = 0-+0 e-^^φ)
Λ(U)W = Nθeπ«)].
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The result of deleting 3g from this formula will be called Δ(g). With MP added
to T, it is also ω-stable.

Now, we assume that the antecedent of Ψ is true under v and argue by cases.
First, if φ is false under v, then

V(φ) = 0 = v(-τ-ιφ)

and both An.O and AnΛ satisfy χ(e).

Note An.p(n) is Kleene's notation for an index of a machine computing the
recursive function \n.ρ(n). An.O and AnΛ are computable in a standard fash-
ion from 0 and 1, respectively.

Therefore, with g as given in the last display but one, both

g(An.O)lΛg(An.O) = 1

and

g(AnΛ)lΛg(An.l) = 1.

On the other hand, when φ is true with respect to v, then either -1/7 or -ιq
is true. If the former is true, then

g(An.O)lΛg(An.O) = 0.

If the latter is true, then

g(AπΛ)iAg(AnΛ) = 0.

Independently of the argument by cases, one can define a recursive search
procedure σ(g) on g such that σ dovetails through the computation sequences
for g on An.O and AnΛ, determines which of the three possible cases obtains and
computes according to the following receipe:

IΊifg(ΛΛ.O) = l=g(Λ/i.l)

[0 o.w.

The classical argument by cases sketched above gives assurance that σ(g) termi-
nates; a parallel constructive argument shows that it is not absurd that σ(g) ter-
minate. One application of MP then proves termination outright.

Another application of ECT shows that the original formula Ψ, under as-
signment v, is equivalent to

lhVg[A(g) -> [h](g)i Λ ah](g) < 2) Λ ({h} U ) = 0 - > 0 G -.-iφ)
Λ ({*}(*) = 1-0 eiφ)].

If we set

{*}(*) =<σ(g),0>,

then h will satisfy the matrix of the preceding display and witness the fact that
Ϋ is true under v.

Therefore, since the assignment v was chosen arbitrarily, Ψ is valid. But any
of the standard decision procedures for IPropL is constructively available and
these show that Ψ is not derivable.
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Note IPL is provably conservative over IPropL, so there are predicate in-
stances of Ψ which are independent of IPL.

The following corollaries to the theorem require the notion of a Harrop for-
mula of propositional or of predicate logic.

Definition A formula of a propositional language is Harrop whenever it has
no strictly positive part with v as its principal operator. A formula of a first-
order language is Harrop whenever it has no strictly positive part with either 3
or v as principal operator.

An alternative definition and examples appear in Section 1.10.5 of [50].

Corollary 7.1 (T + ECT + MP) IfE is any classically correct extension of
IPropL by Harrop formulas or any classically correct extension of IPL by Harrop
formulas, then there is an appropriate instance of Ψ which is valid but indepen-
dent ofE.

Proof: It suffices to observe that the obvious five-stage Kripke countermodel
for Ψ can be constructed from models of classical logic by two applications of
Smorynski gluing. (Cf. [46].)

8 Incompleteness and independence in arithmetic and set theory A proof
of De Jongh's theorem (as in [46]) entails that there is an instance of Ψ which
is independent of any extension of HA by Harrop formulas. There are also in-
stances of Ψ which are unprovable when the schemes of transfinite induction,
uniform reflection, and (arithmetic) Markov's Principle are added to HA. More-
over, Ψ has a set-theoretic substitution instance Ψγ which is independent of ex-
tensions of standard constructive set theory.

Theorem 8.1 (T + ECT + MP) There is an arithmetic Σx substitution in-
stance ofΨ which is valid but which is not provable in any extension o/HA by
an r.e. set of Harrop formulas consistent with classical Peano arithmetic.

Proof: By results of Kreisel and Friedman (cf. [50]), we may assume that there
are theories U and Ucl extending HA and such that

1. U is a subtheory of our metatheory Γ,
2. Ucί proves Henkin's strong completeness theorem and is sufficient for

the treatment of Kripke models for HA as in [46] and
3. Ucl is conservative over U with respect to Π2 sentences.

Working in Ucl, we assume that E is r.e., consistent with PA and axioma-
tized by Harrop formulas. Then, by the incompleteness results of [28], [41], and
[42], we know that there are Σ? sentences σ and r which are independent of PA
and such that each of

• E0 = E+ σ + τ
• Ex =E+ -iσ + rand
• E2 = E+ σ+ -»r

is consistent with PA. By the Henkin completeness theorem, there is, for each
Eh a nonstandard model β, such that CE, f= Eh The β, can be glued to form a
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five-stage Kripke model JC which is demonstrably a model for HA + E. First,
glue d\ and G2 and then glue the result to β 0 .

Now, let Ψστ be the sought Σx instance of Ψ formed by replacing p by σ and
q by r. It is a simple observation that

As a consequence, we have HA + E (/ Ψστ.
This result shows that Ucl proves the purely arithmetic statement

[Con^ (E) Λ Harrop(£)] -+HA + EV %τ.

The latter is, in PA, provably equivalent to a Π2 statement. Therefore, under the
assumptions listed at the start of the proof, Γ + ECT + MP proves the theorem.

If « i s a primitive recursive well-ordering of the natural numbers, then the
corresponding scheme of transfinite induction, TI«<), is the set of formulas

vχ[vy{(χ.Φ{y) -> Φ(χ)] -> vχΦ(χ).

For an r.e. set of formulas E, the uniform reflection principle, RFN(ii), is the
scheme

vy[ixPrE(x,rφ(yΓ) -+φ(y)].

PrE is a primitive recursive proof predicate for HA + E; y is the Gδdel number
of the formal numeral denoting y. Again, we are assuming that E is classically
consistent and axiomatized by Harrop formulas.

Theorem 8.2 (Γ + ECT + MP) IfΦ = TI(«), RFN(£) or MP, there is an
arithmetic instance of Ψy of Ψ which is valid but such that

HA + Φ t / * 7 .

Proof: In the cases of TI(«) and RFN(£), we proceed much as in the last the-
orem, using the result of [46] that TI(«) and RFN(is) are preserved under arith-
metic gluing. In the case of MP, we can use a classical proof of de Jongh's
maximality theorem for HA -I- MP (as on page 384 of [46]) and then transfer the
Π2 result from Ucl to T.

Lastly, we prove that there is a simple, set-theoretically definable instance
Ψy of Ψ which is, in T+ ECT + MP, provably independent of constructive set
theory provided that set theory is consistent. Thanks to [12], we can assume that
the axioms of the constructive set theory in question (we call it E) are essentially
those of standard Zermelo-Fraenkel including extensionality; the background
logic is, of course, IPL. Furthermore, we can take E to be, in T, provably equi-
consistent with ZF. For a precise listing of the axioms of a suitable E9 the inter-
ested reader may consult [12] or [1]. T + ECT + MP will prove that ΨΎ is
intuitionistically valid but that

Con(£) implies EV%.

Our proof exploits techniques familiar from the study of Heyting-valued mod-
els V(7), a concise introduction to which is [15]. One can, without impropriety,
think of V(τ) as a constructive analogue to a Scott-Solovay Boolean-valued uni-
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verse V((R) as described, inter alia, in [2]. If r is a topology, V(τ) will be the cu-
mulative universe of τ-valued sets; V(τ) N represents truth over V(τ). If φ is a
sentence of the language of set theory, [ φ l will be its Heyting value, an open
set of T, when interpreted over V(τ).

We begin with an independence result proved in classical ZF:

Theorem 8.3 (ZF) There is a topology r and a definable instance Ψy of Ψ
such that

Proof: Let $ be the partial order which is constructed by first gluing together
a copy of the natural numbers d\i —under their usual order— with a copy of the
set of 2 < ω of all finite binary sequences under the prefix order. Then, we glue
the resulting ordered set together with a degenerate order, containing one ele-
ment which we call a. In the set $, we let b name the least element of the copy
of cN and c the least member of the copy of 2 < ω . Then r will be the usual forc-
ing topology on $: the collection of sets closed upward under the glue-induced
ordering. For any point x of #, let xt be the open set determined by x. With s
and t variables restricted to range over (P({0}), we can take the full law of the
excluded third or TND to be the set theoretic claim

V5(θG5Vθί5) .

In the same vein, we take LIN to be the assertion that the subset order on (P({0})
is linear:

V 5 , ί ( 5 C ί v ί C S ) ,

Now, let Ψ7 be the instance of Ψ obtained by substituting LIN for p and
(-iLIN v TND) for q in Ψ. Using classical logic, one sees easily that the value
of LIN in V(τ) is

[LIN I = β ί U M

and that

Iql = at U cί.

It follows immediately that

V(τ)PΫ 7 .

Note Clearly, this theorem is a special case of the obvious extension of de
Jongh's theorem (cf. [46]) to set theory. The extended theorem is easily proved
from Jaskowski's theorem.

As a reward for formalizing this lemma we get a proof, in T9 that, if E is con-
sistent, then E does not derive Ψ7:

Theorem 8.4 There is a set-theoretic substitution instance Ψy ofΨ such that
our intuitionistic metatheory Tproves

Conί.E) implies that E\f%,

while T + ECT + MP proves that % is valid.
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Proof: The preceding result tells us that there is a formal classical proof from
the ZF axioms of

Since T extends arithmetic, Γwill certify the fact that

ZF(-(V(τ)P* Ύ ) .

We have assumed that T is also capable of proving formalized soundness the-
orems for interpretations over topological models such as V(τ). So, for any set
theoretic sentence φ,

T\-(E\-φ-+ZF\-V(τ) \=φ).

It follows immediately that

Γ h [ C o n ( Z F ) - £ l / * Ύ ] .

ZF and E are provably equiconsistent in Γ, so the proof of the theorem is com-
plete.

9 Formulas in a single variable We return here to the subject of construc-
tive propositional logic for formulas in a single propositional variable. We ob-
serve that there is an elementary semantical argument for the conclusion that
completeness (again with respect to Tar ski semantics) is not provable in T, or,
indeed, in an intuitionistic set theory such as IZF. In fact, we show more: that
it is consistent with intuitionistic set theory to assume that validity for formu-
las in one propositional variable is not arithmetically definable.

Theorem 9.1 It is consistent with Tto assume that constructive propositional
logic restricted to formulas in one propositional variable is incomplete. It is con-
sistent to assume that validity for this logic is not definable in arithmetic.

Proof: Again, we employ the methods of Heyting-valued models but, for the
moment, our metametalogic is classical. This time, let r be the usual order to-
pology on the two-element Sierpinski space {α, b], where a<b. Let Val(φ) be
the set-theoretic statement that formula φ is valid—that is, it gets value {0} under
all assignments of subsets of (0) to its constituent variables. For each x E {a, b],
cΐ is the set of all y such that x < y.

A trivial calculation shows that

IVal(pv-ι/>)I = 6 t ,

while

[-iVal(/>v-ip)I = 0 .

Therefore,

I Val(/7 v -i/?) v -iVal(/7 v -•/?)]] = &ΐ.

If Φ is arithmetically definable, then its external truth is absolute with respect to
V(τ). It follows that it is internally decidable:

V(τ) NΦv-.Φ.
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In this case, that means that

IΦ v -iΦJ = tfΐ.

Since the latter does not hold for Val(/? v -1/7), it is not arithmetically definable.
A fortiori, Val(</>) is not arithmetically definable either.

10 Countable models and Kripke's Scheme Discussions of soundness and
completeness in classical metamathematics are associated, conventionally, with
considerations of results on countable models or downward Lόwenheim-Skolem
Theorems. Since these issues may well be connected in the reader's mind, it may
not be amiss to describe, if only briefly, the status of countable models theorems
in intuitionistic metamathematics. Also, it points up in a relatively dramatic fash-
ion both the rigors to be faced and the rewards one might gain when transfer-
ing elements of classical model theory into traditionally intuitionistic territory.
Although there is no such thing as the countable models theorem—classically or
intuitionistically—for purposes of this section, the countable models theorem will
be understood as the claim that every satisfiable theory in a countable first-order
language has a countable model. Stated in this fashion, the countable models the-
orem bears, intuitionistically, a surprising connection to one of the more prom-
inent foundational issues in Brouwer's analysis, the theory of the creative subject.
One can easily show that the countable models theorem—even restricted to the-
ories in the language of pure identity—implies Kripke's Scheme [KS].

One can think of KS as a comprehension principle for constructive functions.
It says that, for each well-formed formula φ in which the variable/ is not free,
we have

3/[(3>2../>Z=O)~φ].

Here,/ ranges over constructive number-theoretic functions with values in {0,1}.
Obviously, KS is inconsistent with Church's Thesis, for under CT, KS would im-
ply that every predicate is r.e. It also clashes with forms of the axiom of choice
which are otherwise constructively plausible. The result of this section was stated
in [39] without proof.

Theorem 10.1 The countable models theorem implies KS.

Proof: Let φ be a proposition and let X be the subfinite collection

{0}U{l:φ}.

Recall that, intuitionistically, the concepts of finite and infinite take on a much
more delicate logical shading and should be handled accordingly. A set infinite
when it is in bijective correspondence with some natural number and subfinite
when it is a subset of a finite set. The claim that every subfinite set is finite has
a weak counterexample and, so, is not provable in any constructively correct ex-
tension of intuitionistic set theory. Cf. [16] and [34].

Let the structure Q be a countable model for the pure identity theory of X.
Then, there is a function g that maps the set of natural numbers onto the uni-
verse A of ft. Since equality on X is discrete, we may assume that g maps d\( into
cN or that A^Jύ.
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Then, φ holds just in case & satisfies the sentence

3xly.-ιχ = y.

This, in turn, obtains whenever 3«, m.g(n) Φ g(m). The appropriate instance
ofKS,

3/(3«./« = 0 ^ φ ) ,

now follows immediately.

Note The proof of this theorem requires a metatheory with a reasonable Aus-
sonderung axiom; the constructive second-order arithmetic HAS would surely do.
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