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Bounds in Weak Truth-Table Reducibility
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Abstract A necessary and sufficient condition on a recursive function is
given so that arbitrary sets can be truth-table reduced via this function as the
bound. A corresponding hierarchy of recursive functions is introduced and
some partial results and an open problem are formulated.

Weak truth-table reducibility, often called bounded Turing reducibility, is de-
fined as follows: A € w is weak-truth-table reducible to B € w (4 <, B) if
there is a recursive function f and an algorithm which answers questions of
the form “n € A?” when supplied answers to any questions it asks of the form
“m & B?” for m < f(n). The function f is called the bound of the reduction.

The hierarchy of subsets of w induced by the relation <, was extensively
studied in the past (cf. [1]). In this paper, however, a hierarchy of the bounds
(i.e. of recursive functions) is considered. We denote by 8 (f) the set of A such
that there is a B such that 4 <, B via a reduction with bound f, and we write
f<giff 8(f) < 8(g). Of course, R < S(f) < 2¢ for all recursive functions f.
We give necessary and sufficient conditions on f for 8(f) = ® and for 8(f) =
2¢, i.e. for f being on the bottom and on the top of the hierarchy induced by «.
We also give a necessary condition for f < g.

Our interest is focused to the bound of the wtt-reduction by the following
phenomenon: A part of an (in general) nonrecursive set B can be given by a list.
Having the set A Turing reduced to B, a part of A is given which corresponds
to the list of a part of B, and which may be much larger than the list itself —
depending mainly on the bound of the reduction.

A motivation for the study of our hierarchy of bounds comes also from the
theory of nets of automata. Consider a chain of automata numbered by natu-
ral numbers. Suppose each automaton is in one of the two states 0 and 1. Then
the state of the whole net is uniquely determined by a set B € w in an obvious
way. Now let the automata work, and after some time all of them may stop and
the net may come into a state determined by a set A. In a fairly devised net
we would have 4 =<,,;; B. The bound f of this reduction depends on how the
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communication between the automata is devised. Thus the relation <« is a gen-
eralization of the relation “less powerful” among the different kinds of commu-
nication between automata in a net.

We fix our notation first. We use w® to denote the set of functions from w
to w, ® denotes the recursive functions; f [ 4 means the restriction of f to the
domain A; f[A] denotes the image of A under f, f~![A] = {x:f(x) € A}; |A|
denotes the cardinality of 4, 2“4 the power set of the set A; 2<“ denotes finite
sequences of 0’s and 1’s; if ¢ is a finite string (i.e. ranging over 2<“) we use the
length function lh(¢) = ux[x & dom o] = |dom o|. For a finite set F let ind F
denote the canonical index of F, i.e. if F = {y;,..., .}, Y1 <:--< y,, then
indF=2"+..-4 2;ind @ = 0. We write F = Dyqf.

We identify sets with their characteristic functions, the integer » with the set
{0,1,...,n — 1}, and the integer 0 with the set &.

Let {e)? denote the (possibly partial) recursive function with index e rela-
tive to the set B. For ¢ € 2<“ let us define o’ € 2 by o'(x) = d(x) (x <lho)
and o’(x) = 0 (x = lh ¢) and define {e)°(x) = y iff {(e)° (x) = y and only num-
bers z with z < lh(o) are used in the computation. We define (e, f)“, the Tur-
ing oracle function with index e, oracle 4, and bound f as follows:

e,y (x) =y (30 €2<) [0 € A A lh(0) = f(x) + 1 A (e)(x) = y].
Further let
$(f) ={SCSw: (34 S w)(Fe € w) [S = (e, /Y]],

i.e. 8(f) denotes the set of all subsets of w which are weak truth-table reduci-
ble to an oracle via bound f.
Obviously

22 8(f) 2 R.
Put
f<go8(f)c8(g)

and call f maximal iff $(f) = 2“ and minimal iff S(f) = ®.
It is obvious that, e.g., Ax(x) is maximal and Ax(0) is minimal. A function
f defined by

f(2x) =0
fCex+1) =2x+1 (XEw)

is not maximal, because for each 4 € $(f) the set A N {2x:x € w} must be
recursive; and it is not minimal, because for some A € $(f) the set 4 N {2x +
1:x € w} need not to be recursive.

Theorem 1 fis minimal iff f is bounded.

Proof: If f is bounded then the minimality of f follows immediately.
So assume f is not bounded. Obviously there is e € w so that for all 4 € w,
XEw

(e, Y (%) = A(f(x)).
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Because f is unbounded there is a recursive subset S € w so that f[S] is recur-
sive, infinite and f is one-one on S. Choosing A so that f[.S] N A is nonrecur-
sive we get S N (e, )4 nonrecursive whence S$(f) € R.

Lemma 1 If
(L1.1) sup(|f ' [x]] = x) < o
XEw

then f is maximal.

Proof: Let C — 1 be the supremum in (L1.1). We define a recursive function g
by induction as follows:

g(0) = C +£(0)
g(x+ 1) =max((l + C+ f(x+ 1))\g[x + 1]).
In order to have g well-defined we need to show for every x € w:
1+ C+ f(x)\glx] #0.

Assume (1 + C + f(x))\g[x] = 0 for some x and let it be the least such x. Then
gixIN 1+ C+f(x)) =1+ C+ f(x). Choose y maximal with g[x] Ny = y.
Obviously y = 1 + C + f(x).

Claim For each z € x if g(z) <y then C + f(2) < ).

Proof: Assume g(z) < y and C + f(z) = y. Then obviously z # 0. Because
g(z) =max((1 + C+ f(z))\glz]) we have y € g[z] whence y € g[x], too. But
then g[x] N (1 + y) =1 + y. This contradicts the choice of y.

Because for each z € x by definition g(z) & glz], g is injective on x
and we have |g~![y]| = y, i.e. by our claim g~ !'[y] € f~![» — C] whence
|f~'[y = Cl| =y, i.e. |f'[y—C]| — (y — C) = C. This contradicts the fact
that C — 1 is the supremum in (L1.1). Thus g is well-defined and injective.
Moreover,

(L1.2) gx)=sfx)+C (x € w)

is immediate.

Let A S w be arbitrary. Choose o € 2<¢ so that Ih(o) = Cand o(g(x)) =1
iff g(x) < Cand x € A. Choose B S w so that g(x) — C € Biff g(x) = C and
x € A. This is all possible because of the injectivity of g.

Finally, choose e € w so that

o(g(x)) ifg(x)<C
S(g(x)—C) ifgx)=C.
This is possible because of (L1.2). Then obviously

A = (e, f)5.

Note: The construction of the recursive function g in the proof of Lemma 1
shows that (L1.1) implies the following: there is a one-one recursive function g
and a constant C such that (L1.2) holds. This condition is even equivalent to
(L1.1) and hence a condition on f for maximality.

(e, Y5(x) ={
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In order to show the converse of Lemma 1, and thus to give a necessary and
sufficient condition for maximality, we shall prove a more general result. We
shall introduce a recursive functional © which will be of much use later on. It
will be defined by an auxiliary functional ®. For recursive f the function ®f is
defined by:

&f(x,0) =0
&f(x,y + 1) = min{y + 1,81 (x,») + [/~ [{»}] N D,[}.
The function Of is then:
Of (x) = &f(x,1 + max f[D,]) (maxO0 = 0).

The functional © was introduced to have a result like Lemma 6. Intuitively, for
a finite set D, Of(x) yields something like the cardinality of that part of the ora-
cle B that will carry some information for A [ D, in addition to the index e
when A = (e, f)2. We give some properties of © in the following lemmas.

Lemma 2  (vy > max f[D]) [Of(x) = ®f(x, y)].

Proof: Let y > max f[D,] + 1. Then f ~'[{y — 1}] N D, =0 and so ®f(x,y) =
ef(x,y — 1).

Lemma3  ©Of(x) < |Dyl.
Proof: One shows easily that

®f(x,y) = 2 |f7'{z}] N D,

<y

whence Of(x) < | D,|.
Lemma 4 If D, < D, then ©f(x) < ©f(y).

Proof: Obviously ®f(x,z) grows in z for fixed x. Now it suffices to show that
if D, € D, then ®f(x,z) < ®f(»,z). This follows immediately by induction.

Lemma 5 If D, =D, U {z] then ©f(y) — ©f(x) < 1 (i.e. for all x,y with
D, < D, we have ©f(y) — ©f(x) < |D,\Dy|).

Proof: Let f(z) = u. Then ®f(x,v) = ®f(y,v) for v < u. Obviously ®f(y,u +
1) — &f(x,u + 1) < 1 and then also ®f(y,v) — ®f(x,v) =< 1 for v > u. By
Lemma 2 we get then Of(y) — Of(x) < 1.

Lemma 6  For every recursive f and each e € w:
(e, /YA [Dy: A S w}| <29/™),

Proof: Put S = {{e,fY*[D,:A € w} and Sy = Ke, YA [f ' yIND,: A cC w).
Obviously S < 2™ Px+1 and § = §}, max 1, - Thus it suffices to show
(L6.1) |S,| < 2%,

We show this by induction on y. Obviously for y =0 (L6.1) is fulfilled. Now as-
sume (L6.1) and consider |S,,|. For every z€ f~![y + 1] N D, and A € 2° we
have

(e,fY(z) = (e, [y (7).
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Thus
(L6.2) |Sy41] = {AT (¥ + 1): A4 S w)| s |22 =22*
On the other hand
Spi1 = Ke YT (ST IPIND) U STV NDy): A o)
S{aUB:aeS,ABe2/ [WINDy
whence
|Sy41] =< |8y 21T N NDy|
i.e. together with (L6.2) we get finally
| Sy ] < 23050,
Theorem 2 For every f,g:
(T2.1) f<<g—>§tég(9f(x) —6g(x)) < o=.

Proof: Assume that the supremum in (T2.1) is infinite.
Claim 1 One can construct a recursive sequence (S,),—q SO that
(T2.2) max D, <minD,_ (n<m)
and
Of(s0) > 6g(s0)
(T2.3) Of (8n+1) > O8(Sp+1) + OF(sn).

Proof: The existence of a suitable s, is obvious. Now let sy, . . .,s, be found.
Put z = max Dy,. Then there is a smallest u with ©f(u) — ©g(u) > 6f(s,) +
z + 1. Let s,,, be the canonical index of D,\(z + 1). Then by Lemma 5
Of(sy+1) = 6f(u) — (z + 1) and by Lemma 4 Og(s,,) < Og(u) so that
Of(Sns1) — Og(Sns1) = Of(u) — Og(u) — (2 + 1) > Of(s,).

Now define a function 4 as follows:

0 ifx¢ U D,

new

79 =1 min( 00, 1x NS SN N D,,|

+ Of(ind(f [ f(x)] N Dy))} if x € D;,.

Because we can compute ind(f ~![f(x)] N D) and because under (T2.2 and
2.3) one can decide whether x € U,e,, D;s, and if so then compute n so that
x € Dy, h must be a recursive function.

Claim 2 We have

(T2.4) h(f~'[¥1 N Dy,] = 6f(ind(f~'[y] N Dy,)).

Proof: For y = 0 (T2.4) is obvious. Now assume (T2.4). We have
Sy +1NDg, = (f'[¥yIND,) U (f'{y}] N D;).
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If £ {y}1 N D, = 0 then obviously (T2.4) holds for y + 1, too. So let
Sy N Ds, = {zo,. . -,2k}, 20 < - < Zk. By the definition of # we have

h(z;) = min{y,i + ©f(ind(f~'[¥] N Dy,))},
i.e. together with the induction assumption
R~y + 110 D] =min{y + 1,| f~'[{}] N Dy,|
+6f(ind(f~'[y] N D,,))}.
Further it is obvious that for (0 < u < y)
&f(ind(f~'[y + 11 N Dy,),u) = &f(ind(f~'[¥] N Dy,),u)
so that we have

6f(ind(f~'[¥] N Dy,)) = &f(ind(f~'[y + 11 N Dy,), y)

(T2.5)

and
Of(ind(f~'[y + 11 N Dy,)) = &f(ind(f~'[y + 11 N D;,),y + 1)
whence
6f(ind(f~'[y + 11 N Dy,)) = min{y + 1,6f(ind(f~'[»] N D;,))
+ [T 0 Ty + 110 D))

so that by (T2.5)

R~y + 11 N D] = Of(ind(f~'[y + 11 N Dy,)).
This completes the proof of Claim 2.

Because D, = D; N f~'[1 + max f[D;,]] we have by Claim 2:

(T2.6) h[D;,] = 6f(sn).
Now let e be an index so that
1 ifh(x)eAd

0 elsewhere.

(e, /Y (x) ={

Then by (T2.6) for every n € w and p € 2<“ where lh(p) = r < 6f(s,) we have:
(T2.7) |(Ke, /Y[ Ds,: 0 €296 A g[r=p}| =29/ m 7,

Now we define a set U = U,e,, 0, Where o, € 297 is defined as follows:
Choose gy € 28/(%0) 50 that

(e, fY*[ Dy, & (K0,8)"[Dy,: A € w}.

This is possible because of (T2.7), Lemma 6, and (T2.3). Now assume o,, is cho-
sen. Then choose o, so that g, ,[0f(s,) = g, and

(e, [y [Dy, & Kn+ 1,8)[D;,  :AC w}.
This is again possible because of (T2.7), Lemma 6, and (T2.3).!
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We have now for every n € w and A € w:

(e, YYD, = (e,fY"[D;, # (n,g>[Ds;,,
i.e.

e, /YY # (n,g)y*
whence f <« g. Contradiction.

Whether the converse of Theorem 2 holds or not is an open question. The
author conjectures that condition (T2.1) is a necessary and sufficient condition
for f <« g but he has managed to find neither a proof nor a counterexample yet.

Now we begin proving the converse of Lemma 1 using Theorem 2.

Lemma 7 O(Az(2))(x) = |Dy|.
Proof: Put f = Az(z). We shall show
(L7.1) &f(x,y) = |f~'[y] N D,|.

Lemma 7 follows then immediately from (L7.1).
For y = 0 (L7.1) is obvious. Now assume (L7.1) for some y. Now
| £~ [{y}]1 N D,| < 1 and because ®f(x, y) < y we have

. ef(x,y) + [T NDy| =y +1,
1.€.

f(x,y+1) = [T DIND| + [fTHPNND| =7y + 11N Dy
Lemma 8 If £~ z] is finite then Of (ind f~!{z]) < z.
Proof: Obviously 1 + max f[f'[z]] < z and because for all y

ef(x,y) <y

Lemma 8 follows immediately.
Lemma 9 O(Nz(0)(x) =1 (x €E w).
Proof: Put f= \z(0). We shall show
(L9.1) df(x,y) =1 (x,y € w).

For y =0 and y =1 (L9.1) is immediate. Now assume (L9.1) for some y = 1.
Then f~1[{y}] =0, i.e.

f(x,y+ 1) =3f(x,y) < 1.

Lemma 10  If sup,e,(0(Az2(2)) (x) — Of(x)) < o then for all x, f~'[x] is
finite.

Proof: Suppose that for some x, f~![x] is infinite. Let yo,y;,... enumerate
f~'[x] and for each k = 0, let x; = ind{y,,...,¥x}. Then for all kK = 0,
Of (xx) = &f(xx,1 + max f[D,, 1) < &f(x,1 + x) < x + 1 while by Lemma 7
O(Nz(2))(xx) = | Dy, | = k + 1. Contradiction.

Theorem 3 fis maximal iff

(T3.1) sgp(lf“[xll —X) < oo,
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Proof: According to Lemma 1 it suffices to show that if f is maximal then (T3.1)
holds. If f is maximal then /> Nz(z) and by Theorem 2

)sclelp(e(xz(z))(x) = 6f(x)) < o,
so by Lemma 10 we have in particular

sup(0(Az(2))(ind f~![x]) — ©f(ind f~![x])) < o

XEw
whence (T3.1) follows immediately by Lemmas 7 and 8.
Theorem 3 yields several sufficient conditions for f not to be maximal.
Corollary 1 If

f(x)

limsuyp—— < 1
X

then f is not maximal.
Proof: Let limsup[f(x)/x] < C< 1. Putd = (1 — C)/C. Then d > 0. Obyvi-
ously, for some M = 0
1
xllz=-x-M
/7] = 5 x

whence

M
sup(|f'[x]| —x) =sup d-x — — = .
XEw XEw C

Corollary 2 If

max f(y)
y=<x

lim <1

X— 0o
then f is not maximal.

Proof: Let g(x) = maxy<,f(y). Thus g(x) = f(x)(x € w) so that if f is max-
imal then g must be maximal, too. Corollary 2 follows then immediately by Cor-
ollary 1.

Finally we present two lemmas which serve as examples where the converse
of Theorem 2 holds. They are just the cases where f is maximal and minimal.

Lemma 11 Nz(z) < fif and only if
(L11.1) sgp(e()\z(z))(x) — 0f(x)) < .

Proof: By Theorem 2 it suffices to show that from (L11.1) the maximality of
f follows. Now if (L11.1) then by Lemma 10 we have in particular

sgp(e(kz(z))(indf“[xn — Of(ind f~'[x])) < @
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whence by Lemmas 7 and 8
sup(|fMx]| —x) < o
XEw

so that by Lemma 1 the maximality of f follows.

Corollary 3 [ is maximal iff
iléple(kz(z))(x) - Of(x)| < .
Lemma 12 f< Nz(0) if and only if

(L12.1) Slép(ef(x) — O (Az(0))(x)) < oo.

Proof: According to Theorem 2 we need only show that (L12.1) implies the
minimality of /. Thus assume (L12.1). Then by Lemma 9 Of is bounded. Choose
x so that ©f(x) is maximal and assume that f is not bounded. Then there is
u € w\D, with f(u) > 1+ max f[D,]. Let D,= D, U {u}. Because ®f(a,b) < b
we have Of(x) < f(u) and obviously ®f(v, f(u)) = ©f(x). Then
Of(v) = f (v, f(u) + 1) = min{ f(u) + L,®f (v, f(u)) + 1} = Of(x) + 1.

This contradicts the choice of x. Hence f is bounded, too, so that by Theo-
rem 1 f must be minimal.

Corollary 4 fis minimal iff

i‘éﬁ'ef(x) — 6 (Az2(0))(x)| < oo.

NOTE

1. Note that U is not recursively enumerable in general; though, by this construction,
U is recursive in K (i.e. of degree 0').
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