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On Type Definable Subgroups

of a Stable Group

L. NEWELSKI

Abstract We investigate the way in which the minimal type-definable sub-
group of a stable group G containing a set A originates. We give a series of
applications on type-definable subgroups of a stable group G.

/ Introduction It is not known how to construct a stable group "ab ovo".
The stability of a given group structure is deduced usually from some stronger
properties, for example the group's being abelian-by-finite, or definable in some
stable structure. So at least one could wonder what type-definable subgroups of
a stable group G are possible to obtain. We address this problem here. In a way,
our results generalize Zilber's ideas (cf. Zilber [12]) on generating subgroups by
indecomposable subsets of an ω-stable group G.

Throughout, we work with a stable group G = (G, ,e), which is sufficiently
saturated (i.e., G is a monster model). L is the language of G. Given a type-
definable subset A of G we know that there is A, the minimal type-definable sub-
group of G containing A (cf. Poizat [9]). We investigate here the relationship be-
tween A and A. For simplicity, usually we consider A which is type-definable
almost over 0 . A finite set Δ of formulas of L is invariant under translation if
it consists of formulas of the form φ(u x v y) (w, t>, j> are parameter variables
here). Except in Section 2, Δ with possible subscripts will denote a finite set of
formulas invariant under translation. One of the basic concepts of stable group
theory is that of generic type, due to Poizat ([9]; see also Hrushovski [4]). Re-
call that if H is a type-definable subgroup of G then a strong 1-type r of elements
of i/is generic (for H) iff for every Δ, RA(r) = RA(H)9 where RA is the Morley
Δ-rank (see Wagon [11]). Notice that as Δ is invariant under translation, RA also
is invariant under translation, meaning that for each definable subset X of G and
a EG, RA(X) = RA(a-X) = RA(X a). (This is the idea of "stratified order"
from [9]; cf. also [4].) Let MltΔ denote the Morley Δ-multiplicity. RA(a/A) ab-
breviates RA(tp(a/A)). Let R(p) denote (RA(p): A Q L is finite and invariant

Received August 29, 1989; revised December 5, 1990



174 LUDOMIR NEWELSKI

under translation). R(p) < R(q) means that for every Δ, RA(p) < RA{q). Let
gen(//) denote the set of generic types of H. H° is the connected component
of //. We give a description of gen(A) in topological terms, and prove some cor-
ollaries. We formulate also some open problems. Recall the following remark
from [4], which can be taken as a definition of generic type.

1.1 Remark Assume His a type-definable subgroup of G. Then r, a strong
1-type of elements of //, is generic for //iff for every b E //and a satisfying r\ b,
a blb.

In our notation we usually follow Baldwin [1] and Wagon [11]. For back-
ground on stable groups see [9], [4], and Hrushovski [5]. By [11] we have

1.2 Remark a 4 Xiff for every Δ, RA(a/X) =RA(a).

1.2 gives a rank equivalent for the forking relation. However this equivalent has
one drawback. Condition RA(a/X) = RA(a) may involve formulas not in Δ, as
it may happen that RA(tpA(a)) > RA(a)Λn 1.3 we give another characterization
of forking. Let Rr

A(p) = RA(p\A) and Rr(p) = <Rr

A(p): Δ c L>. r in Rr

A stands
for "restricted".

1.3 Lemma Assume A c B. If Rr{a/B) = Rr(a/A) then a I B(A). More-
over, if for some model M^A, a I A(M), then a I B(A) implies Rr(a/B) =
Rr(a/A).

Proof: The first part follows by [11], Section III. By Lachlan [7], if/? G S(M)
then MltA{p\A) = 1. This implies the "moreover" part.

2 A theorem For simplicity we work here with sets type-definable almost
over the empty set of parameters, however all the proofs generalize immediately
to the case of arbitrary set of parameters. "Type-definable" will always mean in
this section "type-definable almost over 0 " . Let S be the set of strong 1-types
over 0 , with the standard topology r. Notice that there is an obvious correspon-
dence between closed subsets of S and type-definable subsets of G. By the open
mapping theorem, the mapping p-+p=p\Qis a homeomorphic embedding of
S into 5(G). We equip S with the following strong topology τ\ Let (/,<) be a
directed set (i.e.,< is a partial order on /and for all α,bGlthere is c G /with
c>α9b) and p = {PiJ G /> be a net of types from S. We say that p is strongly
convergent to q G S (or: q is a strong limit of p, q = slim/?) if for every Δ there
is / G / such that for every j G /, j > / implies pj \ A = q | Δ. In particular, a strong
limit of p is a limit of p in the usual sense. To distinguish between r and r', all
topological notions regarding r' will be called strong. Notice that if q is a strong
limit of p then Rr(q) is a pointwise limit of Rr(Pi), i G /. Forp G S let RA(p) =
Rr

A(p) and let R'(p) = (Rf

A(p) A ς l ) ,

We define binary operation * and unary operation - 1 on S as follows. For
p9q G S, /? * q = stp(x-y) and/?"1 = stpίx" 1), where x,y are independent re-
alizations of/? and q, respectively. Clearly this definition does not depend on a
particular choice of x and y. Similarly we define * on 5(G). Notice that q =
p * r iff q = p * f. Differing somewhat from the common notation, we let pn

denote/? * . . .*/? (Λ times), and/?"" =p~~ι * . . . * p~ι (n times). If Pis a set
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of types then let P(A) denote the set of elements of A realizing some type from
P. For P <Ξ S let <P> be the minimal type-definable subgroup of G containing
P(G). Clearly <P> is type-definable almost over 0 anyway. If P= {pu... ,pn },
then we write </?i,... ,pn) instead of <P>. Theorem 2.3 below explains how <P>
is formed. Let cl(P) denote the topological closure of P, and let *P denote the
closure of P under * . Let gen(P) be the set of r G cl(*P) such that there is no
q G cl(*P) with RA(r) < RA(q), with some of the inequalities strict. As in [4]
we have

2.1 Fact If P c 5 is nonempty then gen(P) is nonempty, too. Moreover,
gen(P) is a closed subset of S.

Following [4], for p G S and x G G let xp = r * p, where r = stp(x). For P c S
let*P= lxp:peP}.

2.2 Lemma
(a) * is associative and continuous coordinate-wise.
(b) IfP^Sis closed, then for every xG G, XP is closed, too.

(c) R^P*q)>R±(p)>R±{q).
(d) R'A(p*q)>R'A(p)9R'A(Q)

Proof: (a) That * is continuous coordinate-wise follows by the open mapping
theorem from Lascar and Poizat [8]. (b) follows from (a) and the fact that S is
compact, (c) and (d) are easy.

2.3 Theorem Assume P is a nonempty subset of S. Then <P> = {x G G:
*gen(P) = gen(P)}. Also, gen(P) is the set of generic types of(P).

The rest of this section is devoted to the proof of this theorem. So we fix a
PQS. \ϊp,q G S satisfyp(G),q(G) c <p>, then also/? * q(G) c <P>. Also,
if Q c S and Q(G) c <P> then c l ( 0 ( G ) c <p>. Hence the set cl(*P) is our first
approximation of <P>: we know that cl(*P)(G) c <P>. It is surprising to find
out that this is quite a good approximation: by 2.3 all generics of <P> belong to
cl(*P), hence 2.3 implies in fact <P> = cl( *P)(G) cl( *P)(G) (X- Yis the com-
plex product of X, Yζ G). First notice that iteration of cl and * does not increase
cl(*P) anymore.

2.4 Fact * c l ( * P ) = c l ( * P ) .

Proof: Let p,q G cl(*P). It suffices to prove that within any open U contain-
ing p * q, there is r from * P By 2.2, if q' is close enough to q then p * q' be-
longs to U, and for fixed q', if p' is close enough to p then p' * q' belongs to
U. We can choose pf and qf from *P, so we are done.

Let μ = \L\, and let Δα,α < μ, be an enumeration of finite sets of formu-
las in L invariant under translation. We define by induction on a < μ closed sub-
sets P α of cl( *P) as follows. P o = cl( *P), Pδ = f]a<δ Pa for limit δ. Pa+Ϊ is the
set of p G Pa such that RAJp) = RAa(Pa(G)). Notice that if we start with P =
S, then this procedure leads to Pμ = gen(G) (cf. the introduction to [4]), whence
Pμ does not depend on the particular choice of Δα's in this case. We will see that
this is always true, i.e. that Pμ = gen«P», and so does not depend on the choice
ofΔα 's.
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Let na = RAa(Pa(G)) and ka = MltAJPμ(G)). Let φati(x), i < kai be dis-
joint formulas almost over 0 of Δα-rank na and Aa-multiplicity 1 with Pμ(G) £=
U, *«,/«?). Define φaJ,a(x) as *«,,(*•*). LetJT = [a G G:aPμ = Pμ}.

2.5 Claim X = Π α < μ ( β £ G: for each i < ka9 RA(X(<Pa,i,a(G) Π Pμ(G)) =
na). In particular, X = {a G G:aPμQ Pμ], i.e. aPμ^ Pμ implies aPμ = Pμ.

Proof: Notice that if aPμ c Pμ then for each a and /, ̂ ( ^ / ^ ( G ) Π Pμ(G)) =
nai hence a G X, and we are done.

Notice that "RAa(φajA
G) n ^ ( G » = ««" i s a definable almost over 0

property of #. Indeed, RAa(φa,i,a(G) Π Pμ(G)) = Λα iff for some (unique) y,
RAa(φa,i,a(G) Π φaj(G)) = «α, the latter property of α being definable over
the parameters of φajj < ka. Also, ΛMs closed under taking inverses. In par-
ticular we get that X is a type-definable almost over 0 subgroup of G. The next
lemma concludes the proof of 2.3.

2.6 Lemma P(G) c ^ f̂eo P μ is the set of generic types of X. In particu-
lar, X = <P>, Pμ does not depend on the choice ofAa's, na = RAa (cl(*P))(G)
andPμ = gen(P).

Proof: If p E P and qGPμ then we have/? *ζfG cl(*P) = P o By induction on
a < μ, by 2.2(c) we see that RAa(p * q) = na9 i.e. p* q E Pμ. This shows that
P(G) c X JΠs type-definable,Ίience also <P> c χ9 and in particular Pμ(G) Q
X. If r is a generic type of X then we have r* Pμ = Pμ9 hence by 2.2(c) and our
definition of generic type, na = RAa (X) = RAa(r), and each type from Pμ is
generic for X. We need to show yet that every generic of X belongs to Pμ (this
will imply I g <p>, and finish the proof). Let r G gen(^f) and/7 G Pμ. Let # =
r * p. So # G P μ . Let α,6 be independent realizations of r,p respectively and
c = a-b. By 1.2, looking at the Δα-ranks of tp(c/b), we get 6 1c, hence a —
c-b~ι satisfies q*p~ι, i.e. r = q*p~ι. We have P μ * pμ = Pμf hence Pμ*pQ
Pμ. Similarly as in 2.5 we get Pμ*p = Pμ, i.e. there is r' G P μ with r' * p = q.
Again we get r' = q * p~ι, hence r = r' and r G P μ . This proves the lemma.

3 Applications and corollaries Let Γbe a stable theory. Hrushovski proved
in [5] that if p is a strong type and is a definable partial binary operation with
some natural properties, defined for independent pairs of elements realizing/?,
then (in Se q) there is a type-definable connected group (G, ) and a definable
embedding/:/? (S) -• G preserving , such that/(/?) is the generic type of G.
In other words: a definite place plus less definite binary operation on it yields
a definable group. Here we prove an analogous result: a definite group opera-
tion on a less definite place also yields a definable group, namely,

3.2 Theorem Assume T is stable, A<^ti and' is a definable binary operation
such that (A,-) is a group. Then {in ©eq) there is a definable group H= (H,°)
and a definable group monomorphism h:A^>H.

Proof: The proof is an adaptation of the proof of Hrushovski's result from
[5], modulo Section 2. Hence we give a sketch only. Wlog A is contained in the
set of constants of the language of T. As in Section 2, S denotes the set of
strong 1-types over 0 . For a G © let pa = stp(α), and let P = [pa: a G A}. First
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we proceed as if we were acting within a group structure in Section 2. So for
p,q G S we define p * q as stp(x ^ ) , where x9y are independent realizations of
p, q respectively, provided x y is defined. Notice thatpa *pb is always defined
for a,b G A, and equals pab It follows that * P = P, hence we can skip one
step from the construction in Section 2, and consider just cl(P) (which equals
cl( *P) here). By the open mapping theorem, if a9 b G cl(P) (£) are independent,
then a-bis defined, and also belongs to cl(P)(@) (see the proof of 2.4). In par-
ticular, * is defined on cl(P) and *cl(P) = cl(P). Within cl(P) we look for
"generic types" of the group we are going to define. We proceed as in the proof
of 2.3; however, as in [4], we have to modify the meaning of Δ from Section 2.
Wlog e-x and x-e are defined for every x E S , and equal x, where e is the
identity element of A. Now Δ ranges over sets of the form [φ(a-x-b;y):
φ(U'X-v y) G Δ' and a,b G cl(P)(®)} for some finite set Δ' of formulas of
L = L(T). Most importantly, for this new meaning of Δ, 1.2 continues to hold
and 2.2(c) remains true for p,q G cl(P); hence we are able to carry on reason-
ings typical for generic types in a stable group. Let μ = |Γ | , and let Δα,α < μ
be an enumeration of the finite subsets of L(T) invariant under --translation.
We define Pμ as in the proof of 2.3, and similarly as in Section 2 we prove the
following claim.
3.2 Claim

(a) Ifp G cl(P), then p * Pμ = Pμ* p = Pμ.
(b) Pμdoes not depend on the choice of Aa% andRAa(Pμ(&))=RAa(c\(P)((ί)).

Let P' = Pμ. Notice that P' is a closed subset of cl(P). If P' consisted of a
single type, the further proof would be nearly the same as in [5]. However, even
if P' may have more elements than one, notice that:

(1) for each Δ, P' \ A is finite.

On the set of functions / from @eq uniformly definable by instances of some
fixed formula, with {y G P'((£): y If] Q Dom(/), we define an equivalence re-
lation ~ by: / ~ / ' iff for y G P'(g) with y 1 /,/', f(y) = f'(y).

By (1), - is a definable equivalence relation, hence//- is an element of ®eq.
If g =f/~ andy G P'(6) is independent from g, then g(y) is defined in an ob-
vious way. In particular, every a G cl(P)(S) determines a P'-germ ga defined
for cl abyga(c) =a c. LetF 0 = [ga:aGcl(P)((ί)} and let F be the set of P'-
germs of all definable functions/G (Seq with {y G P'((S): yif] c Dom(/) such
that for y G Pr((S) with y i /, f(y) 4 /. Hence for g G F and y G P'(δ) with
y i g we have g(y) I g. Notice that Fo is type-definable almost over 0 . By the
choice of P', 3.2 and 1.2, Fo is contained in F.

For £i, #2 £ ^ let g{ β g2 be the P'-germ of the composition of g2 and gι. By
the choice of F, gι ° g2 is properly defined and belongs to F. Now we define A.
For a G cl(P)(@) let h{a) = ga G F o . We check that h\A is an embedding and
maps too.

Indeed, if a Φ a' G A then for any b G P'(S) with b ϊ a,a\a bΦaf b (this
follows by the open mapping theorem and the fact that A is a group, i.e. satis-
fies the right cancellation law). Hence h\A is an embedding.

Now let a, be cl(P)(S). We have trivially

(2) if a i b and c = a b then ga°gb = gc
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Of course c G cl(P) ((£). (2) amounts to saying that for d G P'(g) with dia9b9 c,
(a-b) d = c-d, which is trivial.

We need yet to find the type-definable group H containing Fo. Let Fγ be the
closure of Fo under °. As in [5] we see that F\ satisfies the right cancellation law
(in the proof we use the fact that for each g G Fx and rGP' there is y G P'((S)
with y 4 g such that g(y) satisfies r9 this follows as in 3.2). Let F2 be the closure
of {ga: a G P'(©)} under °. F2 is a subset of Fx. We will show that F2 is type-
definable. As in [5] it suffices to prove that if a,b,c G P'(β) then for some
u, v G P'((S), & o&, o g c = g u ogv. By 3.2, for each u G P'((£) and xG P'(©) with
Λ: 4 u there is j> G P'(S) with j 4 JC and j 4 u such that w -y = Λ\ Applying this
to x = b, we can choose u9vE P'((S) such that u-v = b9u and i; are independent
from b and w,yl a,b,c(b). It follows that u I a9b9c and ι> A α,ό,c. By (2),

ga°gbogc = gaoguogυ°gc = ga u gυ c ^ i ^ and W 4 C imply a U, V'C G P ' ί S ) .

Now, F2 is a type-definable semigroup with the right cancellation law, hence by
[5], F2 is a group. If a G cl(P)(@) and 6 G P7(©) are independent, then a b =
c G P'(6), and by (2), gaogb = gc. As F 2 is a group, for some u, v G P'((S),
(gu ° gv) ° 8b = 8c = ga ° gb By the right cancellation law in ^ we get gα =
8u° gv This shows that Fγ = F29 and H = F2 satisfies our demands.

As in [5] we can prove that h is 1-1 on P' ίδ), and the proof above shows that
h maps P' onto gen(H).

Another application of 2.3 consists in showing that existence of a subgroup
of G with some properties yields existence of type-definable subgroup of G with
these properties. Suppose W(xΪ9... 9xn) is a formula of L. We say that a sub-
set A of G satisfies Wiϊ all a Q A satisfy W. If//is a type-definable subgroup
of G then we say that H satisfies Wgenerically iff all independent tuples άQH
of elements realizing generic types of H satisfy W.

3.3 Corollary If a subgroup A of G satisfies W then the minimal type-
definable subgroup of G containing A satisfies W genetically.

Proof: Wlog A is a set of constants. Let P = {stp(#): a G A}. Then obviously
each independent tuple a c cl(P)(G) of suitable length satisfies W. By 2.3, the
generic types of the minimal type-definable subgroups of G containing A belong
to cl(P), hence we are done.

Notice that if His generically abelian then His abelian. In particular, we get
another proof of an old result (cf. Baldwin and Pillay [2]).

3.4 Corollary If A is an abelian subgroup of G then A is also abelian.

Another application concerns the existence of free subgroups of G. Even
if it is not known if a free group with >2 generators is stable, at least we will
see that there are "generically free" stable groups. Let T(/) denote the free
group generated by the set /. We say that a type-definable subgroup H of G is
generically free if for every n < ω, for each nontrivial word v(xλ9.. ,9xn) in
T(X!, . . . 9xn)9 H satisfies generically v(xi9... 9xn) Φ e.

3.5 Lemma If A is a free subgroup of G with >2 generators then A is ge-
nerically free.
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Proof: Suppose / is the set of free generators of A, and wlog / is a set of con-
stants of L. We say that a word w in letters from /is positive if a~ι does not oc-
cur in w for any a E /. Choose a Ψ b E /. Let υn = a~nba~nb> n > 0. We say
that a word w(x!,.. . ,xn) in letters xx,... 9xn is nontrivial if it is nonempty and
no XiXΓ1 or Jt/"1*/ occurs in w. The following claim can be proved by induction
on the length of w.

3.6 Claim Assume w(xX9 ... ,xm) is a nontrivial word in letters xx,...,
xm,ni,ki, i < ra, are natural numbers. If nx,kx> n2, k2i... 9nm9km grows fast
enough then for any positive words wh i < m, of length kh w(vnι wi,...,
Vnm wm) Φ e holds in A.

Let Ao be the semi-group generated by /. If c E Ao then c = Ci . . . cn for
some Cj,. . . ,cΛ E /. We define £(c) = «. Applying 2.3 in the language expanded
by adding constants for elements of Ao we see that each generic type r of A is
in the closure of (stp(c): c E Ao]. Also, as in 2.5, for every v, w E y40, the map-
pings r ^ s t p ( f ) * r and r->r* stp(w) are permutations of gen(v4). In particu-
lar, by 2.2(a), for every v, w E 4̂0> gen(^4) c cl({stp(fcw): c E ^4o)) Hence for
every n9k we have

(1) gen(^) g c l ( { s t p ( ^ c ) : c E ^ o a n d ^(c) > k}).

Now suppose the lemma is false. This means that for some nontrivial word
w(xu . . . ,xm)f w(xu... ,χm) = e belongs to rx(xx) (g).. .(x) r m (x m ) for some
r i , . . . ,rm E gen(^ϊ). By the open mapping theorem this means that 3UxVpx E
Ux3U2Vp2 G U2...lUmVpm E t/m, w(x ! , . . . ,x w ) = e G/?iUi) (8).. . ®
Λwί Xm)* where L̂  ranges over open neighborhoods of η. By (1) and 3.6 we get
an easy contradiction.

It is well-known (cf. Shelah [10]) that there are two rotations of R3 which
generate a free group. By 3.5 we see that there is a type-definable subgroup H
of the group of linear automorphisms of C3, which is generically free. But the
field of complex numbers is ω-stable, hence //is definable, and stable in itself.

4 On connected type-definable subgroups of G From now on, "a subgroup
of G" will always mean "a type-definable almost over 0 subgroup of G". So if
//is a subgroup of G then gen(//) is a subset of S. Suppose //is a connected
subgroup of G and r E gen(//). Then r* r = r and <r> = //. In fact, by 2.3 we
have

4.1 Proposition Let r E S. Then the following are equivalent.
(a) r*r = r
(b) < r) is connected and r is the generic type of(r). In particular, r* r = rim-
plies r = r~ι.

Proposition 4.1 suggests the following problem. Is it possible to character-
ize, using only * and topological notions, the class of r E S such that <r> is con-
nected?

We can think of * and topology as our syntactical means, while <r> being
connected is a kind of semantical notion. Another way to state this problem is
as follows: What are the possible syntactical reasons that make <r> connected?
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In this section we find an ample subset Con of S such that <r> is connected
for r E Con.

4.2 Remark Let H be a subgroup of G and p E S. Then
(a) p(G) c H iff for some {every) r G gen(//), p * r G gen(//)
(b) p(G) Q H° iff for some (every) r G gen(//), p * r = r.

Proof: (a) -* is obvious by 1.2. <-. Let a, b be independent realizations of /?, r re-
spectively. Then c = a-b EH, hence a = c b~ι E H.

(b) Let r0 be the generic type of //°. Then by (a), p(G) g //° iff/? * r0 = r0.
-». Let rGgen(//). Then r0* r = r, and/?* r = /?* ( r 0 * r) = (p* A*0) * r =

r0 * r = r.
<-. Suppose p* r = r for some r G gen(//). Let #, Z? be independent realiza-

tions of p,r respectively. Then a b realizes r, b and a-bare in the same //°-coset
of//. It follows that α = (a-b)-b~l G H°.

Notice that by 2.2(d) and 4.2(a), ifj>(G) c / / a n d r G gen(//) then #'(/?) <
i?'(A*)> and/? G gen(//) iff/ '̂(/?) = ^ ' ( r) . This again shows that any reasonable
rank of a generic type is maximal possible. The next fact will be often used.

4.3 Fact Let H be a subgroup of G and p G S. Assume that for some r G

gen(H),R(r) =R(p*r). Then p~ι *p(G) c H° and for every r G gen (if),

R(r)=R(p*r).

Proof: Choose a realizing/? and b realizing r with alb, where r G gen(//) and
R(r) = R(p * r). By 1.2, #•& I a, hence # 6 I a~ι, i.e. # Z? and a~ι are inde-
pendent realizations of/? * r and/?" 1 respectively. It follows that b = a'1 (#•&)
realizes/?"1 * (/?*r) = (z?"1 Ep)* r, i.e. (/7"1 */?) * r = r (* is associative).
By 4.2(b)^z?"1 * j9(G) g if0. Hence, by 4.2(b) and 2.2(c), for every r' G
gen(H), R(r') < R(p * r) < ^ ( z ? " 1 * /? * r') < Λ(r ' ) , which gives R(r') =
R{p*r').

Notice that i ( r ) = ^(/? * r) is equivalent by 1.2 and 1.3 to R'(r) = R'(p * r).

4.4 Corollary p ESandp(G) c <P> then p * p~ι (G) g <P>°.

4.5 Definition We define an increasing sequence of sets Con 0 g Con! g
Con2 g 5. The definitions of Con 0,Con 1,Con 2 reflect more and more sophisti-
cated reasons for <r> to be connected. Let * denote the group operation in T =
T ([xn:n < ω}). The expression w(xχ9... ,xn) of the form ax * . . . * ak, where
each Qi is either Xj or xf1 for somey < n, is called a *-tuple. If rx,..., rn G S and
w ( # i , . . . ,xn) is a *-tuple, then w(ru.. .,rn) is the type from S obtained by
substituting in w(x\9.., ,xn) η for xt. We call w a 0-*-tuple if w(x) = e holds
i n T . Let

C o n 0 = {w(r!,. . . ,rn): W(Λ:I,. . . ,x r t)isa0-*-tuple,n<ωandrι,. . . ,rnES],
Con! = [/? G S:p = stp(βri) * . . . * stp(tfrt) for some «, at G G and

έϊi . . . an = e} and
Con2 = {p E S: there is an infinite indiscernible set / = {aι,ά2,... } with

a1: = {a{,...,aι

n}, a{ . . . -a*1 = β and/? = stpία/ έϊf . . . •<)}.

Finally, let Con = cl(Con2).
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It is easy to see that indeed Con0 £ Con! c Con2. Also, Cono,Conl5Con2 are
all closed under *, hence by 2.4 Con is closed under *. If <r> is connected and
r is the generic of <r> then r G Con0, hence r G Con. The following was the mo-
tivation to define Con2. Suppose we define Con^G) in S(G) like Con! in S. As-
sume some possibly forking extension r G S(G) of/? G 5 belongs to Coni(G).
Then <r> is connected (to be shown below), hence also (p) is connected. The def-
inition of Con2 grasps the syntactical meaning of the fact that there exists an
r G S(G) extending/?, which belongs to Con^G).

In the next lemma we use local forking. However due to the remark after 1.2
we have to use RA instead of RA. Recall that for q G S, q = q\G.

4.6 Lemma If re Con and R'A(q * r) = RA(q) then (q*r)\A = q\A.

Proof: First assume r G C o n ! . Let r = s t p ( α i ) * . . . * s tp(%) with ax . . . ak =
e. Let Pi = stp(#/). Choose b realizing q, independent from aΪ9... ,ak. Wlog
au ><*k> b I G. By 2.2(d) we have

(1) RA(q) = RA(q * p λ ) = . . . = Rf

A(q *px*...*pk)= RA(q * r ) .

By induction on / < k we show

(2) b ax«... •#/ realizes (q * Pi * . . . * pt)\A and RA(b aι . . . tf,/G U
{αi,..., ak))=Rr

A(b aι ... ai/G).

For / = 0, (2) holds vacuously. Suppose (2) holds for / = t, we will prove it
for / = t -f 1. We have MltΔ((# * p\ * . . . * pt)\Δ) = 1, hence if c realizes
q * px * . . . * pt and c l f l j , . . .,ak{G), then r = tpΔ(c/G U {#!,. . . , ^ 1 ) =
tp Δ (δ « i« . . . #,/G U {ί?!,... ,ak}). We have c at+ϊ satisfies q * pi * . . . * / ) / + 1 .
Clearly, r determines tp Δ (c α / + i/G U [a\,... ,ak}) (as Δ is invariant under
translation).

Also, by (1) wehave/?Δ(c α m / G U {au...,ak}) = Rr

A(c aM/G). Hence
we get tp Δ (c α m / G U {αi, . . . ,^}) = t p Δ ( δ αi . . . -at+ι/GU {au...,ak})
and (2) holds for / = / + 1.

Applying (2) for / = k, using ax -... ak = e, we get that & realizes (q * r) | Δ,
i.e. £ | Δ = ( ^ * r ) | Δ .

Now suppose r G Con2. Let G r be a large saturated extension of G. Wlog we
can choose / = [a1,a2,... }, an indiscernible set witnessing r G Con2, such that
r = stp(tfi«... •#£), I ϊ G and /is based on G', so that [aι

9a
2,... } is indepen-

dent over G'. Thus, #/ . . . -a% realizes over G the type r. Choose b realizing
q\ G U /. It suffices to prove that tρ Δ (δ/G) = tp Δ (6 ύr/ . . . < / G ) . We shall
prove more, namely

(3) t p Δ ( δ / G ' ) = t p Δ ( Z > . α i 1 . . . . . ^ / G ' ) .

Let q' = tp(ό/G'), r' = tpίαί . . . α£/G') and A = tpίαZ/G'). We see that r' =
Pi * . . . * p Λ (in S(G')), and α/ . . . -a% = e, hence r' G C o n ^ G ' ) defined in
S(G') like Coni in 5. Also tp(Z? tf/ . . . - ^ / G ' ) = q' * r'. But Z?-^ 1 -.. . α£
realizes over Gq * r, hence q * r = ^ ' * r' \ G. By the assumptions of Lemmas
2.2(d) and 1.3 we get

(4) Rr

A(q) = Rr

A(qΊ < Rr

A(q' * r ') < i ? Δ ( ^ * r) = Λί ($) .
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Thus RA(q') = RA(qf * r'). Now we can repeat the first part of the proof with
r := r\ q := q' and G := G' to get q'\A = q' * r'\A, i.e. (3).

Finally suppose that r E Con\Con2 and R'A(q * r) = R'A(q). For /i< ω, the
set of /? E S with RA(p) > # is closed. By 2.2(a), for/? E Con2 close enough to
r we have RA(q */?) = RA(q), hence # */) |Δ = q|Δ. Again by 2.2(a), # * r | Δ =
«|Δ.

When G is categorical, Zilber proved in [12] that if [Ajii < ω] is a family
of indecomposable definable subsets of G, then U {Aj: i < ω] generates a defin-
able subgroup of G. This result was generalized to the superstable context in Ber-
line and Lascar [3]. Unfortunately, in the stable case we do not have such a
measure of types as Morley rank in the ω-stable case or [/-rank in the superstable
case. Here we consider the following problem. Suppose if/, / E /, are connected
subgroups of G. We know that H, the minimal type-definable subgroup contain-
ing all the ff/'s, is connected. How is H related to the ff/'s? As a surrogate for
Zilber's result, given/?/ E Con such that Ht = </?/>, we describe topologically
how to find/? E Con with </?> = H. Theorem 4.7(c) is the first step in this di-
rection. For P c S and rE:S let P * r = {/? * r:/? E P ) . Similarly we define r * P.

4.7 Theorem
(a) If r E Con then(r) is connected, moreover (rn,n < ω> strongly converges

to the generic type of(r). So if q is the generic type of{r) then R'(q) is the
pointwise limit of R'(rn), n < ω.

(b) If P c Sand re Con then <PU {r}> = (r*P).AIso, < P * r > = (r*P).
(c) ///?i,. ..,/?„ E Con then (pu... ,pn) = <q>, where <? = /?j * . . . * / ? „ E

Con.

Proof: (a) By 2.2(d), for each Δ, (RA(rn),n< ω> is nondecreasing, and bounded
by i?Δ(x = x), which is finite. Hence there is n(A) such that for n > n(A),
RA(rn) = RA(r"(A)) and by 4.6, fn |Δ = r Λ ( Δ ) |Δ. Thus (rn,n < ω> strongly con-
verges to some q E S. Also, r * # = <?. By Theorem 2.3, q is a generic of </•>.
By 4.2(b), A ( G ) c <r>°, hence <r> = <r>° is connected.

(b) Let/? E P. It suffices to prove that r(G)9p(G) c <r * p>. Let # be a ge-
neric of (r*P). By 2.2 we have

(*) R'(q) < R\q * r) < ^ ' ( ^ * r * p)

r * / ? 6 / * P , hence by 4.2(a), q * (r * p) E gen«r * P » . It follows that
^ ( ^ * r * /?) = .R'ί^), and in (*) equalities hold. By 4.6, q = q * r, hence by
4.2(a), r(G) c < r * P > . Also, q*p = q*(r*p) is a generic of <r* P>, hence
by 4.2(a) again, /?(G) c </• * P>. Similarly, we show <P U {r}> = <P * r>.

(c) follows from (b).

4.8 C o r o l l a r y Assume P = {Pi'.i E / } <Ξ C o n . 7 / 7 = { i \ , . . . , / „ } c / /7j£# w e
ί/e//>2e ^ = p h * . . . * / ? / Λ . Assume q E R = Π / G / c l({<7, : y EjQl a n d j is
finite}). Then q E Con αm/ (q) = <P>.

Proof: Clearly, (q) c <p>. Suppose if is an almost-0-definable subgroup of
G containing (q). By 4.7(c), for every /, </?/> c //, hence <P> ̂  //. it follows
that<<?> = <P>.

Notice that if qj in 4.8 were defined as generic of (piχ * . . . * /?,„>> * e n a n y
^E/? would be the generic of <P>, hence in fact R would be a singleton in such
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a case. We can say more. By 4.7 and 4.6, if r is the generic of <P> then R'(r) is
the pointwise supremum of {R'{p) :p G *P}. Also, r is the strong limit of some
net of types from *P.

In case when the (7-rank of G is finite, we get a more exact counterpart of
Zilber's result.

4.9 Corollary Assume G is a superstate group with finite U-rank and p G
Con. Then for some n, pn is the generic type of (p). In particular, </?> =
pn(G).pn(G).

Proof: From 2.2(c) and 1.2 it follows that for q G S, U(q * r) > £/(#), C/(r).
Hence we can choose « such that for m> n9 U(pn) = U(pm). It follows that
also R'(pn) = R'(pm), and by 4.6, /?m =/?*. By Theorem 2.3 we are done.

5 A special case In this section we focus our attention on the special case
of (p) for a single type/7 G S. For P c S in Theorem 2.3 we explain where the
generic types of <P> lie. However, in some respect, the results of Section 3 im-
proved greatly Theorem 2.3: if p G Con and q is the generic of {p) then q =
slimΛ/A This formula uses only the topological notion of limit and independent
multiplication of types *, and does not mention any ranks at all! The following
question arises.

5.1 Question Assume P Q 5. Is it possible to find a generic type of <P> (say,
the generic type of <P>°) using only topological terms and *?

The first natural conjecture regarding this question was the statement (C) below.
For p G S let <£(/?) be liminf [pn :n < ω] = [q G S: every open Ucontaining
q contains pn for cofinally many n < ω}.

(C) For p G S, gen«/7» = £(/?).

By Theorem 2.3 we have of course gen«/?» c <£(/?). Unfortunately Hrushov-
ski found an easy counterexample to (C). Namely, let G = (Q,+,1,P), where
P = {2"2 : « < ω ) c Q . Th(G) is ω-stable with Morley rank ω, P(x) is strongly
minimal, <stp(l)> = all of G, but the strongly minimal type in P is in £(stp(l))
and is not a generic of G.

We show however that (C) is true for several cases, for example for all sta-
ble groups of bounded exponent. In a way we shall answer positively question
5.1 in case when P c S is a singleton, in the double step Theorem 5.12 below.
We start with comparing </?> and (q) for various/?,# G Con0. We need some
additional notation. Let w(xx,... ,xn) = a\ * . . . * akbe a *-tιiple. For i<klet
W/ be the shortest *-tιiple such that in T({x n : n < ω}), aλ * . . . * #,- = wt holds.
Let Ino( w) = {Wj: / < k] and In( w) = [ v G Ino( w): v is not a proper initial seg-
ment of any υ' G Ino(w)). As an example notice that if w = w(xx), then In(w)
has at most two elements which are of the form X\ * . . . * xx or x{λ * . . . * xfι.

5.2 Theorem Assume w(x j , . . . 9xn)9v(xχ9... ,xn) are 0-*-tuples and
ru...,rneS.

(a) < w ( r l f . . . ,rΛ)> = <{ w'(ru... ,rn) * w ' ίn , . ,rnΓ
ι: w' G In(w)}>.

(b) If every w' G In(w) /5 ύr« initial segment of some υr G In(ι ), /Λ̂ /? {w(rγ,
. . . , r / 2 ) > c < y ( r 1 , . . . , r π ) > .
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Proof: (a) Ξ2. First we prove that for each w' E In o (w), {w'(ru... ,rn) *
w / ( r 1 , . . . , r Λ ) - 1 > c < w ( r 1 , . . . f r l l ) > .

The proof is similar to that of 4.6 and 4.7(b). Let q be the generic of (w(ru

. . . ,rn)}9 r = w'(rί9... , r Λ ) , and it suffices to prove that q* (r* r~ι) = q. As
w' E In o (w), there i s a p G S such that q * r * /? is the generic of < w ( r l 5 . . . ,
/•„)>. Hence, # ( ? ) = i ( ? * r ) . By 4.3, <r * r " 1 ) c < w ( r l f . . . ,rΛ)>.

c . Let / / = <{ w ' t o , . . . ,rΛ) * w ' t o , . . . ,rn)
ι~: w' E In(w)}>, and let # be

the generic of H. Choose bx,..., bn E G realizing rx,..., rn respectively, and if
w(rϊ9... ,rn) = / ? ! * . . . * pk9 wherep t = rf, e = ± 1 , then put α,- = bj. Thus,
ί/i . . . ak = e. Choose c realizing q, independent from bγ,...,bn. As in 4.6 (the
case r E Conj) we prove that for every i < A:, c-aλ . . . α7 realizes g * /?! * . . . *
p, (the proof relies on the definition of H). This implies < w(rλ,... ,rΛ)> c H.
(b) follows from (a).

By 5.2 and 4.4 we get the following corollary.

5.3 Corollary Letp E S. Then {pn *p~n) c < ^ " + 1 */?-("+ 1>> c </7>°.

One could wonder whether (pn * j^" 7 1 ) = (p~n * /?Λ>. This seems unlikely,
although by 5.2 and 4.8 it is not hard to prove that {{pn * p~n: n < ω}> =
<{/?"" * p π : n < ω}>. In the next lemma we shall see that the relationship be-
tween {pn * p ~ n : n < ω} and (p~n *pn :n < ω] is even closer.

5.4 Lemma Let q be the generic type of ({pn *p~n:n < ω}> = <{/?"" *pn:
n < ω}>.
(a) q = slim^p" *p~n = slimΛ/?~Λ *pn.

(b) i ? ^ ) = lim^Λ'ί/?") (the limit is pointwise here).

Proof: First notice that R'{q) > Y\mnR'(pn), as ^ ( / " */?-Λ) > R'{pn). On the
other hand we know that q E cl(*P), whereP = \pn *p~n :n<ω}. For a finite
Δ choose m such that for n> m, R'A(pn) = R'&(pm). As in the proof of 4.6,
for every r E *P, p w * f\A = p w | Δ . By 2.2(a), p w * $ |Δ = p w | Δ . By 2.2(d),
RΆ(pm) = RΆ(Pm *Q)^ Rk(q) This shows (b). ^

Now let re Qm d([pn *p~n :n > m}). Then R'(r) > UmnR'(pn * p~n) >
\\mnR'(pn) = R'(q). So by 4.2(a), R'(r) = R'{q), and r is the generic of
<{pn*p~":n< ω}>. It follows that q = r, i.e. q = limΛ/7π */?~". But R\q) =
limΛ .R'ί/?'1 * p ~ n ) , hence we see that q is the strong limit of \pn * / ? - " : n < ω].

5.5 Corollary Lei/? E 5. ΓΛere is a connected type-definable almost over 0
subgroup H of (p>° such that R'(H) = limnR'(pn).

The q from Lemma 5.4 might be called pω * p~ω or p~ω * /?ω. It is not hard
to prove that p * q * p~ι = q, hence such a notation would imply p(i+ω) *
^-α+ω) = / ? ω */7- ω , which agrees well with ω = 1 + ω.

Now let us see what the connection is between <P> and <P>° for P^S. First
we deal with P = {p}.

5.6 Lemma Let p EL S. Then [<p):<pn>] is finite for each n > 0. ^&o,
<p)° = Πn<Pn> In particular, [</?>: </?>°] < 2^°.

PAΌO/: By 5.3, for / < n, pi*p"i(G) ^ </?">, hencep^G) is contained in one
left (and one right) </?">-coset of </?>. Thus also for every j < ω, pJ(G) is con-
tained in one left <pΛ>-coset and it follows that there are only finitely many left
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</?">-cosets containing some pι(G). In particular, for q0, the generic type of
(p)°> Qo(G) is contained in one </?">-coset of </?>. As tfo = <7o * qo~\ we have
qo(G) ^(p") and (p)°Q(pn).

Thus if q is a generic of </?> then q(G) is contained in one left </>">-coset
of </?>. Also, q E £(p) and there are only finitely many </>Λ>-cosets contain-
ing some/?'(G). Thus there are only finitely many </?Λ>-cosets containing q(G)
for some q E gen«/?». This implies [</?>: </?">] is finite.

Now suppose that H is a relatively definable almost over 0 subgroup of </?>
with finite index in </?>. Then tfoίG) £ # , hence by 2.3 for some n, pn(G) c if.
It follows that </?"> c //, i.e. </?>° = nΛ<«<Pπ>.

Notice that if X is a free group with K generators then there are < (K + No)-
many normal subgroups of X with finite index in X. Hence by a similar proof
we get

5.7 Corollary If P c S ίΛe« [<P> : <P>°] < 2'pl+*0.

Suppose for some k, p(x) \-χk = e; that is, p is a type of elements of finite or-
der. Then we have/?* E Con^ hence by 5.6 we get the following corollary.

5.8 Corollary If p(x) h xk = e then [</?>: </?>°] < A: α r̂f gen«/?» =
<£(/?) is finite. Let q be the generic o/<p>°. 7%e« q = slimw p72*. V4/SΌ, /or / <
k slimnp

nk+ι exists and is a generic of(p), and every generic of(p) is obtained
in this way.

5.9 Corollary // Th( G) is small and P^S is finite then <P> is connected-
by-finite.

Proof: By adding a finite set of constants to L we can assume that P^ S(0).
By Theorem 2.3, every generic of <P> is in cl(*P), hence S(0) being countable
implies that gen«P» is countable, too, and [<P> : <P>°] < ω.

The next theorem shows that in many cases (C) is true. For the definition of
weakly normal groups, see [6]. Notice that any pure group which is abelian-by-
finite is weakly normal.

5.10 Theorem Assume p E S and G has bounded exponent or is weakly nor-
mal. Then gen«jt?» = <£(/?).

Proof: In case when G has bounded exponent the conclusion follows by 5.8. So
suppose G is weakly normal. Choose any q E £(p). We will prove that q E
gen«/7». Let r be the generic of </?> such that q~ι * r(G) c </7>°, that is q(G)
and r(G) are in the same </?>°-coset of </?>. We will prove that q = r. By
Hrushovski and Pillay [6], every definable subset of G is a Boolean combination
of cosets of almost over 0 definable subgroups of G. Hence, fix an almost-0-de-
finable H< G. It suffices to prove that for any aGG, r(G) c aHiff q(G) c aH.

Suppose r(G) c aH. Then r~ι * r(G) c if, hence </?>° c 7f. As <?(G) and
r(G) are in the same <p>°-cosets, we get q(G) Q aH.

Now suppose q(G) ^ aH. Then #(x) hx E aH, and # E «£(/?), so there are
infinitely many n with/?"(G) c βi/. Choose «,£ > 0 wi thp^ίGJ^^^ίG) c
aH. It follows t h a t / ^ G ) c H, hence again by 5.6 </?>° c //. As above we get
r(G)caH.
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It is easy to see that * restricted to gen«/?» is continuous (as a binary func-
tion). Unfortunately, * is not always continuous on <£(/?), because this implies
(C) for /?. Define^: S -• S by fp(g) = p* q, and similarly define^-i.

5.11 Lemma fP\£(p) is a permutation of <£(/?). Also, fp-\ °fp\£(p) =
id<£(/>)

Proof: Suppose (pΛι: i G /> is a net converging to q G <£(/?), and wlog (pn~ι:
/ G /> converges to qf G £(/?). We see \haXfp(qf) = q, hence Rng(fp\£(p)) =
<£(/?). For a fixed Δ, as in the proof of 4.6 and 5.4, we see that if n is large
enough then p~ι * p*pn\A=pn\A.It follows that {p~x *p* pni: i G /> also
converges to q. But this means that^- i °fp\£(p) = id£ ( / 7 ), and we are done.

Let p G 5. Suppose we are given a task of getting a generic type of </?>; we
know topology, independent multiplication *, but cannot measure any ranks.
The first guess would be to choose a q0 G <£(/?). We know that possibly
gen«/?» ^ £(p). So it may happen that q0 £ gen«/?». However q0 in some
respect is more similar to a generic of </?> than any/?", for example any rank
of g is > that rank of pn. Also, (p)° c <̂ ro> c </?>, gen«^ 0» ^ gen«p» and
£(qo) ^ «£(/?) (this is proved below). So maybe if we try again and choose
qx G £(qo), then we are more lucky in getting a generic of </?>. The next the-
orem confirms this guess.

5.12 Double step theorem Assumep G S, q G £(p) and r£Ξ£(q). Then r
is a generic type of(p).

Proof: First notice that

(1) </?>oc<4> <=<;>>.

Indeed, any almost-0-definable subgroup H of G containing (q) contains
pn(G) for some n, hence also (pn). By 5.6, </?>° c (p«y c //. Looking at
ranks, (1) implies gen«#» <Ξ gen«/?». Also, £(p) is closed and closed under
*, hence <£(#) c £(p). Now let <70 = q~l * ^ We show that

(2) qoe£(p).

Choose a net (pm: / G /> converging to q. Then </?""': / G /> converges to <7-1.
It suffices to find within an arbitrary open U containing q0 a type from <£(/?).
By 2.2(a) we can find an i G / such that p~Hi * q G U. By 5.11, the mapping
s-+p~ni * 51 is a permutation of <£(/?), hence/?""' * q G <£(/?).

By (1), <p>° c <̂ ro> c <̂ r> c </?>, hence </7>° = <^0>° = <q>°. But ^ 0 € Con,
hence by 4.7, <#o>« < ω> is strongly convergent to qΪ9 the generic type of
<q0) = (p)°. By 5.3, 5.4 and 2.2(d) it follows that R(qx) = limnR'((i$) =
limπR'(qn). We know that any s G £(/?) is a generic of </?> iff ,R'(s) = ̂ r (^ i ) ,
and for every se £(p)9 R'(s) < R'(qx). On the other hand, by 2.2(d), R'(r) >
lim,,^^^72) = R'(q{), as r G <£(^r). This implies R'(r) = ̂ ' ( ^ 0 , hence r is a ge-
neric type of <p>.

Take r from 5.12. By 5.6 we can define the generic type rf of (p}° as
slimrt r

nl. A similar argument yields the following corollary.
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5.13. Corollary Let p G S. The following conditions are equivalent.
(a) p is a generic type of {p).
(b)p = limnp"ι+ι

(c)/? = slimΛ/?"!+1.

A challenging problem is to generalize 5.12 for arbitrary P <Ξ s. This would tell
us more about restrictions on the structure of G imposed by the stability as-
sumption.
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