Notre Dame Journal of Formal Logic Volume 32, Number 2, Spring 1991

On Type Definable Subgroups of a Stable Group

L. NEWELSKI

Abstract We investigate the way in which the minimal type-definable subgroup of a stable group G containing a set A originates. We give a series of applications on type-definable subgroups of a stable group G.

1 Introduction It is not known how to construct a stable group "ab ovo". The stability of a given group structure is deduced usually from some stronger properties, for example the group's being abelian-by-finite, or definable in some stable structure. So at least one could wonder what type-definable subgroups of a stable group G are possible to obtain. We address this problem here. In a way, our results generalize Zilber's ideas (cf. Zilber [12]) on generating subgroups by indecomposable subsets of an ω -stable group G.

Throughout, we work with a stable group $G = (G, \cdot, e)$, which is sufficiently saturated (i.e., G is a monster model). L is the language of G. Given a typedefinable subset A of G we know that there is \tilde{A} , the minimal type-definable subgroup of G containing A (cf. Poizat [9]). We investigate here the relationship between A and \tilde{A} . For simplicity, usually we consider A which is type-definable almost over \emptyset . A finite set Δ of formulas of L is invariant under translation if it consists of formulas of the form $\varphi(u \cdot x \cdot v; \bar{y})$ $(u, v, \bar{y} \text{ are parameter variables})$ here). Except in Section 2, Δ with possible subscripts will denote a finite set of formulas invariant under translation. One of the basic concepts of stable group theory is that of generic type, due to Poizat ([9]; see also Hrushovski [4]). Recall that if H is a type-definable subgroup of G then a strong 1-type r of elements of H is generic (for H) iff for every Δ , $R_{\Delta}(r) = R_{\Delta}(H)$, where R_{Δ} is the Morley Δ -rank (see Wagon [11]). Notice that as Δ is invariant under translation, R_{Δ} also is invariant under translation, meaning that for each definable subset X of G and $a \in G, R_{\Delta}(X) = R_{\Delta}(a \cdot X) = R_{\Delta}(X \cdot a).$ (This is the idea of "stratified order" from [9]; cf. also [4].) Let Mlt_{Δ} denote the Morley Δ -multiplicity. $R_{\Delta}(a/A)$ abbreviates $R_{\Delta}(tp(a/A))$. Let $\vec{R}(p)$ denote $\langle R_{\Delta}(p) : \Delta \subseteq L$ is finite and invariant

Received August 29, 1989; revised December 5, 1990

under translation $\langle \vec{R}(p) \leq \vec{R}(q) \rangle$ means that for every Δ , $R_{\Delta}(p) \leq R_{\Delta}(q)$. Let gen(*H*) denote the set of generic types of *H*. H^0 is the connected component of *H*. We give a description of gen(\vec{A}) in topological terms, and prove some corollaries. We formulate also some open problems. Recall the following remark from [4], which can be taken as a definition of generic type.

1.1 Remark Assume H is a type-definable subgroup of G. Then r, a strong 1-type of elements of H, is generic for H iff for every $b \in H$ and a satisfying r|b, $a \cdot b \downarrow b$.

In our notation we usually follow Baldwin [1] and Wagon [11]. For background on stable groups see [9], [4], and Hrushovski [5]. By [11] we have

1.2 Remark $a \downarrow X$ iff for every Δ , $R_{\Delta}(a/X) = R_{\Delta}(a)$.

1.2 gives a rank equivalent for the forking relation. However this equivalent has one drawback. Condition $R_{\Delta}(a/X) = R_{\Delta}(a)$ may involve formulas not in Δ , as it may happen that $R_{\Delta}(tp_{\Delta}(a)) > R_{\Delta}(a)$. In 1.3 we give another characterization of forking. Let $R_{\Delta}^{r}(p) = R_{\Delta}(p|\Delta)$ and $\tilde{R}^{r}(p) = \langle R_{\Delta}^{r}(p) : \Delta \subseteq L \rangle$. r in R_{Δ}^{r} stands for "restricted".

1.3 Lemma Assume $A \subseteq B$. If $\vec{R}^r(a/B) = \vec{R}^r(a/A)$ then $a \downarrow B(A)$. Moreover, if for some model $M \subseteq A$, $a \downarrow A(M)$, then $a \downarrow B(A)$ implies $\vec{R}^r(a/B) = \vec{R}^r(a/A)$.

Proof: The first part follows by [11], Section III. By Lachlan [7], if $p \in S(M)$ then $Mlt_{\Delta}(p|\Delta) = 1$. This implies the "moreover" part.

2 A theorem For simplicity we work here with sets type-definable almost over the empty set of parameters, however all the proofs generalize immediately to the case of arbitrary set of parameters. "Type-definable" will always mean in this section "type-definable almost over \emptyset ". Let S be the set of strong 1-types over \emptyset , with the standard topology τ . Notice that there is an obvious correspondence between closed subsets of S and type-definable subsets of G. By the open mapping theorem, the mapping $p \rightarrow \hat{p} = p | G$ is a homeomorphic embedding of S into S(G). We equip S with the following strong topology τ' . Let (I,\leq) be a directed set (i.e., \leq is a partial order on *I* and for all $a, b \in I$ there is $c \in I$ with $c \ge a, b$ and $\bar{p} = \langle p_i, i \in I \rangle$ be a net of types from S. We say that \bar{p} is strongly convergent to $q \in S$ (or: q is a strong limit of \bar{p} , $q = \text{slim } \bar{p}$) if for every Δ there is $i \in I$ such that for every $j \in I$, $j \ge i$ implies $\hat{p}_i | \Delta = \hat{q} | \Delta$. In particular, a strong limit of \bar{p} is a limit of \bar{p} in the usual sense. To distinguish between τ and τ' , all topological notions regarding τ' will be called strong. Notice that if q is a strong limit of \bar{p} then $\vec{R}^r(\hat{q})$ is a pointwise limit of $\vec{R}^r(\hat{p}_i)$, $i \in I$. For $p \in S$ let $R'_{\Delta}(p) =$ $R'_{\Delta}(\hat{p})$ and let $\hat{R}'(p) = \langle R'_{\Delta}(p) : \Delta \subseteq L \rangle$.

We define binary operation * and unary operation $^{-1}$ on S as follows. For $p, q \in S, p * q = \operatorname{stp}(x \cdot y)$ and $p^{-1} = \operatorname{stp}(x^{-1})$, where x, y are independent realizations of p and q, respectively. Clearly this definition does not depend on a particular choice of x and y. Similarly we define * on S(G). Notice that q = p * r iff $\hat{q} = \hat{p} * \hat{r}$. Differing somewhat from the common notation, we let p^n denote $p * \ldots * p$ (n times), and $p^{-n} = p^{-1} * \ldots * p^{-1}$ (n times). If P is a set

of types then let P(A) denote the set of elements of A realizing some type from P. For $P \subseteq S$ let $\langle P \rangle$ be the minimal type-definable subgroup of G containing P(G). Clearly $\langle P \rangle$ is type-definable almost over \emptyset anyway. If $P = \{p_1, \ldots, p_n\}$, then we write $\langle p_1, \ldots, p_n \rangle$ instead of $\langle P \rangle$. Theorem 2.3 below explains how $\langle P \rangle$ is formed. Let cl(P) denote the topological closure of P, and let *P denote the closure of P under *. Let gen(P) be the set of $r \in cl(*P)$ such that there is no $q \in cl(*P)$ with $R_{\Delta}(r) \leq R_{\Delta}(q)$, with some of the inequalities strict. As in [4] we have

2.1 Fact If $P \subseteq S$ is nonempty then gen(P) is nonempty, too. Moreover, gen(P) is a closed subset of S.

Following [4], for $p \in S$ and $x \in G$ let ${}^{x}p = r * p$, where $r = \operatorname{stp}(x)$. For $P \subseteq S$ let ${}^{x}P = \{{}^{x}p : p \in P\}$.

2.2 Lemma

- (a) * is associative and continuous coordinate-wise.
- (b) If $P \subseteq S$ is closed, then for every $x \in G$, ^xP is closed, too.
- (c) $R_{\Delta}(p * q) \ge R_{\Delta}(p), R_{\Delta}(q).$
- (d) $R'_{\Delta}(p * q) \ge R'_{\Delta}(p), R'_{\Delta}(q).$

Proof: (a) That * is continuous coordinate-wise follows by the open mapping theorem from Lascar and Poizat [8]. (b) follows from (a) and the fact that S is compact. (c) and (d) are easy.

2.3 Theorem Assume P is a nonempty subset of S. Then $\langle P \rangle = \{x \in G : x \text{ gen}(P) = \text{gen}(P)\}$. Also, gen(P) is the set of generic types of $\langle P \rangle$.

The rest of this section is devoted to the proof of this theorem. So we fix a $P \subseteq S$. If $p, q \in S$ satisfy $p(G), q(G) \subseteq \langle P \rangle$, then also $p * q(G) \subseteq \langle P \rangle$. Also, if $Q \subseteq S$ and $Q(G) \subseteq \langle P \rangle$ then $cl(Q)(G) \subseteq \langle P \rangle$. Hence the set cl(*P) is our first approximation of $\langle P \rangle$: we know that $cl(*P)(G) \subseteq \langle P \rangle$. It is surprising to find out that this is quite a good approximation: by 2.3 all generics of $\langle P \rangle$ belong to cl(*P), hence 2.3 implies in fact $\langle P \rangle = cl(*P)(G) \cdot cl(*P)(G)$ (X · Y is the complex product of X, $Y \subseteq G$). First notice that iteration of cl and * does not increase cl(*P) anymore.

2.4 Fact *cl(*P) = cl(*P).

Proof: Let $p, q \in cl(*P)$. It suffices to prove that within any open U containing p * q, there is r from *P. By 2.2, if q' is close enough to q then p * q' belongs to U, and for fixed q', if p' is close enough to p then p' * q' belongs to U. We can choose p' and q' from *P, so we are done.

Let $\mu = |L|$, and let $\Delta_{\alpha}, \alpha < \mu$, be an enumeration of finite sets of formulas in *L* invariant under translation. We define by induction on $\alpha \le \mu$ closed subsets P_{α} of cl(**P*) as follows. $P_0 = cl(*P)$, $P_{\delta} = \bigcap_{\alpha < \delta} P_{\alpha}$ for limit δ . $P_{\alpha+1}$ is the set of $p \in P_{\alpha}$ such that $R_{\Delta_{\alpha}}(p) = R_{\Delta_{\alpha}}(P_{\alpha}(G))$. Notice that if we start with P =*S*, then this procedure leads to $P_{\mu} = \text{gen}(G)$ (cf. the introduction to [4]), whence P_{μ} does not depend on the particular choice of Δ_{α} 's in this case. We will see that this is always true, i.e. that $P_{\mu} = \text{gen}(\langle P \rangle)$, and so does not depend on the choice of Δ_{α} 's. Let $n_{\alpha} = R_{\Delta_{\alpha}}(P_{\alpha}(G))$ and $k_{\alpha} = \text{Mlt}_{\Delta_{\alpha}}(P_{\mu}(G))$. Let $\varphi_{\alpha,i}(x)$, $i < k_{\alpha}$, be disjoint formulas almost over \emptyset of Δ_{α} -rank n_{α} and Δ_{α} -multiplicity 1 with $P_{\mu(G)} \subseteq \bigcup_{i} \varphi_{\alpha,i}(G)$. Define $\varphi_{\alpha,i,a}(x)$ as $\varphi_{\alpha,i}(a \cdot x)$. Let $X = \{a \in G : {}^{a}P_{\mu} = P_{\mu}\}$.

2.5 Claim $X = \bigcap_{\alpha < \mu} \{ a \in G : for each \ i < k_{\alpha}, R_{\Delta_{\alpha}}(\varphi_{\alpha,i,a}(G) \cap P_{\mu}(G)) = n_{\alpha} \}$. In particular, $X = \{ a \in G : {}^{a}P_{\mu} \subseteq P_{\mu} \}$, i.e. ${}^{a}P_{\mu} \subseteq P_{\mu}$ implies ${}^{a}P_{\mu} = P_{\mu}$.

Proof: Notice that if ${}^{a}P_{\mu} \subseteq P_{\mu}$ then for each α and i, $R_{\Delta_{\alpha}}(\varphi_{\alpha,i,a}(G) \cap P_{\mu}(G)) = n_{\alpha}$, hence $a \in X$, and we are done.

Notice that " $R_{\Delta_{\alpha}}(\varphi_{\alpha,i,a}(G) \cap P_{\mu}(G)) = n_{\alpha}$ " is a definable almost over \emptyset property of *a*. Indeed, $R_{\Delta_{\alpha}}(\varphi_{\alpha,i,a}(G) \cap P_{\mu}(G)) = n_{\alpha}$ iff for some (unique) *j*, $R_{\Delta_{\alpha}}(\varphi_{\alpha,i,a}(G) \cap \varphi_{\alpha,j}(G)) = n_{\alpha}$, the latter property of *a* being definable over the parameters of $\varphi_{\alpha,j}, j < k_{\alpha}$. Also, *X* is closed under taking inverses. In particular we get that *X* is a type-definable almost over \emptyset subgroup of *G*. The next lemma concludes the proof of 2.3.

2.6 Lemma $P(G) \subseteq X$, also P_{μ} is the set of generic types of X. In particular, $X = \langle P \rangle$, P_{μ} does not depend on the choice of Δ_{α} 's, $n_{\alpha} = R_{\Delta_{\alpha}} (cl(*P))(G)$ and $P_{\mu} = gen(P)$.

Proof: If $p \in P$ and $q \in P_{\mu}$ then we have $p * q \in cl(*P) = P_0$. By induction on $\alpha < \mu$, by 2.2(c) we see that $R_{\Delta_{\alpha}}(p * q) = n_{\alpha}$, i.e. $p * q \in P_{\mu}$. This shows that $P(G) \subseteq X$. X is type-definable, hence also $\langle P \rangle \subseteq X$, and in particular $P_{\mu}(G) \subseteq X$. If r is a generic type of X then we have $r * P_{\mu} = P_{\mu}$, hence by 2.2(c) and our definition of generic type, $n_{\alpha} = R_{\Delta_{\alpha}}(X) = R_{\Delta_{\alpha}}(r)$, and each type from P_{μ} is generic for X. We need to show yet that every generic of X belongs to P_{μ} (this will imply $X \subseteq \langle P \rangle$, and finish the proof). Let $r \in gen(X)$ and $p \in P_{\mu}$. Let q = r * p. So $q \in P_{\mu}$. Let a, b be independent realizations of r, p respectively and $c = a \cdot b$. By 1.2, looking at the Δ_{α} -ranks of tp (c/b), we get $b \downarrow c$, hence $a = c \cdot b^{-1}$ satisfies $q * p^{-1}$, i.e. $r = q * p^{-1}$. We have $P_{\mu} * P_{\mu} = P_{\mu}$, hence $P_{\mu} * p \subseteq P_{\mu}$. Similarly as in 2.5 we get $P_{\mu} * p = P_{\mu}$, i.e. there is $r' \in P_{\mu}$ with r' * p = q. Again we get $r' = q * p^{-1}$, hence r = r' and $r \in P_{\mu}$. This proves the lemma.

3 Applications and corollaries Let T be a stable theory. Hrushovski proved in [5] that if p is a strong type and \cdot is a definable partial binary operation with some natural properties, defined for independent pairs of elements realizing p, then (in \mathbb{S}^{eq}) there is a type-definable connected group (G, \cdot) and a definable embedding $f: p(\mathbb{S}) \to G$ preserving \cdot , such that f(p) is the generic type of G. In other words: a definite place plus less definite binary operation on it yields a definable group. Here we prove an analogous result: a definite group operation on a less definite place also yields a definable group, namely,

3.2 Theorem Assume T is stable, $A \subseteq \mathbb{S}$ and \cdot is a definable binary operation such that (A, \cdot) is a group. Then (in \mathbb{S}^{eq}) there is a definable group $H = (H, \circ)$ and a definable group monomorphism $h : A \to H$.

Proof: The proof is an adaptation of the proof of Hrushovski's result from [5], modulo Section 2. Hence we give a sketch only. Wlog A is contained in the set of constants of the language of T. As in Section 2, S denotes the set of strong 1-types over \emptyset . For $a \in \mathbb{G}$ let $p_a = \operatorname{stp}(a)$, and let $P = \{p_a : a \in A\}$. First

we proceed as if we were acting within a group structure in Section 2. So for $p,q \in S$ we define p * q as $stp(x \cdot y)$, where x, y are independent realizations of p, q respectively, provided $x \cdot y$ is defined. Notice that $p_a * p_b$ is always defined for $a, b \in A$, and equals $p_{a \cdot b}$. It follows that *P = P, hence we can skip one step from the construction in Section 2, and consider just cl(P) (which equals cl(*P) here). By the open mapping theorem, if $a, b \in cl(P)(\mathbb{G})$ are independent, then $a \cdot b$ is defined, and also belongs to $cl(P)(\mathbb{G})$ (see the proof of 2.4). In particular, * is defined on cl(P) and *cl(P) = cl(P). Within cl(P) we look for "generic types" of the group we are going to define. We proceed as in the proof of 2.3; however, as in [4], we have to modify the meaning of Δ from Section 2. Wlog $e \cdot x$ and $x \cdot e$ are defined for every $x \in \mathbb{G}$, and equal x, where e is the identity element of A. Now Δ ranges over sets of the form $\{\varphi(a \cdot x \cdot b; \bar{y}):$ $\varphi(u \cdot x \cdot v; \bar{y}) \in \Delta'$ and $a, b \in cl(P)(\mathbb{G})$ for some finite set Δ' of formulas of L = L(T). Most importantly, for this new meaning of Δ , 1.2 continues to hold and 2.2(c) remains true for $p, q \in cl(P)$; hence we are able to carry on reasonings typical for generic types in a stable group. Let $\mu = |T|$, and let $\Delta_{\alpha}, \alpha < \mu$ be an enumeration of the finite subsets of L(T) invariant under \cdot -translation. We define P_{μ} as in the proof of 2.3, and similarly as in Section 2 we prove the following claim.

3.2 Claim

(a) If $p \in cl(P)$, then $p * P_{\mu} = P_{\mu} * p = P_{\mu}$.

(b) P_{μ} does not depend on the choice of Δ_{α} 's, and $R_{\Delta_{\alpha}}(P_{\mu}(\mathbb{C})) = R_{\Delta_{\alpha}}(cl(P)(\mathbb{C}))$.

Let $P' = P_{\mu}$. Notice that P' is a closed subset of cl(P). If P' consisted of a single type, the further proof would be nearly the same as in [5]. However, even if P' may have more elements than one, notice that:

(1) for each Δ , $P' | \Delta$ is finite.

On the set of functions f from \mathbb{S}^{eq} uniformly definable by instances of some fixed formula, with $\{y \in P'(\mathbb{S}) : y \downarrow f\} \subseteq \text{Dom}(f)$, we define an equivalence relation ~ by: $f \sim f'$ iff for $y \in P'(\mathbb{S})$ with $y \downarrow f, f', f(y) = f'(y)$.

By (1), ~ is a definable equivalence relation, hence f/\sim is an element of \mathbb{S}^{eq} . If $g = f/\sim$ and $y \in P'(\mathbb{S})$ is independent from g, then g(y) is defined in an obvious way. In particular, every $a \in cl(P)(\mathbb{S})$ determines a P'-germ g_a defined for $c \downarrow a$ by $g_a(c) = a \cdot c$. Let $F_0 = \{g_a : a \in cl(P)(\mathbb{S})\}$ and let F be the set of P'-germs of all definable functions $f \in \mathbb{S}^{eq}$ with $\{y \in P'(\mathbb{S}) : y \downarrow f\} \subseteq Dom(f)$ such that for $y \in P'(\mathbb{S})$ with $y \downarrow f$, $f(y) \downarrow f$. Hence for $g \in F$ and $y \in P'(\mathbb{S})$ with $y \downarrow g$ we have $g(y) \downarrow g$. Notice that F_0 is type-definable almost over \emptyset . By the choice of P', 3.2 and 1.2, F_0 is contained in F.

For $g_1, g_2 \in F$ let $g_1 \circ g_2$ be the *P'*-germ of the composition of g_2 and g_1 . By the choice of *F*, $g_1 \circ g_2$ is properly defined and belongs to *F*. Now we define *h*. For $a \in cl(P)(\mathfrak{C})$ let $h(a) = g_a \in F_0$. We check that h|A is an embedding and maps \cdot to \circ .

Indeed, if $a \neq a' \in A$ then for any $b \in P'(\mathbb{S})$ with $b \downarrow a, a', a \cdot b \neq a' \cdot b$ (this follows by the open mapping theorem and the fact that A is a group, i.e. satisfies the right cancellation law). Hence h|A is an embedding.

Now let $a, b \in cl(P)(\mathbb{G})$. We have trivially

(2) if $a \downarrow b$ and $c = a \cdot b$ then $g_a \circ g_b = g_c$.

Of course $c \in cl(P)(\mathfrak{S})$. (2) amounts to saying that for $d \in P'(\mathfrak{S})$ with $d \downarrow a, b, c$, $(a \cdot b) \cdot d = c \cdot d$, which is trivial.

We need yet to find the type-definable group H containing F_0 . Let F_1 be the closure of F_0 under \circ . As in [5] we see that F_1 satisfies the right cancellation law (in the proof we use the fact that for each $g \in F_1$ and $r \in P'$ there is $y \in P'(\mathfrak{G})$ with $y \downarrow g$ such that g(y) satisfies r, this follows as in 3.2). Let F_2 be the closure of $\{g_a : a \in P'(\mathbb{G})\}$ under \circ . F_2 is a subset of F_1 . We will show that F_2 is typedefinable. As in [5] it suffices to prove that if $a, b, c \in P'(\mathbb{S})$ then for some $u, v \in P'(\mathbb{G}), g_a \circ g_b \circ g_c = g_u \circ g_v$. By 3.2, for each $u \in P'(\mathbb{G})$ and $x \in P'(\mathbb{G})$ with $x \downarrow u$ there is $y \in P'(\mathbb{G})$ with $y \downarrow x$ and $y \downarrow u$ such that $u \cdot y = x$. Applying this to x = b, we can choose $u, v \in P'(\mathbb{G})$ such that $u \cdot v = b$, u and v are independent from b and $u, v \downarrow a, b, c(b)$. It follows that $u \downarrow a, b, c$ and $v \downarrow a, b, c$. By (2), $g_a \circ g_b \circ g_c = g_a \circ g_u \circ g_v \circ g_c = g_{a \cdot u} \circ g_{v \cdot c}$. $a \downarrow v$ and $u \downarrow c$ imply $a \cdot u, v \cdot c \in P'(\mathbb{G})$. Now, F_2 is a type-definable semigroup with the right cancellation law, hence by [5], F_2 is a group. If $a \in cl(P)(\mathbb{C})$ and $b \in P'(\mathbb{C})$ are independent, then $a \cdot b =$ $c \in P'(\mathfrak{G})$, and by (2), $g_a \circ g_b = g_c$. As F_2 is a group, for some $u, v \in P'(\mathfrak{G})$, $(g_u \circ g_v) \circ g_b = g_c = g_a \circ g_b$. By the right cancellation law in F_1 we get $g_a =$ $g_u \circ g_v$. This shows that $F_1 = F_2$, and $H = F_2$ satisfies our demands.

As in [5] we can prove that h is 1-1 on $P'(\mathbb{S})$, and the proof above shows that h maps P' onto gen(H).

Another application of 2.3 consists in showing that existence of a subgroup of G with some properties yields existence of type-definable subgroup of G with these properties. Suppose $W(x_1, \ldots, x_n)$ is a formula of L. We say that a subset A of G satisfies W if all $\bar{a} \subseteq A$ satisfy W. If H is a type-definable subgroup of G then we say that H satisfies W generically iff all independent tuples $\bar{a} \subseteq H$ of elements realizing generic types of H satisfy W.

3.3 Corollary If a subgroup A of G satisfies W then the minimal typedefinable subgroup of G containing A satisfies W generically.

Proof: Wlog A is a set of constants. Let $P = \{ stp(a) : a \in A \}$. Then obviously each independent tuple $\bar{a} \subseteq cl(P)(G)$ of suitable length satisfies W. By 2.3, the generic types of the minimal type-definable subgroups of G containing A belong to cl(P), hence we are done.

Notice that if H is generically abelian then H is abelian. In particular, we get another proof of an old result (cf. Baldwin and Pillay [2]).

3.4 Corollary If A is an abelian subgroup of G then \tilde{A} is also abelian.

Another application concerns the existence of free subgroups of G. Even if it is not known if a free group with ≥ 2 generators is stable, at least we will see that there are "generically free" stable groups. Let $\mathcal{F}(I)$ denote the free group generated by the set I. We say that a type-definable subgroup H of G is generically free if for every $n < \omega$, for each nontrivial word $v(x_1, \ldots, x_n)$ in $\mathcal{F}(x_1, \ldots, x_n)$, H satisfies generically $v(x_1, \ldots, x_n) \neq e$.

3.5 Lemma If A is a free subgroup of G with ≥ 2 generators then \tilde{A} is generically free.

Proof: Suppose *I* is the set of free generators of *A*, and wlog *I* is a set of constants of *L*. We say that a word *w* in letters from *I* is positive if a^{-1} does not occur in *w* for any $a \in I$. Choose $a \neq b \in I$. Let $v_n = a^{-n}ba^{-n}b$, n > 0. We say that a word $w(x_1, \ldots, x_n)$ in letters x_1, \ldots, x_n is nontrivial if it is nonempty and no $x_i x_i^{-1}$ or $x_i^{-1} x_i$ occurs in *w*. The following claim can be proved by induction on the length of *w*.

3.6 Claim Assume $w(x_1, \ldots, x_m)$ is a nontrivial word in letters $x_1, \ldots, x_m, n_i, k_i, i \le m$, are natural numbers. If $n_1, k_1, n_2, k_2, \ldots, n_m, k_m$ grows fast enough then for any positive words $w_i, i \le m$, of length $k_i, w(v_{n_1}w_1, \ldots, v_{n_m}w_m) \ne e$ holds in A.

Let A_0 be the semi-group generated by *I*. If $c \in A_0$ then $c = c_1 \dots c_n$ for some $c_1, \dots, c_n \in I$. We define $\ell(c) = n$. Applying 2.3 in the language expanded by adding constants for elements of A_0 we see that each generic type *r* of \tilde{A} is in the closure of $\{\operatorname{stp}(c) : c \in A_0\}$. Also, as in 2.5, for every $v, w \in A_0$, the mappings $r \to \operatorname{stp}(v) * r$ and $r \to r * \operatorname{stp}(w)$ are permutations of $\operatorname{gen}(\tilde{A})$. In particular, by 2.2(a), for every $v, w \in A_0$, $\operatorname{gen}(\tilde{A}) \subseteq \operatorname{cl}(\{\operatorname{stp}(vcw) : c \in A_0\})$. Hence for every n, k we have

(1) gen $(\tilde{A}) \subseteq$ cl $(\{stp(v_n c) : c \in A_0 \text{ and } \ell(c) \ge k\}).$

Now suppose the lemma is false. This means that for some nontrivial word $w(x_1, \ldots, x_m)$, $w(x_1, \ldots, x_m) = e$ belongs to $r_1(x_1) \otimes \ldots \otimes r_m(x_m)$ for some $r_1, \ldots, r_m \in \text{gen}(\tilde{A})$. By the open mapping theorem this means that $\exists U_1 \forall p_1 \in U_1 \exists U_2 \forall p_2 \in U_2 \ldots \exists U_m \forall p_m \in U_m$, $w(x_1, \ldots, x_m) = e \in p_1(x_1) \otimes \ldots \otimes p_m(x_m)$, where U_i ranges over open neighborhoods of r_i . By (1) and 3.6 we get an easy contradiction.

It is well-known (cf. Shelah [10]) that there are two rotations of \mathbb{R}^3 which generate a free group. By 3.5 we see that there is a type-definable subgroup H of the group of linear automorphisms of \mathbb{C}^3 , which is generically free. But the field of complex numbers is ω -stable, hence H is definable, and stable in itself.

4 On connected type-definable subgroups of G From now on, "a subgroup of G" will always mean "a type-definable almost over \emptyset subgroup of G". So if H is a subgroup of G then gen(H) is a subset of S. Suppose H is a connected subgroup of G and $r \in \text{gen}(H)$. Then r * r = r and $\langle r \rangle = H$. In fact, by 2.3 we have

4.1 Proposition Let $r \in S$. Then the following are equivalent.

(a) r * r = r

(b) $\langle r \rangle$ is connected and r is the generic type of $\langle r \rangle$. In particular, r * r = r implies $r = r^{-1}$.

Proposition 4.1 suggests the following problem. Is it possible to characterize, using only * and topological notions, the class of $r \in S$ such that $\langle r \rangle$ is connected?

We can think of * and topology as our syntactical means, while $\langle r \rangle$ being connected is a kind of semantical notion. Another way to state this problem is as follows: What are the possible syntactical reasons that make $\langle r \rangle$ connected?

In this section we find an ample subset Con of S such that $\langle r \rangle$ is connected for $r \in Con$.

4.2 Remark Let H be a subgroup of G and $p \in S$. Then (a) $p(G) \subseteq H$ iff for some (every) $r \in gen(H)$, $p * r \in gen(H)$ (b) $p(G) \subseteq H^0$ iff for some (every) $r \in gen(H)$, p * r = r.

Proof: (a) \rightarrow is obvious by 1.2. \leftarrow . Let *a*, *b* be independent realizations of *p*, *r* respectively. Then $c = a \cdot b \in H$, hence $a = c \cdot b^{-1} \in H$.

(b) Let r_0 be the generic type of H^0 . Then by (a), $p(G) \subseteq H^0$ iff $p * r_0 = r_0$. \rightarrow . Let $r \in \text{gen}(H)$. Then $r_0 * r = r$, and $p * r = p * (r_0 * r) = (p * r_0) * r =$

 $\Rightarrow . Let r \in gen(n). \text{ Then } r_0 * r = r, \text{ and } p * r = p * (r_0 * r) = (p * r_0) * r = r_0 * r = r.$

←. Suppose p * r = r for some $r \in gen(H)$. Let a, b be independent realizations of p, r respectively. Then $a \cdot b$ realizes r, b and $a \cdot b$ are in the same H^0 -coset of H. It follows that $a = (a \cdot b) \cdot b^{-1} \in H^0$.

Notice that by 2.2(d) and 4.2(a), if $p(G) \subseteq H$ and $r \in \text{gen}(H)$ then $\vec{R}'(p) \leq \vec{R}'(r)$, and $p \in \text{gen}(H)$ iff $\vec{R}'(p) = \vec{R}'(r)$. This again shows that any reasonable rank of a generic type is maximal possible. The next fact will be often used.

4.3 Fact Let *H* be a subgroup of *G* and $p \in S$. Assume that for some $r \in gen(H)$, $\vec{R}(r) = \vec{R}(p * r)$. Then $p^{-1} * p(G) \subseteq H^0$ and for every $r \in gen(H)$, $\vec{R}(r) = \vec{R}(p * r)$.

Proof: Choose a realizing *p* and *b* realizing *r* with $a \downarrow b$, where $r \in \text{gen}(H)$ and $\hat{R}(r) = \hat{R}(p * r)$. By 1.2, $a \cdot b \downarrow a$, hence $a \cdot b \downarrow a^{-1}$, i.e. $a \cdot b$ and a^{-1} are independent realizations of p * r and p^{-1} respectively. It follows that $b = a^{-1} \cdot (a \cdot b)$ realizes $p^{-1} * (p * r) = (p^{-1} \in p) * r$, i.e. $(p^{-1} * p) * r = r$ (* is associative). By 4.2(b), $p^{-1} * p(G) \subseteq H^0$. Hence, by 4.2(b) and 2.2(c), for every $r' \in \text{gen}(H)$, $\hat{R}(r') \leq \hat{R}(p * r) \leq \hat{R}(p^{-1} * p * r') \leq \hat{R}(r')$, which gives $\hat{R}(r') = \hat{R}(p * r')$.

Notice that $\vec{R}(r) = \vec{R}(p * r)$ is equivalent by 1.2 and 1.3 to $\vec{R}'(r) = \vec{R}'(p * r)$.

4.4 Corollary $p \in S$ and $p(G) \subseteq \langle P \rangle$ then $p * p^{-1}(G) \subseteq \langle P \rangle^0$.

4.5 Definition We define an increasing sequence of sets $\operatorname{Con}_0 \subseteq \operatorname{Con}_1 \subseteq \operatorname{Con}_2 \subseteq S$. The definitions of $\operatorname{Con}_0, \operatorname{Con}_1, \operatorname{Con}_2$ reflect more and more sophisticated reasons for $\langle r \rangle$ to be connected. Let * denote the group operation in $\mathcal{F} = \mathcal{F}(\{x_n : n < \omega\})$. The expression $w(x_1, \ldots, x_n)$ of the form $a_1 * \ldots * a_k$, where each a_i is either x_j or x_j^{-1} for some $j \leq n$, is called a *-tuple. If $r_1, \ldots, r_n \in S$ and $w(x_1, \ldots, x_n)$ is a *-tuple, then $w(r_1, \ldots, r_n)$ is the type from S obtained by substituting in $w(x_1, \ldots, x_n) r_i$ for x_i . We call w a 0-*-tuple if $w(\bar{x}) = e$ holds in \mathcal{F} . Let

 $Con_0 = \{w(r_1, \dots, r_n) : w(x_1, \dots, x_n) \text{ is a } 0\text{-}\ast\text{-tuple, } n < \omega \text{ and } r_1, \dots, r_n \in S\},\$ $Con_1 = \{p \in S : p = \operatorname{stp}(a_1) \ast \dots \ast \operatorname{stp}(a_n) \text{ for some } n, a_i \in G \text{ and}$ $a_1 \cdot \dots \cdot a_n = e\} \text{ and}$ $Con_2 = \{p \in S : \text{ there is an infinite indiscernible set } I = \{\bar{a}^1, \bar{a}^2, \dots\} \text{ with}$ $\bar{a}^i = \{a_1^i, \dots, a_n^i\}, a_1^1 \cdot \dots \cdot a_n^1 = e \text{ and } p = \operatorname{stp}(a_1^1 \cdot a_2^2 \cdot \dots \cdot a_n^n)\}.$

Finally, let $Con = cl(Con_2)$.

It is easy to see that indeed $\operatorname{Con}_0 \subseteq \operatorname{Con}_1 \subseteq \operatorname{Con}_2$. Also, Con_0 , Con_1 , Con_2 are all closed under *, hence by 2.4 Con is closed under *. If $\langle r \rangle$ is connected and r is the generic of $\langle r \rangle$ then $r \in \operatorname{Con}_0$, hence $r \in \operatorname{Con}$. The following was the motivation to define Con_2 . Suppose we define $\operatorname{Con}_1(G)$ in S(G) like Con_1 in S. Assume some possibly forking extension $r \in S(G)$ of $p \in S$ belongs to $\operatorname{Con}_1(G)$. Then $\langle r \rangle$ is connected (to be shown below), hence also $\langle p \rangle$ is connected. The definition of Con_2 grasps the syntactical meaning of the fact that there exists an $r \in S(G)$ extending p, which belongs to $\operatorname{Con}_1(G)$.

In the next lemma we use local forking. However due to the remark after 1.2 we have to use R'_{Δ} instead of R_{Δ} . Recall that for $q \in S$, $\hat{q} = q | G$.

4.6 Lemma If $r \in \text{Con and } R'_{\Delta}(q * r) = R'_{\Delta}(q)$ then $(\hat{q} * \hat{r})|_{\Delta} = \hat{q}|_{\Delta}$.

Proof: First assume $r \in \text{Con}_1$. Let $r = \text{stp}(a_1) * \ldots * \text{stp}(a_k)$ with $a_1 \cdot \ldots \cdot a_k = e$. Let $p_i = \text{stp}(a_i)$. Choose b realizing q, independent from a_1, \ldots, a_k . Wlog $a_1, \ldots, a_k, b \downarrow G$. By 2.2(d) we have

(1)
$$R'_{\Delta}(q) = R'_{\Delta}(q * p_1) = \ldots = R'_{\Delta}(q * p_1 * \ldots * p_k) = R'_{\Delta}(q * r).$$

By induction on $i \le k$ we show

(2) $b \cdot a_1 \cdot \ldots \cdot a_i$ realizes $(\hat{q} * \hat{p}_1 * \ldots * \hat{p}_i) | \Delta$ and $R'_{\Delta}(b \cdot a_1 \cdot \ldots \cdot a_i/G \cup \{a_1, \ldots, a_k\}) = R'_{\Delta}(b \cdot a_1 \cdot \ldots \cdot a_i/G).$

For i = 0, (2) holds vacuously. Suppose (2) holds for i = t, we will prove it for i = t + 1. We have $Mlt_{\Delta}((\hat{q} * \hat{p}_1 * \dots * \hat{p}_t)|\Delta) = 1$, hence if c realizes $\hat{q} * \hat{p}_1 * \dots * \hat{p}_t$ and $c \downarrow a_1, \dots, a_k(G)$, then $r = tp_{\Delta}(c/G \cup \{a_1, \dots, a_k\}) =$ $tp_{\Delta}(b \cdot a_1 \cdot \dots \cdot a_t/G \cup \{a_1, \dots, a_k\})$. We have $c \cdot a_{t+1}$ satisfies $\hat{q} * \hat{p}_1 * \dots * \hat{p}_{t+1}$. Clearly, r determines $tp_{\Delta}(c \cdot a_{t+1}/G \cup \{a_1, \dots, a_k\})$ (as Δ is invariant under translation).

Also, by (1) we have $R'_{\Delta}(c \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\}) = R'_{\Delta}(c \cdot a_{t+1}/G)$. Hence we get $tp_{\Delta}(c \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\}) = tp_{\Delta}(b \cdot a_1 \cdot \ldots \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\})$ and (2) holds for i = t + 1.

Applying (2) for i = k, using $a_1 \cdot \ldots \cdot a_k = e$, we get that b realizes $(\hat{q} * \hat{r}) | \Delta$, i.e. $\hat{q} | \Delta = (\hat{q} * \hat{r}) | \Delta$.

Now suppose $r \in \text{Con}_2$. Let G' be a large saturated extension of G. Wlog we can choose $I = \{\bar{a}^1, \bar{a}^2, \ldots\}$, an indiscernible set witnessing $r \in \text{Con}_2$, such that $r = \text{stp}(a_1^1 \cdot \ldots \cdot a_n^n), I \downarrow G$ and I is based on G', so that $\{\bar{a}^1, \bar{a}^2, \ldots\}$ is independent over G'. Thus, $a_1^1 \cdot \ldots \cdot a_n^n$ realizes over G the type \hat{r} . Choose b realizing $q \mid G \cup I$. It suffices to prove that $\text{tp}_{\Delta}(b/G) = \text{tp}_{\Delta}(b \cdot a_1^1 \cdot \ldots \cdot a_n^n/G)$. We shall prove more, namely

(3) $\operatorname{tp}_{\Delta}(b/G') = \operatorname{tp}_{\Delta}(b \cdot a_1^1 \cdot \ldots \cdot a_n^n/G').$

Let $q' = \operatorname{tp}(b/G')$, $r' = \operatorname{tp}(a_1^1 \cdot \ldots \cdot a_n^n/G')$ and $p_i = \operatorname{tp}(a_i^1/G')$. We see that $r' = p_1 * \ldots * p_n$ (in S(G')), and $a_1^1 \cdot \ldots \cdot a_n^n = e$, hence $r' \in \operatorname{Con}_1(G')$ defined in S(G') like Con_1 in S. Also $\operatorname{tp}(b \cdot a_1^1 \cdot \ldots \cdot a_n^n/G') = q' * r'$. But $b \cdot a_1^1 \cdot \ldots \cdot a_n^n$ realizes over $G\hat{q} * \hat{r}$, hence $\hat{q} * \hat{r} = q' * r' \mid G$. By the assumptions of Lemmas 2.2(d) and 1.3 we get

(4)
$$R_{\Delta}^{r}(\hat{q}) = R_{\Delta}^{r}(q') \le R_{\Delta}^{r}(q' * r') \le R_{\Delta}^{r}(\hat{q} * \hat{r}) = R_{\Delta}^{r}(\hat{q}).$$

181

Thus $R'_{\Delta}(q') = R'_{\Delta}(q' * r')$. Now we can repeat the first part of the proof with r := r', q := q' and G := G' to get $q' | \Delta = q' * r' | \Delta$, i.e. (3).

Finally suppose that $r \in \text{Con} \setminus \text{Con}_2$ and $R'_{\Delta}(q * r) = R'_{\Delta}(q)$. For $n < \omega$, the set of $p \in S$ with $R'_{\Delta}(p) \ge n$ is closed. By 2.2(a), for $p \in \text{Con}_2$ close enough to r we have $R'_{\Delta}(q * p) = R'_{\Delta}(q)$, hence $\hat{q} * \hat{p} | \Delta = \hat{q} | \Delta$. Again by 2.2(a), $\hat{q} * \hat{r} | \Delta = \hat{q} | \Delta$.

When G is categorical, Zilber proved in [12] that if $\{A_i: i < \omega\}$ is a family of indecomposable definable subsets of G, then $\bigcup \{A_i: i < \omega\}$ generates a definable subgroup of G. This result was generalized to the superstable context in Berline and Lascar [3]. Unfortunately, in the stable case we do not have such a measure of types as Morley rank in the ω -stable case or U-rank in the superstable case. Here we consider the following problem. Suppose H_i , $i \in I$, are connected subgroups of G. We know that H, the minimal type-definable subgroup containing all the H_i 's, is connected. How is H related to the H_i 's? As a surrogate for Zilber's result, given $p_i \in \text{Con such that } H_i = \langle p_i \rangle$, we describe topologically how to find $p \in \text{Con with } \langle p \rangle = H$. Theorem 4.7(c) is the first step in this direction. For $P \subseteq S$ and $r \in S$ let $P * r = \{p * r : p \in P\}$. Similarly we define r * P

4.7 Theorem

- (a) If $r \in \text{Con then}\langle r \rangle$ is connected, moreover $\langle r^n, n < \omega \rangle$ strongly converges to the generic type of $\langle r \rangle$. So if q is the generic type of $\langle r \rangle$ then $\vec{R}'(q)$ is the pointwise limit of $\vec{R}'(r^n)$, $n < \omega$.
- (b) If $P \subseteq S$ and $r \in Con$ then $\langle P \cup \{r\} \rangle = \langle r * P \rangle$. Also, $\langle P * r \rangle = \langle r * P \rangle$.
- (c) If $p_1, \ldots, p_n \in \text{Con then } \langle p_1, \ldots, p_n \rangle = \langle q \rangle$, where $q = p_1 * \ldots * p_n \in \text{Con.}$

Proof: (a) By 2.2(d), for each Δ , $\langle R'_{\Delta}(r^n), n < \omega \rangle$ is nondecreasing, and bounded by $R_{\Delta}(x = x)$, which is finite. Hence there is $n(\Delta)$ such that for $n > n(\Delta)$, $R'_{\Delta}(r^n) = R'_{\Delta}(r^{n(\Delta)})$ and by 4.6, $\hat{r}^n | \Delta = \hat{r}^{n(\Delta)} | \Delta$. Thus $\langle r^n, n < \omega \rangle$ strongly converges to some $q \in S$. Also, r * q = q. By Theorem 2.3, q is a generic of $\langle r \rangle$. By 4.2(b), $r(G) \subseteq \langle r \rangle^0$, hence $\langle r \rangle = \langle r \rangle^0$ is connected.

(b) Let $p \in P$. It suffices to prove that $r(G), p(G) \subseteq \langle r * P \rangle$. Let q be a generic of $\langle r * P \rangle$. By 2.2 we have

(*)
$$\dot{R}'(q) \le \dot{R}'(q * r) \le \dot{R}'(q * r * p)$$

 $r * p \in r * P$, hence by 4.2(a), $q * (r * p) \in gen(\langle r * P \rangle)$. It follows that $\hat{R}'(q * r * p) = \hat{R}'(q)$, and in (*) equalities hold. By 4.6, q = q * r, hence by 4.2(a), $r(G) \subseteq \langle r * P \rangle$. Also, q * p = q * (r * p) is a generic of $\langle r * P \rangle$, hence by 4.2(a) again, $p(G) \subseteq \langle r * P \rangle$. Similarly, we show $\langle P \cup \{r\} \rangle = \langle P * r \rangle$.

(c) follows from (b).

4.8 Corollary Assume $P = \{p_i : i \in I\} \subseteq \text{Con. If } j = \{i_1, \ldots, i_n\} \subseteq I \text{ then we define } q_j = p_{i_1} * \ldots * p_{i_n}. \text{ Assume } q \in R = \bigcap_{i \in I} \operatorname{cl}(\{q_j : j \in j \subseteq I \text{ and } j \text{ is finite}}). \text{ Then } q \in \operatorname{Con} \text{ and } \langle q \rangle = \langle P \rangle.$

Proof: Clearly, $\langle q \rangle \subseteq \langle P \rangle$. Suppose *H* is an almost- \emptyset -definable subgroup of *G* containing $\langle q \rangle$. By 4.7(c), for every *i*, $\langle p_i \rangle \subseteq H$, hence $\langle P \rangle \subseteq H$. It follows that $\langle q \rangle = \langle P \rangle$.

Notice that if q_j in 4.8 were defined as generic of $\langle p_{i_1} * \ldots * p_{i_n} \rangle$, then any $q \in R$ would be the generic of $\langle P \rangle$, hence in fact R would be a singleton in such

a case. We can say more. By 4.7 and 4.6, if r is the generic of $\langle P \rangle$ then $\hat{R}'(r)$ is the pointwise supremum of $\{\hat{R}'(p): p \in *P\}$. Also, r is the strong limit of some net of types from *P.

In case when the U-rank of G is finite, we get a more exact counterpart of Zilber's result.

4.9 Corollary Assume G is a superstable group with finite U-rank and $p \in$ Con. Then for some n, p^n is the generic type of $\langle p \rangle$. In particular, $\langle p \rangle = p^n(G) \cdot p^n(G)$.

Proof: From 2.2(c) and 1.2 it follows that for $q \in S$, $U(q * r) \ge U(q)$, U(r). Hence we can choose *n* such that for m > n, $U(p^n) = U(p^m)$. It follows that also $\dot{R'}(p^n) = \dot{R'}(p^m)$, and by 4.6, $p^m = p^n$. By Theorem 2.3 we are done.

5 A special case In this section we focus our attention on the special case of $\langle p \rangle$ for a single type $p \in S$. For $P \subseteq S$ in Theorem 2.3 we explain where the generic types of $\langle P \rangle$ lie. However, in some respect, the results of Section 3 improved greatly Theorem 2.3: if $p \in C$ on and q is the generic of $\langle p \rangle$ then $q = s \lim_{n} p^{n}$. This formula uses only the topological notion of limit and independent multiplication of types *, and does not mention any ranks at all! The following question arises.

5.1 Question Assume $P \subseteq S$. Is it possible to find a generic type of $\langle P \rangle$ (say, the generic type of $\langle P \rangle^0$) using only topological terms and *?

The first natural conjecture regarding this question was the statement (C) below. For $p \in S$ let $\mathcal{L}(p)$ be limitif $\{p^n : n < \omega\} = \{q \in S: \text{ every open } U \text{ containing } q \text{ contains } p^n \text{ for cofinally many } n < \omega\}.$

(C) For $p \in S$, gen $(\langle p \rangle) = \mathcal{L}(p)$.

By Theorem 2.3 we have of course gen $\langle\langle p \rangle\rangle \subseteq \mathfrak{L}(p)$. Unfortunately Hrushovski found an easy counterexample to (C). Namely, let $G = (\mathbf{Q}, +, 1, P)$, where $P = \{2^{n^2} : n < \omega\} \subseteq \mathbf{Q}$. Th(G) is ω -stable with Morley rank ω , P(x) is strongly minimal, $\langle stp(1) \rangle =$ all of G, but the strongly minimal type in P is in $\mathfrak{L}(stp(1))$ and is not a generic of G.

We show however that (C) is true for several cases, for example for all stable groups of bounded exponent. In a way we shall answer positively question 5.1 in case when $P \subseteq S$ is a singleton, in the double step Theorem 5.12 below. We start with comparing $\langle p \rangle$ and $\langle q \rangle$ for various $p, q \in \text{Con}_0$. We need some additional notation. Let $w(x_1, \ldots, x_n) = a_1 * \ldots * a_k$ be a *-tuple. For $i \leq k$ let w_i be the shortest *-tuple such that in $\mathcal{T}(\{x_n : n < \omega\}), a_1 * \ldots * a_i = w_i$ holds. Let $\text{In}_0(w) = \{w_i : i \leq k\}$ and $\text{In}(w) = \{v \in \text{In}_0(w) : v \text{ is not a proper initial segment of any } v' \in \text{In}_0(w)\}$. As an example notice that if $w = w(x_1)$, then In(w) has at most two elements which are of the form $x_1 * \ldots * x_1$ or $x_1^{-1} * \ldots * x_1^{-1}$.

5.2 Theorem Assume $w(x_1, \ldots, x_n), v(x_1, \ldots, x_n)$ are 0-*-tuples and $r_1, \ldots, r_n \in S$.

(a) $\langle w(r_1, \ldots, r_n) \rangle = \langle \{ w'(r_1, \ldots, r_n) * w'(r_1, \ldots, r_n)^{-1} : w' \in \text{In}(w) \} \rangle$. (b) If every $w' \in \text{In}(w)$ is an initial segment of some $v' \in \text{In}(v)$, then $\langle w(r_1, \ldots, r_n) \rangle \subseteq \langle v(r_1, \ldots, r_n) \rangle$. *Proof:* (a) \supseteq . First we prove that for each $w' \in \text{In}_0(w)$, $\langle w'(r_1, \ldots, r_n) * w'(r_1, \ldots, r_n)^{-1} \rangle \subseteq \langle w(r_1, \ldots, r_n) \rangle$.

The proof is similar to that of 4.6 and 4.7(b). Let q be the generic of $\langle w(r_1, \ldots, r_n) \rangle$, $r = w'(r_1, \ldots, r_n)$, and it suffices to prove that $q * (r * r^{-1}) = q$. As $w' \in \text{In}_0(w)$, there is a $p \in S$ such that q * r * p is the generic of $\langle w(r_1, \ldots, r_n) \rangle$. Hence, $\dot{R}(q) = \dot{R}(q * r)$. By 4.3, $\langle r * r^{-1} \rangle \subseteq \langle w(r_1, \ldots, r_n) \rangle$.

 \subseteq . Let $H = \langle \{w'(r_1, \ldots, r_n) * w'(r_1, \ldots, r_n)^{1-} : w' \in \text{In}(w) \} \rangle$, and let q be the generic of H. Choose $b_1, \ldots, b_n \in G$ realizing r_1, \ldots, r_n respectively, and if $w(r_1, \ldots, r_n) = p_1 * \ldots * p_k$, where $p_i = r_i^{\epsilon}$, $\epsilon = \pm 1$, then put $a_i = b_i^{\epsilon}$. Thus, $a_1 \cdot \ldots \cdot a_k = e$. Choose c realizing q, independent from b_1, \ldots, b_n . As in 4.6 (the case $r \in \text{Con}_1$) we prove that for every $i \leq k, c \cdot a_1 \cdot \ldots \cdot a_i$ realizes $q * p_1 * \ldots * p_i$ (the proof relies on the definition of H). This implies $\langle w(r_1, \ldots, r_n) \rangle \subseteq H$. (b) follows from (a).

By 5.2 and 4.4 we get the following corollary.

5.3 Corollary Let
$$p \in S$$
. Then $\langle p^n * p^{-n} \rangle \subseteq \langle p^{n+1} * p^{-(n+1)} \rangle \subseteq \langle p \rangle^0$.

One could wonder whether $\langle p^n * p^{-n} \rangle = \langle p^{-n} * p^n \rangle$. This seems unlikely, although by 5.2 and 4.8 it is not hard to prove that $\langle \{p^n * p^{-n} : n < \omega\} \rangle = \langle \{p^{-n} * p^n : n < \omega\} \rangle$. In the next lemma we shall see that the relationship between $\{p^n * p^{-n} : n < \omega\}$ and $(p^{-n} * p^n : n < \omega\}$ is even closer.

5.4 Lemma Let q be the generic type of $\langle \{p^n * p^{-n} : n < \omega\} \rangle = \langle \{p^{-n} * p^n : n < \omega\} \rangle$.

(a) $q = \text{slim}_n p^n * p^{-n} = \text{slim}_n p^{-n} * p^n$.

(b) $\vec{R}'(q) = \lim_{n} \vec{R}'(p^n)$ (the limit is pointwise here).

Proof: First notice that $\vec{R}'(q) \ge \lim_n \vec{R}'(p^n)$, as $\vec{R}'(p^n * p^{-n}) \ge \vec{R}'(p^n)$. On the other hand we know that $q \in cl(*P)$, where $P = \{p^n * p^{-n} : n < \omega\}$. For a finite Δ choose *m* such that for $n \ge m$, $R'_{\Delta}(p^n) = R'_{\Delta}(p^m)$. As in the proof of 4.6, for every $r \in *P$, $\hat{p}^m * \hat{r} | \Delta = \hat{p}^m | \Delta$. By 2.2(a), $\hat{p}^m * \hat{q} | \Delta = \hat{p}^m | \Delta$. By 2.2(d), $R'_{\Delta}(p^m) = R'_{\Delta}(p^m * q) \ge R'_{\Delta}(q)$. This shows (b).

Now let $r \in \bigcap_m \operatorname{cl}(\{p^n * p^{-n} : n > m\})$. Then $\vec{R}'(r) \ge \lim_n \vec{R}'(p^n * p^{-n}) \ge \lim_n \vec{R}'(p^n) = \vec{R}'(q)$. So by 4.2(a), $\vec{R}'(r) = \vec{R}'(q)$, and r is the generic of $\langle \{p^n * p^{-n} : n < \omega\} \rangle$. It follows that q = r, i.e. $q = \lim_n p^n * p^{-n}$. But $\vec{R}'(q) = \lim_n \vec{R}'(p^n * p^{-n})$, hence we see that q is the strong limit of $\{p^n * p^{-n} : n < \omega\}$.

5.5 Corollary Let $p \in S$. There is a connected type-definable almost over \emptyset subgroup H of $\langle p \rangle^0$ such that $\vec{R}'(H) = \lim_n \vec{R}'(p^n)$.

The q from Lemma 5.4 might be called $p^{\omega} * p^{-\omega}$ or $p^{-\omega} * p^{\omega}$. It is not hard to prove that $p * q * p^{-1} = q$, hence such a notation would imply $p^{(1+\omega)} * p^{-(1+\omega)} = p^{\omega} * p^{-\omega}$, which agrees well with $\omega = 1 + \omega$.

Now let us see what the connection is between $\langle P \rangle$ and $\langle P \rangle^0$ for $P \subseteq S$. First we deal with $P = \{p\}$.

5.6 Lemma Let $p \in S$. Then $[\langle p \rangle : \langle p^n \rangle]$ is finite for each n > 0. Also, $\langle p \rangle^0 = \bigcap_n \langle p^n \rangle$. In particular, $[\langle p \rangle : \langle p \rangle^0] \le 2^{\aleph_0}$.

Proof: By 5.3, for $i \le n$, $p^i * p^{-i}(G) \subseteq \langle p^n \rangle$, hence $p^i(G)$ is contained in one left (and one right) $\langle p^n \rangle$ -coset of $\langle p \rangle$. Thus also for every $j < \omega$, $p^j(G)$ is contained in one left $\langle p^n \rangle$ -coset and it follows that there are only finitely many left

 $\langle p^n \rangle$ -cosets containing some $p^i(G)$. In particular, for q_0 , the generic type of $\langle p \rangle^0$, $q_0(G)$ is contained in one $\langle p^n \rangle$ -coset of $\langle p \rangle$. As $q_0 = q_0 * q_0^{-1}$, we have $q_0(G) \subseteq \langle p^n \rangle$ and $\langle p \rangle^0 \subseteq \langle p^n \rangle$.

Thus if q is a generic of $\langle p \rangle$ then q(G) is contained in one left $\langle p^n \rangle$ -coset of $\langle p \rangle$. Also, $q \in \mathcal{L}(p)$ and there are only finitely many $\langle p^n \rangle$ -cosets containing some $p^i(G)$. Thus there are only finitely many $\langle p^n \rangle$ -cosets containing q(G) for some $q \in gen(\langle p \rangle)$. This implies $[\langle p \rangle : \langle p^n \rangle]$ is finite.

Now suppose that *H* is a relatively definable almost over \emptyset subgroup of $\langle p \rangle$ with finite index in $\langle p \rangle$. Then $q_0(G) \subseteq H$, hence by 2.3 for some *n*, $p^n(G) \subseteq H$. It follows that $\langle p^n \rangle \subseteq H$, i.e. $\langle p \rangle^0 = \bigcap_{n < \omega} \langle p^n \rangle$.

Notice that if X is a free group with κ generators then there are $\leq (\kappa + \aleph_0)$ many normal subgroups of X with finite index in X. Hence by a similar proof we get

5.7 Corollary If $P \subseteq S$ then $[\langle P \rangle : \langle P \rangle^0] \leq 2^{|P| + \aleph_0}$.

Suppose for some k, $p(x) \vdash x^k = e$; that is, p is a type of elements of finite order. Then we have $p^k \in \text{Con}_1$; hence by 5.6 we get the following corollary.

5.8 Corollary If $p(x) \vdash x^k = e$ then $[\langle p \rangle : \langle p \rangle^0] \le k$ and $gen(\langle p \rangle) = \mathcal{L}(p)$ is finite. Let q be the generic of $\langle p \rangle^0$. Then $q = slim_n p^{nk}$. Also, for $i < k slim_n p^{nk+i}$ exists and is a generic of $\langle p \rangle$, and every generic of $\langle p \rangle$ is obtained in this way.

5.9 Corollary If Th(G) is small and $P \subseteq S$ is finite then $\langle P \rangle$ is connectedby-finite.

Proof: By adding a finite set of constants to L we can assume that $P \subseteq S(\emptyset)$. By Theorem 2.3, every generic of $\langle P \rangle$ is in cl(*P), hence $S(\emptyset)$ being countable implies that gen($\langle P \rangle$) is countable, too, and $[\langle P \rangle : \langle P \rangle^0] < \omega$.

The next theorem shows that in many cases (C) is true. For the definition of weakly normal groups, see [6]. Notice that any pure group which is abelian-by-finite is weakly normal.

5.10 Theorem Assume $p \in S$ and G has bounded exponent or is weakly normal. Then $gen(\langle p \rangle) = \mathcal{L}(p)$.

Proof: In case when G has bounded exponent the conclusion follows by 5.8. So suppose G is weakly normal. Choose any $q \in \mathcal{L}(p)$. We will prove that $q \in gen(\langle p \rangle)$. Let r be the generic of $\langle p \rangle$ such that $q^{-1} * r(G) \subseteq \langle p \rangle^0$, that is q(G) and r(G) are in the same $\langle p \rangle^0$ -coset of $\langle p \rangle$. We will prove that q = r. By Hrushovski and Pillay [6], every definable subset of G is a Boolean combination of cosets of almost over \emptyset definable subgroups of G. Hence, fix an almost- \emptyset -definable H < G. It suffices to prove that for any $a \in G$, $r(G) \subseteq aH$ iff $q(G) \subseteq aH$.

Suppose $r(G) \subseteq aH$. Then $r^{-1} * r(G) \subseteq H$, hence $\langle p \rangle^0 \subseteq H$. As q(G) and r(G) are in the same $\langle p \rangle^0$ -cosets, we get $q(G) \subseteq aH$.

Now suppose $q(G) \subseteq aH$. Then $\hat{q}(x) \vdash x \in aH$, and $q \in \mathfrak{L}(p)$, so there are infinitely many *n* with $p^n(G) \subseteq aH$. Choose n, k > 0 with $p^n(G), p^{n+k}(G) \subseteq aH$. It follows that $p^k(G) \subseteq H$, hence again by 5.6 $\langle p \rangle^0 \subseteq H$. As above we get $r(G) \subseteq aH$.

It is easy to see that * restricted to gen($\langle p \rangle$) is continuous (as a binary function). Unfortunately, * is not always continuous on $\mathcal{L}(p)$, because this implies (C) for p. Define $f_p: S \to S$ by $f_p(q) = p * q$, and similarly define $f_{p^{-1}}$.

5.11 Lemma $f_p|\mathfrak{L}(p)$ is a permutation of $\mathfrak{L}(p)$. Also, $f_{p^{-1}} \circ f_p|\mathfrak{L}(p) = \mathrm{id}_{\mathfrak{L}(p)}$.

Proof: Suppose $\langle p^{n_i} : i \in I \rangle$ is a net converging to $q \in \mathfrak{L}(p)$, and wlog $\langle p^{n_i-1} : i \in I \rangle$ converges to $q' \in \mathfrak{L}(p)$. We see that $f_p(q') = q$, hence $\operatorname{Rng}(f_p | \mathfrak{L}(p)) = \mathfrak{L}(p)$. For a fixed Δ , as in the proof of 4.6 and 5.4, we see that if *n* is large enough then $\hat{p}^{-1} * \hat{p} * \hat{p}^n | \Delta = \hat{p}^n | \Delta$. It follows that $\langle p^{-1} * p * p^{n_i} : i \in I \rangle$ also converges to *q*. But this means that $f_{p^{-1}} \circ f_p | \mathfrak{L}(p) = \operatorname{id}_{\mathfrak{L}(p)}$, and we are done.

Let $p \in S$. Suppose we are given a task of getting a generic type of $\langle p \rangle$; we know topology, independent multiplication *, but cannot measure any ranks. The first guess would be to choose a $q_0 \in \mathcal{L}(p)$. We know that possibly $gen(\langle p \rangle) \neq \mathcal{L}(p)$. So it may happen that $q_0 \notin gen(\langle p \rangle)$. However q_0 in some respect is more similar to a generic of $\langle p \rangle$ than any p^n , for example any rank of q is \geq that rank of p^n . Also, $\langle p \rangle^0 \subseteq \langle q_0 \rangle \subseteq \langle p \rangle$, $gen(\langle q_0 \rangle) \subseteq gen(\langle p \rangle)$ and $\mathcal{L}(q_0) \subseteq \mathcal{L}(p)$ (this is proved below). So maybe if we try again and choose $q_1 \in \mathcal{L}(q_0)$, then we are more lucky in getting a generic of $\langle p \rangle$. The next theorem confirms this guess.

5.12 Double step theorem Assume $p \in S$, $q \in \mathcal{L}(p)$ and $r \in \mathcal{L}(q)$. Then r is a generic type of $\langle p \rangle$.

Proof: First notice that

(1) $\langle p \rangle^0 \subseteq \langle q \rangle \subseteq \langle p \rangle$.

Indeed, any almost- \emptyset -definable subgroup H of G containing $\langle q \rangle$ contains $p^n(G)$ for some n, hence also $\langle p^n \rangle$. By 5.6, $\langle p \rangle^0 \subseteq \langle p^n \rangle \subseteq H$. Looking at ranks, (1) implies gen($\langle q \rangle$) \subseteq gen($\langle p \rangle$). Also, $\mathfrak{L}(p)$ is closed and closed under *, hence $\mathfrak{L}(q) \subseteq \mathfrak{L}(p)$. Now let $q_0 = q^{-1} * q$. We show that

(2) $q_0 \in \mathfrak{L}(p)$.

Choose a net $\langle p^{n_i} : i \in I \rangle$ converging to q. Then $\langle p^{-n_i} : i \in I \rangle$ converges to q^{-1} . It suffices to find within an arbitrary open \cup containing q_0 a type from $\mathfrak{L}(p)$. By 2.2(a) we can find an $i \in I$ such that $p^{-n_i} * q \in \cup$. By 5.11, the mapping $s \to p^{-n_i} * s$ is a permutation of $\mathfrak{L}(p)$, hence $p^{-n_i} * q \in \mathfrak{L}(p)$. By (1), $\langle p \rangle^0 \subseteq \langle q_0 \rangle \subseteq \langle q \rangle \subseteq \langle p \rangle$, hence $\langle p \rangle^0 = \langle q_0 \rangle^0 = \langle q \rangle^0$. But $q_0 \in$ Con,

By (1), $\langle p \rangle^0 \subseteq \langle q_0 \rangle \subseteq \langle q \rangle \subseteq \langle p \rangle$, hence $\langle p \rangle^0 = \langle q_0 \rangle^0 = \langle q \rangle^0$. But $q_0 \in \text{Con}$, hence by 4.7, $\langle q_0^n, n < \omega \rangle$ is strongly convergent to q_1 , the generic type of $\langle q_0 \rangle = \langle p \rangle^0$. By 5.3, 5.4 and 2.2(d) it follows that $\dot{R}(q_1) = \lim_n \dot{R}'(q_0^n) =$ $\lim_n \dot{R}'(q^n)$. We know that any $s \in \mathcal{L}(p)$ is a generic of $\langle p \rangle$ iff $\dot{R}'(s) = \dot{R}'(q_1)$, and for every $s \in \mathcal{L}(p)$, $\dot{R}'(s) \leq \dot{R}'(q_1)$. On the other hand, by 2.2(d), $\dot{R}'(r) \geq$ $\lim_n \dot{R}'(q^n) = \dot{R}'(q_1)$, as $r \in \mathcal{L}(q)$. This implies $\dot{R}'(r) = \dot{R}'(q_1)$, hence r is a generic type of $\langle p \rangle$.

Take r from 5.12. By 5.6 we can define the generic type r' of $\langle p \rangle^0$ as $\operatorname{slim}_n r^{n!}$. A similar argument yields the following corollary.

5.13. Corollary Let $p \in S$. The following conditions are equivalent.

(a) p is a generic type of $\langle p \rangle$.

(b) $p = \lim_{n \to \infty} p^{n!+1}$

(c) $p = slim_n p^{n!+1}$.

A challenging problem is to generalize 5.12 for arbitrary $P \subseteq S$. This would tell us more about restrictions on the structure of G imposed by the stability assumption.

REFERENCES

- [1] Baldwin, J. T., Fundamentals of Stability Theory, Springer, 1987.
- [2] Baldwin, J. T. and A. Pillay, "Semisimple stable and superstable groups," Annals of Pure and Applied Logic, vol. 45 (1989), pp. 105-128.
- [3] Berline, Ch. and D. Lascar, "Superstable groups," Annals of Pure and Applied Logic, vol. 30 (1986), pp. 1-45.
- [4] Hrushovski, E., Ph.D. Thesis. University of California at Berkeley, 1986.
- [5] Hrushovski, E., "Locally modular regular types," in *Classification theory, Proceedings* (ed. J. T. Baldwin), Springer 1987.
- [6] Hrushovski, E. and A. Pillay, "Weakly normal groups," Logic Colloquim 1985, ed. The Paris Logic Group, North Holland, Amsterdam, 1987, pp. 233-244.
- [7] Lachlan, A. H., "A property of stable theories," *Fundamenta Mathematicae*, vol. 77 (1972), pp. 9–20.
- [8] Lascar, D. and B. Poizat, "An introduction to forking," *The Journal of Symbolic Logic*, vol. 44 (1979), pp. 330–350.
- [9] Poizat, B., "Sous-groupes definissables d'un groupe stable," *The Journal of Symbolic Logic*, vol. 46 (1981), pp. 137-146.
- [10] Shelah, S., Classification Theory, North Holland, Amsterdam, 1978.
- [11] Wagon, S., The Banach-Tarski Paradox, Cambridge University Press, 1985.
- [12] Zilber, B. I., "Groups and rings with categorical theories," *Fundamenta Mathematicae*, vol. 95 (1977), pp. 173–188.

IM PAN Kopernika 18 51-617 Wroclaw, Poland