485

Notre Dame Journal of Formal Logic
Volume 31, Number 4, Fall 1990

Book Review

Melvin Fitting. Computability Theory, Semantics, and Logic Programming. Ox-
ford University Press, 1987. 198 pages.

“We should be able to tell a computer what we want it to determine, and it
should be able to figure out how to do it.” This recurring fantasy is natural
enough, given the frustrating and error-prone methods still being used to pro-
duce computer software. Through the years various new programming method-
ologies have been heralded as the answer. Logic programming has now been
around for a decade and a half, and it is still going strong. The idea is certainly
attractive (especially to logicians): specify what you would like the computer to
do in first-order logic; the computation is then reduced to a matter of logical
deduction which can be handled by an all-purpose automated deduction system.
In practice, the inefficiency of existing automated deduction systems forces a
compromise. The most popular compromise is PROLOG in its various dialects.
In PROLOG the specification must be expressible as a finite set of Horn clauses,
i.e. quantifier-free formulas of predicate calculus each of the form

A ANAyAN ... NA,—> B

where 4, A,,..., A,, B are atoms (i.e., atomic formulas). Logical deduction
can then be accomplished by using unification, that is by finding substitutions
for the variables that make the consequent atom of one clause identical with one
of the conjuncts in the antecedent of another clause. Finally, in order that the
system behave in a deterministic way, a specific order is specified in which the
search for such substitutions is carried out. The question of to what extent this
necessary compromise vitiates the promise of logic programming remains highly
controversial.

The starting point of Fitting’s striking book is the observation that the ele-
mentary formal systems, introduced by Raymond Smullyan almost three decades
ago as a variant of Emil Post’s canonical systems to provide an elegant founda-
tion for recursive function theory (computability theory), are really logic pro-
grams. Thus, Fitting is able to provide an exposition of elementary computability
theory in the context of an abstract theory of programming languages. Logicians
will find that this treatment provides a particularly painless path to understanding
some of the logical issues that have been of great concern to computer scientists.
The denotational semantics of a programming language provides for each pro-



486 MARTIN DAVIS

gram of the language a purely extensional description of what it is that the pro-
gram computes (as opposed to the operational semantics which specifies the
actual operations performed by the program). In Fitting’s context, one predicate
letter is taken to represent the “output” so the denotational semantics associates
a definite relation with each program; this relation turns out to be simply the
minimal “model” of the program. If an additional predicate letter is singled out
as “input”, then the program specifies an operator which maps relations to re-
lations. These turn out to be monotone operators as studied by Tarski in the
1950s, and they have a least fixed point. Studying this least fixed point leads to
a proof of Kleene’s first recursion theorem.

As a textbook on computability theory, only the most basic results are ob-
tained: the two recursion theorems, Rice’s theorem, and Kleene’s normal form
theorem (which has an interesting interpretation in connection with programming
practice). There is an unusually careful treatment of the mutual encodability of
the various basic data structures. But mainly this book will issue once again, and
with particular force, the siren call we logicians have been hearing: you too can
be a computer scientist!

Martin Davis

Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

New York, New York 10012





