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Abstract An imperative logic is studied in which commands are treated as
prescribed actions rather than as, traditionally, prescribed propositions. This
approach is related to those of Jaorgensen and Ross.

1 Introduction Of early efforts to develop a logic of imperatives perhaps the
most interesting were those made by the Danish authors Jargen Jorgensen and
Alf Ross. Like other philosophers they saw imperatives as being of the form !A,
where A is a formula: “Let it be the case that A!”. Jergensen’s suggestion in [4] —
if we extrapolate a little— was that imperative logic is essentially parasitic on clas-
sical logic and that it reduces to the following monotonicity condition:

If Ag,...,A,_ FB, then 'Ay,...,!A,_; | !B.

That is to say, if B follows in classical logic from Ay, ...,A,_;, then the imper-
ative !B follows in imperative logic from the imperatives !A,,...,!A,_;.
This is not an unnatural suggestion, but in [6] Ross pointed out a difficulty
with it. According to him there are two questions about imperatives which are
both important but must not be confused. One is whether, in a particular situ-
ation, a particular imperative is what he calls valid (that is, whether it holds,
whether it is in force), another whether a certain action satisfies the imperative.
It is perhaps unfortunate that the terms chosen by Ross already have so many
other meanings, but we shall stick to his terminology. Thus with him we recog-
nize that for imperatives there is a logic of validity and a logic of satisfaction.
That those should be different is hardly surprising, but Ross drove home this
point by a now famous example. With respect to a particular occasion and a cer-
tain letter, so far neither posted nor burned, let A be “The letter is posted” and
let B be “The letter is burned”. In classical logic A v B follows from A, so by
Jorgensen’s monotonicity rule !(A v B) follows from !A. This conclusion is ac-
ceptable in the logic of satisfaction, for if it is a result of the agent’s action that
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it is true that A, then a fortiori it is a result that it is true that A v B. But in the
logic of validity the conclusion must be rejected, for in a normal situation in
which the imperative ! A has been given, the further imperative !(A v B) by no
means follows.

Ross’s observation shows that a logic taking Jergensen’s suggestion to heart
cannot pretend to be a logic of imperative validity. In particular it would seem
to ruin the hope of using the prima facie most likely candidate for this task,
namely, modal logic. And during the almost half of a century that has elapsed
since Ross published his critique no satisfactory alternative has been found. This
is disturbing, for it is the logic of validity that we are mainly interested in.

In this paper we shall make an effort to provide a semantics for imperative
logic which nevertheless is in the tradition of modal logic. Two presuppositions
make our approach different from most previous work in this area. First, we try
to keep world and will apart. While we think that the standard semantics for mo-
dal logic can provide a fruitful way of modeling the world, we believe that it is
well to leave both the commanding authority (the commander, Ross’s “imper-
ator”) and the subject (the agent) out of it. They have different roles to play, both
having to do with changes in the world. The subject’s is to act; he tries to manipu-
late the way in which the world changes. The world is in one state one moment,
in another state the next; but what the next state is may depend on the subject —
on his will. In some modelings his body may be in the world, but according to
our theory his will never is. Similarly, there is something that authority tries to
manipulate, namely, the subject’s will. Ultimately it is change in the world that
is the authority’s concern too, but the ways of authority are indirect, proceed-
ing via the subject. These matters are of course exceedingly complex, as witnessed
by the rich literature on the philosophy of action and norms. Here we are do-
ing elementary logic and so shall not be able to do more than scratch the logi-
cal surface. In fact, we shall not even touch on the question of how to represent
the subject performing any actions. However, we will represent the authority
issuing commands. To this end we need to introduce a semantic device to keep
track of the commands issued by the authority. This new device will be the com-
mand system defined in Section 4 below.

This raises the question of how to represent imperatives semantically. Here
we come to the second presupposition that makes our approach differ from the
tradition in philosophical logic, although the difference is not great. Dynamic
logic is a generalization of modal logic in which actions can be represented, and
the logic we are presenting is a slightly modified version of dynamic logic. Rather
than treating commands as prescribed propositions as above we shall treat them
as prescribed actions. Syntactically this means that the imperative operator will
not apply to formulas (propositions) but to terms (actions). Thus we will recog-
nize expressions of type !a: “Let o be done!”; expressions of type ! A will not
be well-formed.

There is actually a third presupposition that should also be mentioned. This
presupposition consists in treating all basic actions as being of the form A,
where 6 is a new operator (“bringing it about that”) and A is a proposition as
before. According to this analysis, if A is the proposition of Ross’s example, then
15A may be read: “Let your action consisting in the posting of the letter be
done!” or “Let it be that you bring it about that the letter is posted!”. This may
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be thought to be an awkward way of formalizing the simple command “Post the
letter!”, but, as we shall see, there are theoretical rewards.

The literature on the logic of imperatives is rich, and no survey of it is at-
tempted here. For the history of the subject the introduction by Fellesdal and
Hilpinen in [3] is recommended. Kanger’s early essay [5] and Chellas’s disserta-
tion [1] and subsequent paper [2] are landmarks, but the theories propounded
there exemplify traditional modal logic’s inability to deal with Ross’s counterex-
ample. The §-operator was first described in Segerberg [8] and [9]; readers are
referred to the latter work for more details regarding the problem of representing
action in so-called possible world semantics.

2 Syntax Our alphabet consists of the following elements:

(i) a denumerable set of propositional letters Py, P;,...,P,,...
(ii) the Boolean operators L and D
(iii) the higher-order operator | ]
(iv) the action operator &
(v) the regular operations + and ;
(vi) the imperative operator !.

The definition of well-formed expression at the same time defines the notions
of formula and term:

(WF0) A well-formed expression is a formula or a term. Every formula is the-
oretical or practical but not both.

(WF1) Every propositional letter is a theoretical formula.

(WF2) L is a theoretical formula.

(WF3) A D Bis always a formula if A and B are; theoretical if both A and B
are theoretical, practical if at least one of A and B is practical.

(WF4) [«]Bis always a formula if « is a term and B is a formula; theoreti-
cal if B is theoretical, practical if B is practical.

(WF5) 6A is a term, if A is a theoretical formula.

(WF6) « + fis aterm if o and 8 are terms.

(WFET) «;Bis aterm if o and 3 are terms.

(WF8) !« is a practical formula, if « is a term.

(WF9) Nothing is a well-formed expression except by virtue of clauses
(WF0)-(WF8).

Throughout the paper we shall use letters A, B, etc. to denote formulas. We
assume that other Boolean operators are defined in some standard way. Expres-
sions of type [«], where « is a term, function like modal operators, and we shall
refer to them as such. The class of modal operators would also include expres-
sions of type (a), on the understanding that they are short for =[] —. This
means that a formula {«)A is actually short for the formula (o] (AD 1) D 1).
The practical formulas are simply those that contain at least one occurrence of
the imperative operator; we have resisted the possible suggestion that they be
called imperatives. A taxonomy of imperatives would be useful, and it might be
an interesting exercise to work one out for the object language defined here. A
direct or unconditional imperative would presumably be a formula of type !«.
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Among conditional imperatives one would have to distinguish several kinds, for
example those of types C D o, C= !, [B]!a, [B] (C D &), etc. But it is de-
batable whether formulas of type —!a or {a:)!3 should be regarded as impera-
tives, and the same holds for other, more complicated, formulas. We will not
pursue this topic here.

We have chosen to restrict the notion of a well-formed expression in such
a way that neither the 6-operator nor the !-operator applies to an expression con-
taining the !-operator. Thus, expressions of type !6!«a are not well-formed ac-
cording to the present definition. No doubt one could make some sense of even
such “higher-order imperatives”, but here we have wished to focus on the dif-
ferent roles played by authority and subject —authority with its power to vali-
date imperatives or not, the subject with his power to satisfy imperatives or not.
The object language chosen here is well suited to such focusing.

However, the 6-operator is allowed to nest. For example, a formula such
as !6([6A1B) makes good sense, carrying some intuitive import such as: “See to
it that, upon seeing to it that A, it will be the case that B!”, or more simply:
“Make sure that B holds whenever you have seen to it that A!”.

We shall now lay down an axiom system. Our axioms fall into four cate-
gories. First, every tautology is a classical axiom. Second, every well-formed in-
stance of the following is a modal axiom:

(AM1) [a] (BAC) = ([a]BA [a]C)
(AM2) [o]T.

Third, every well-formed instance of the following is an action axiom:

(AA1) [bA]A

(AA2) [6A]B D ([6B]C D [6A]C)
(AA3) [a+B]C=[a]Ch[B]IC
(AA4) [a;B]C = [a][BIC.

Fourth, every well-formed instance of the following is an imperative axiom:

(AIl) (!15A A!5B) D !5(AAB)
(A2) !(a;B8)D!la

(AI3) !(a;B) D [a]!B

(AI4) oD ([a]!f D !(a;B)).

As inference rules we adopt the following:

(MP) If A and A D B are theses, then so is B (Modus Ponens)

(RM) If B = C is a thesis, then so is [¢]B = [«]C (Replacement for modal
operators)

(RA) If A =B is a thesis, then so is [6A]C = [6B]C, provided that A and B
are theoretical (Replacement for the action operator)

RD If [¢]C = [B]C s a thesis, for every C, then so is !« =!8, provided that
!a and !B are well-formed (Replacement for the imperative operator).

We write FA if A is a thesis. A normal logic is a set of formulas which contains
all the above axioms as theses and is closed under the four rules of inference. It
is clear that a normal logic is congruential in the following sense:
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Lemma 2.1 In a normal logic, provably equivalent formulas are intersub-
stitutable in all contexts; i.e., if FA = B then +C = C’, if C is exactly like C’ ex-
cept for containing an occurrence of A in a place where C’ contains an occurrence
of B.

Proof: We prove this by induction; the difficulty lies in getting the induction or-
der right. We define the notion of one well-formed expression immediately pre-
ceding another:

(IP1) A propositional letter has no immediate predecessor

(IP2) L has no immediate predecessor

(IP3) The immediate predecessors of A D B are A and B

(IP4) The immediate predecessors of [« ]A are o and A

(IP5) The immediate predecessor of 6A is A

(IP6) The immediate predecessors of o + (8 are « and 8

(IP6) The immediate predecessors of «; (3 are « and 3

(IP8) The immediate predecessor of !« is «

(IP9) Nothing is an immediate predecessor except by virtue of clauses
(IP1)-(IP3).

Notice that this definition corresponds clause for clause with the definition of
well-formed expression. The ancestral of the relation of immediate precedence
is the relation of precedence, and it is the latter that is the induction order. The
proof follows the outline of the proof of Lemma 4.1 in [9]. For our primary in-
duction, assume the following induction hypothesis:

(IH1) The lemma holds for all formulas, theoretical or practical, that pre-
cede C.

To complete the proof, we have to show that the lemma holds for C. The
proof consists in an inspection of cases in accordance with the structure of C.
If C is a propositional letter or L or D D E, for some formulas D and E, then
the argument is straightforward. The remaining two cases, C = [a]D and C =
la, where « is a term and D is a formula, require more attention. Here D is cov-
ered by the induction hypothesis (IH1), but what about «? If among our primi-
tives we had had a binary term operator =, representing identity between terms,
then we would have tried to establish that « = «’. Such an extension of our ob-
ject language might be reasonable; but remaining within our more limited ob-
ject language we proceed as follows. We wish to prove the following claim:

(*) HalF = [«’]F, if F is any formula and « and «’ are related as in the
statement of the lemma; that is, « has A in one place where o’ has B.

Assume the following as our secondary induction hypothesis:
(IH2) If B precedes «, then F[3]F = [B’]F, if F is any formula and 8 and 8’

are related as in the statement of the lemma.

If & = 6E, for any theoretical formula E, then E is covered by (IH1), for E pre-
cedes C since E precedes o and « precedes C. Hence FE = E’. Therefore, by
(RA), F[6E]F = [SE’]F, for all F. The cases « = 3 + v and o = ;7 are
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straightforward. For example, if o’ = 3’ + v, then the following argument
suffices:

FIB + vIF = [B]F A [y]F by PDL
FIB + v]F = [B’']F A [y]F by (IH2) and classical logic
FB +y]F = [8' + v]F by PDL.

The secondary induction completed, the claim (%) has been established.

We now return to the two remaining cases. If C = [«]D, then there are two
subcases. In one subcase C’ = [« ]D’, where D and D’ are related as in the state-
ment of the lemma. In this case FD = D’ by (IH1), and so F[«]D = [«]D’ by
(RM). In the other subcase C’ = [«a’]D, where o and o are related as in the
statement of the lemma. Then FHa]D = [o’]D by (*).

Finally we have the case C = !«. Then C’ = !«’, where « and o’ are related
as in the statement of the lemma. By (%), FH[a]F = [«a’]F, for all F. Hence, by
R, FHa=!a"

One might contemplate adding to the system so defined further axiom
schemas such as =(!6A A 16—A) or —1!16.1L. To do so would be to guarantee a cer-
tain consistency on the part of the commander, which is the motivation for in-
troducing similar schemas in logics of rational belief: -(IBA A mIBA) or —IB.L.
However, here we are content to observe that in our system there is also a cer-
tain safeguard against inconsistency: he who orders the impossible orders every-
thing, thus destroying the usefulness of the institution of commanding. (The
situation is again analogous to that in doxastic logic where BL D IBA is a the-
sis.) We make a note of this observation:

Proposition 2.2 F16L D a, for every term «.

Proof: Let C be any formula. The following argument sketch is self-explanatory:

1. F[6L] L (A1)
2. F[6L]C from 1. by modal logic
3. Hal[éL]C from 2. by modal logic
4. Ha;6L]1C from 3. by (AA4)
5. F6L]C = [«a;6L]C from 2. and 4. by classical logic.

Note that this result holds for every choice of C. Therefore we can continue as
follows:

6. F16L =!(a;61) from 5. by (RI)
7. Hé1L Dl from 6. by (AI2).

3 Semantics for theoretical formulas A frame is a quadruple (U, A, D, P)
where U, A, D, and P satisfy the following conditions:

U (the universe) is a set

A (the set of actions) is a subset of ®(U X U), the power set of U X U,
which is closed under set-theoretic union and relative product; that is,
forallR,Sc UXx U

(FA1l) ifR,S€Athen RUSEA
(FA2) if R, S€ AthenR|S€E A.
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D (the action operator) is a function from P to A such that, for all X,
YEP

(FD1) DX < (x,y):y € X}
(FD2) If{x,yy€EDX=y€ Y, forally,then{x,z) € DX =(x,2) €
DY.

P (the set of propositions) is a set of subsets of U such that

(FP1) Pis closed under set-theoretic intersection, union, and comple-
ment relative to U

(FP2) P is closed under the interior operation I, for each R € A4,
where by definition, for all X € P

IgX ={x:¥y(x,y) ER =y € X)}.

A valuation in a set U is a function from the set of propositional letters to
®U. A valuation fits a frame if its range is included in the set of propositions
of that frame. A model is a quintuple (U, A, D, P, V'), where (U, A, D, P) is
a frame and V is a valuation that fits the frame. Relative to such a model we si-
multaneously define the intension | A| of theoretical formulas A and the inten-
sion | o] of terms o

acr |P,| = V(Py,), for all propositional letters P,
ac2) |L| =9

ac3) |ADB|=(U—|A]U|B|

aC4 |[«]B| =14 |B]

aICs) |sA| =DJA|

aC6) o+ B =] U8
acmn  Jo;Bl = leol | 18-

Notice that the conditions of this definition parallel clauses (WF1)-(WF7) in the
definition of well-formed expressions.

We say that A is true at x if x € | A|. Similarly, we might say that {(x, y)
realizes | | if {x,y) € | «|. The reader should beware that we have suppressed
all mention of a model in our symbolic notation; if 9 is the model relative to
which our definitions have been made, then the full notation should include ref-
erence to M —for example, |A|™ and | «||”™ for theoretical formulas and
terms, respectively.

4 Semantics for practical formulas To extend the truth-definition to the prac-
tical formulas we need a new semantic primitive to play the role of authority or,
perhaps more accurately, to stand in for authority. As was said in the introduc-
tion, it is the will of the authority that we wish to model. Authority wills certain
actions to be done. It is one thing how authority chooses to communicate with
the subject; what it comes down to is that certain actions are to be done in cer-
tain situations. In order to articulate this intuition we introduce the notion of a
command system fitting a frame, which is to be a family of command sets, one
for each point in the frame. Formally, if & = (U, A, D, P) is a frame, we say
that T is a command set in ¥ if the following conditions are satisfied:
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C0) Zc®UXxU)
(C1) ifDX,DYeEXthenD(XNY)eL, forallX, YEP

Condition (C1) reflects a central feature of authority, namely, that the subject
is under the obligation to discharge all commands that are in force at the time.
Notice that D(X N Y) may be empty even if X N Y is not. For further discus-
sion and examples, see [9].

We say that ' = {T, : x € U} is a command system in ¥ if each I, is a com-
mand set in & and the following conditions hold:

(C2) ifR|SeTI,thenRET,
(C3) ifR|SET,and(x,y)ERthenSET,
(C4) if R €Ty and, for all y such that (x,y) € R, S €T, then R|S €T,.

Conditions (C2) and (C3) may be regarded as consistency conditions. The former
is fairly obvious: if the subject is ordered to perform the complex action R|S he
will have to perform R before he can perform S, so in effect he has been ordered
to do R. Here it should be observed that A is not required to be closed under in-
tersection, so R N S is not necessarily an action, and an action DX | DY is in gen-
eral different from the action DX N DY. In order to motivate (C3), note that in
our modeling we are assuming that the will of the authority remains unchanged;
what this will boil down to in a particular situation may vary, though. This is
because some commands will lapse as they are carried out by the subject. On the
other hand, commands that are conditional at one point may become uncondi-
tional later.

These remarks may be elucidated by some examples. If I am ordered always
to put stamps on my letters before posting them, this command does not ever
lapse, no matter how many letters I may have already put stamps on. But sup-
pose that at a point x I have been ordered to put a stamp on one particular let-
ter and then post it. To carry oul this order I shall have to go through two steps,
first putting on the stamp and then posting the letter. Upon completion of the
first step the state of the world has changed from x to a new point y: at y but
not at x there is a stamp on the letter. At the same time I have satisfied part of
the command and am no longer under the obligation to put a stamp on the let-
ter; at the intermediate point y, all I need to do is to go on and take the second
step, that of getting the letter into the mail. Notice that if we did not allow com-
mand sets to change as the subject’s action takes us from point to point, an obe-
dient subject would be caught in an infinite loop, in this case forever putting
stamps on the letter in question.

If (C2) and (C3) are conditions of consistency, then (C4) is one of complete-
ness. Suppose that I have been ordered to post a letter after I have put stamps
on it, and suppose I have also been ordered to put stamps on it. Then I might
conclude that, effectively, I have been ordered to put stamps on the letter and
then to post it. It is this conclusion that is endorsed by (C4).

One consequence of these definitions deserves to be noted, viz., that impos-
sible commands destroy the usefulness of the institution of commanding (cf.
Proposition 2.2 above):

Proposition 4.1 Suppose that & € T',. Then T, = A. Moreover, if {x,y) €
R, for any R € A, thenT, = A.



IMPERATIVE LOGIC 211

Proof: Suppose that & € T',. Take any S € A. As S|J = O, it follows by
(C2) that S € T',. Assume that {x,y) € R, for any R € A. By what we just saw,
R| @ €Ty, hence @ €T, by (C3).

Armed with the notion of command system we shall now proceed to pro-
vide semantic conditions which cover all formulas, practical as well as theoret-
ical. Let M = (U, A, D, P, V) be a given model and suppose that T is a
command system in the frame of M. We define the notion of I requiring a for-
mula A at a point x in 9, in symbols ' EX* A (as before, we omit M from the
symbolism when this can be done without risk of confusion):

(RC1) T E, |P,| iff x€ |P,|

(RC2) notT E, L

(RC3) TE ADBIffifI' E AthenT E, B

(RC4) T E, [«]Biff, for all y, if (x,y) € |a| thenT F, B
(RC5) Tk, laiff |af €T,.

The following result is obvious but important enough to warrant display-
ing: a theoretical formula is true at a point if and only if it is required at the
point:

Lemma 4.2 Let x be any point in a model, and let I' be any command sys-
tem in the frame of the model. Then, for every theoretical formula A, the fol-
lowing three conditions are equivalent:

M xe|A|
QTE A
() T E,A.

The following correspondences between well-formed expressions and inten-
sions in our modeling should be noted:

the intension of a theoretical formula is a proposition
the intension of a term is an action
the intension of an unconditional imperative is a command.

The intension of a general practical formula is something more complicated, for
which one might introduce the term practical proposition.

Let us call a formula, theoretical or practical, valid in a frame if in all mod-
els on the frame it is required at all points by all possible command sets. (This
concept of validity is of course not the one Ross had in mind for imperatives.)
Every thesis of the smallest normal logic is valid in every frame. In the follow-
ing section we will show that the converse is also true: Only theses of the smallest
normal logic are valid in every frame. First, however, two comments need to be
made.

The first comment is technical and concerns the claim that the smallest nor-
mal logic is sound with respect to the given semantics. To prove this claim is not
as trivial as the author had originally thought. The problem is to check that the
rule (RI) preserves soundness, something which is immediate if only full frames
are considered (frames in which every set of points is a proposition) but not
otherwise. The author is indebted to his student, Tim Surendonk, for having
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shown that the restriction to full frames does not affect the logic. For details,
see Surendonk [10] (pp. 222-224 in this issue).

The second comment is philosophical and is rather longer. There is no need
in our modeling to regard (RC1)-(RCS5) as truth-conditions: they are no doubt
meaning postulates of a kind, but we do not have the embarrassment —standard
in modal logic — of having to accept that imperatives, naively thought to lack a
truth-value, are nevertheless to be regarded as true or false at a point. It may per-
haps be objected that we face a comparable embarrassment over the notion of
requirement: is it not equally embarrassing that theoretical formulas can be re-
quired? We suggest not. To cast authority as recognizing (accepting as true) what
is currently the case is not to reduce the validity of imperatives to the truth or
falsity of any descriptive propositions. But in traditional imperative logic, such
as that of Kanger [S5], an imperative of type “Let it be that A!” holds at a point
in a model if and only if the proposition A is true at certain points in the model.
Thus even if with Kanger one were to relabel the truth-at-a-point of imperatives
in his modeling “correctness-at-a-point” in order to distinguish it from the truth-
at-a-point of descriptive propositions, the fact remains that in Kanger-type
semantics the correctness-at-a-point is model-theoretically definable in terms of
truth-at-a-point. The main difference between Kanger’s semantics and ours is
seen in the different positions occupied by the semantic primitives with whose
help imperatives are to be modeled: the imperative accessibility relations in the
former are in the world, while our command systems are outside the world.

As this point is of some philosophical interest it is worth a short digression.
At the expense of some complication it would have been easy to define the con-
cept of requirement in such a way that it applies only to practical formulas. Let
us use the symbolism I' E, A for this new concept. We would then lay down the
following new conditions:

(RC3) T E, ADBIiff A is theoretical and B is practical, and if x € |A| then
T E, B; or A is practical and B is theoretical, and if T' E, A then x €
|B||; or A and B are both practical, and if T E, A then T E, B
(RC4’) T E, [«]Biff B is practical and, for all y, if {x,y) € |« thenT E, B
(RC5) T E, laiff |a| €T,.

Let A be some theoretical formula. The practical formula
ADla

expresses a conditional command. Suppose it is required, in the new sense, by
I" at x. What it comes to is that if it is true at x that A then !« is required by I
at x; that is, at x « is commanded if it is true that A. Thus the given formula may
be regarded as a formalization of the command, “Do « if A!”. Similarly, the
formula

(AD!8)A (A DY)

may be regarded as a formalization of the command “Do 8 if A, else do y!”:
here !8 is required if it is true that A, while !y is required if it is false that A.
In this sense of requirement, the question of requirement does not arise for the-
oretical formulas: they are true or false but never required. Practical formulas,
on the other hand, are required or not, but they lack truth-values. Thus, valid-
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ity comes to different things for the two categories of formulas: for theoretical
formulas it is being true at all points in all models, while for practical formulas
it is being required at all points in all models by all command systems. If these
comments are borne in mind, there seems to be no objection to the official def-
inition of requirement to which we will henceforth adhere. This ends the digres-
sion and, at the same time, the second comment.

5 Canonical structures Let L be any fixed, normal logic. The set of all max-
imal, L-consistent sets of formulas is denoted by U, and we shall use the let-
ters x, y, etc., to range over this set. We write

|A] = {x:A €x}
la| = Kx,y):VC([a]C € x= C € ).

The canonical frame §; = (U, Ay, D;, P;) is defined as follows:

Ay = {|la|:ais a term}
D is the function f such that, for all theoretical formulas A, f|A| = |6A]|
P, = {|A] : A is a theoretical formula}.

Thanks to Lemma 2.1, the definition of D; is correct. We note the following
result:

Lemma 5.1 F, is a frame.

Proof: The classical and modal axioms of our logic suffice to show that condi-
tions (FP1)-(FP2) are satisfied. Conditions (FA1)-(FA2) and (FD1)-(FD2) hold
thanks to the action axioms (AA1)-(AA4). For more details, see [7], Lemmas
6.1 and 6.2.

For each propositional letter P,, define
Vi (P,) = |P,].

Then V is a valuation fitting &;. The corresponding model, M, = (U, A;,
D,, P;, Vp), is called the canonical model of L.

Theorem 5.2 In M, for all theoretical formulas A and terms a, |A| = |A|
and |a| = |«].

For each x € U define I'; (x) = {|a| : la € x}; we call I'; (x) the canoni-
cal command set at x in §; . Before proceeding we must show that the definition
is correct. Suppose that !a € x and || = |8]. Then [«]C = [B]C is a thesis,
for every C. Hence, by (RI), !a = ! is also a thesis, and so !o = ! 8 € x. There-
fore !B € x, which we wanted to show.

Define I'; = {I',(x) : x € U, }. We call I';, the canonical command system
in §;. This terminology is justified by the following result:

Lemma 5.3 T'; is a command system.

Proof: The proofs are easy, but since this is where the imperative axioms come
in, we give the details. It is obvious that (C0) holds, but we must establish
(C1)-(C4).
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For (C1), suppose that D; X, D; Y € I'; (x), for some X, Y € P. Then there
are theoretical formulas A, B such that X = |A| and Y = |B|. By the definition
of Dy, |8A], |6B| € T'L(x). By the definition of I'; (x), then, !6A, 6B € x.
Hence, by imperative axiom (AIl), !6(A A B) € x. It follows that |6(A AB)| €
T, (x)and so Dy |AAB| €T, (x). But |A AB| =|A| N |B|. Therefore D; (X N
Y) €Ty (x).

For (C2) and (C3), suppose that R|S € I'; (x) and {x, y) € R, for some R,
S € Ay. Then there are terms « and 3 such that R = |«| and S = |3]. Since
la| | 18| = |a;B8], |e;8| € Tr(x). Therefore !(a;8) € x. Hence, by impera-
tive axiom (I2), !a € x. Hence |a| € T'; (x); that is, R € T (x), which estab-
lishes (C2). But from the fact that !(«;3) € x we may also infer, by imperative
axiom (I3), that [«]!B € x. Since (x,y) € ||, this means that !3 € y. Hence
|B| € TL(y); that is, S € T'; (y), which establishes (C3).

For (C4), suppose that S € I'; (), for all y such that (x,y) € R, and that
R €T (x). Then there are terms « and 3 such that R = |«| and S = |3/, and
our assumptions amount to the following:

(1) |a] €TL(x)
() Vy(x,y) € |a| = |B] €TL(¥)).

Suppose that {x,y) € |«|. Then |B| € T, (y), by (2). Hence !8 € y. This argu-
ment shows that [«]!8 € x. But by (1) we also have !a € x. By imperative ax-
iom (AI4), therefore, !(a;8) € x. Consequently, |a;8| € I'z(x), hence |« |
|B] € Tr(x), hence R|S € T (x).

The following result is then immediate:

Theorem 5.4 In O, for all points t and all formulas A, T k, A if and only
ifAet.

From this, strong completeness follows. For let L, be the smallest normal
logic, and suppose that X is any set, finite or infinite, of formulas, theoretical
or practical. By Lindenbaum’s Lemma there is some maximal, Ly-consistent ex-
tension ¢ of L. Consequently, by Theorem 5.4, T F, A holds for all A € £ in
the canonical model for L.

It would be routine to go on to show, by the filtration method, that this
logic has the finite model property (fmp) and thus is decidable. Not routine,
though, is the question of what happens if our language is expanded to include
also the third regular term operator, the Kleene star (which would require the def-
inition of command system to be modified). It is an attractive conjecture that
completeness is achieved by adding to our axiom system the usual axioms of dy-
namic logic for that operator, and that the resulting system has the fmp. How-
ever, the author has not been able to confirm this conjecture.

6 Trying to meet Jprgensen and Ross on their own terms Suppose now a
critic offers the following objection. “Here we have seen a treatment of imper-
ative logic which may be of some interest in its own right. However, it is based
on a conception of imperatives which is foreign to that of philosophers like
Jorgensen and Ross. In particular, they may have found the é-operator uncon-
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genial.” Thus, according to this critic, there remains the problem of devising an
imperative logic in their terms which escapes the difficulty pointed out by Ross.

We might try to use a certain fragment of our logic to meet such an objec-
tion. Let us introduce a propositional imperative operator of the kind Jergen-
sen suggested. For the sake of clarity it is advisable to employ a symbol different
from !, and we shall employ the one which is known in the trade as “the Chellas
shriek”, 1. Thus lA is to be read: “Let it be the case that A!”, just as Jgrgensen
and Ross wanted. It is clear that we can offer a definition of this operator in our
logic:

JA = 16A.

There is thus a certain fragment of our logic in which every formula is a Boolean
combination of expressions of type 1A, where A is Boolean (that is, made up of
propositional letters and Boolean connectives). For example, this fragment con-
tains all appropriate instances of the schemas:

(S1) (JAAIB)DI(AAB)
(S2) 1L DIA.

Moreover, it is closed under the rule:

(ES) If A = B is in the fragment, then so is !{A = !B, where A and B are
Boolean formulas.

Could not this fragment be thought to meet the requirements of Jorgensen and
Ross? A critic might persist that, as this answer makes implicit use of the 6-
operator, it must be rejected. That is to say, without semantics to go with the
fragment this answer is ad hoc.

To lay objections of this kind to rest, let us try to give a direct formulation
of this fragment which avoids all use of the é-operator. Our new logic will of
course be in the spirit of the analysis given above, and perhaps our imaginary
critic will remain unsatisfied. However, at least the object language will be one
that Jergensen and Ross had in mind, and there is some interest in seeing a
semantics worked out for it.

Thus, our object language is now made up of propositional letters and
Boolean operators, as before, but this time the only primitive non-Boolean oper-
ator is I. We will not allow the imperative operator ! to nest, for the same rea-
sons that we did not allow the imperative operator ! to do so; so if 1A is a
well-formed formula, then A has to be Boolean. When a distinction is necessary,
we call this the restricted language in contrast to that of Section 2 which we call
the richer language. As axioms we adopt all instances of tautologies in the re-
stricted language plus all instances of (S1) and (S2) above, and as inference rules
we accept modus ponens and the new rule (ES). Evidently this logic—call it S
for “shriek” —is congruential.

Turning to semantics, let B = (B, N, U, —, 0, 1) be a Boolean algebra. Let
us say that T' is a command set in B if I' € B and, for all a,b € B

JR1) Ifag,beTl'thenanbel
JR2) IfdeT, thenT =B.
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A valuation in B is an ordered pair v = (v, v,), where v, is a truth value assign-
ment and v, is a B-valued assignment, both defined on the set of Boolean for-
mulas. Thus, for every Boolean A, v, (A) € {T,F} and v,(A) € B. We define the
notion of requirement as follows (for I',v F A, read “I" requires A in B under
U”) :

1. I',v E P, iff v;(P,) = T, for every propositional letter P,
2.notT,vE L

3.T,vEADBIffifT,vFA thenT,vFB

4. T, v FIA iff v,(A) €T.

Thus, we have here a new noiion of validity (which might have been called
“Jargensen/Ross validity” except that it is a notion of semantic validity, not im-
perative validity): a formula is valid if required by all Boolean algebras under
all valuations.

Notice that all theses of the shriek logic S are valid in this sense. To verify
this claim we have to check that each axiom of type (S1) or (S2) is valid and that
the rule (ES) preserves validity. For (S1), suppose that ', v F A A IB, for any B
and I', and v in B. Then v,(A), v,(B) € I'. Hence, by (JR1), v,(A) N v,(B) €
I'. But v,(A) N v, (B) = v, (A A B), therefore I', v F (A A B). For (S52), suppose
that I',v F 1L, where B, I, and v are as before. Then v,(L) €T'; that is, & €
I'. Hence, by JR2), v,(A) €T, so I',v ElA. For (SE), suppose that A = B is
valid, where A and B are any theoretical formulas. Take any B and I', and v
in B. It can be shown that v, (A) = v,(B), and so trivially v,(A) € I if and only
if v,(B) € T. Therefore I',v FIA = IB.

Theorem 6.1 S is strongly complete with respect to the given semantics.

Proof: Suppose that £ is a set of formulas consistent in S. Let # be a maximal,
S-consistent extension of I (the existence of such a set is guaranteed by Linden-
baum’s Lemma). Let B be the set of all maximal, S-consistent formula sets, and
let B be the corresponding Boolean algebra of sets, the members of which are
of the familiar type |A| = {x € B: A € x}, where A is Boolean. Furthermore,
define I' = {|A|:!A € ¢}. It is easy to verify, with the help of (S1), that " is a
command set. Let v = {v;, v,) be the valuation in B defined as follows, for all
Boolean formulas A:

v(A)=TiffA et
v2(A) = |A].

We claim that, for all formulas A in the restricted language, Boolean or not,
LvEAIff A et

The proof, by induction on A, is straightforward. Thus all formulas in ¥ are re-
quired by I' in B under v.

It is a simple exercise to show that not all instances of the following schema
are provable in S:

(1) JADI(AvB).
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Such a result Ross would have liked. Whether he would also have liked the fact
that not all instances of the following schema are provable in S is not clear:

) (A AB)DIA.

However, if one wishes to retain the rule (ES), one has to accept that both
of (1) and (2) are provable for all Boolean A and B or that neither is. (There is
a similar situation in current logics of counterfactuals.) But readers sympathetic
to the ideas in this paper and in Segerberg [9] will perhaps not find it too diffi-
cult to give up (2): if I have been commanded to carry out my routine for A A
B, to use the jargon of [9], then it does not follow in general that I have been
commanded to carry out my routine for A. In other words, to suit our model-
ing the operator ! must be given a reading such as: “Do anything to bring it about
that . . .!”. Now, if I have been commanded fo do anything to bring it about that
A A B, it does not follow that I have been commanded to do anything to bring
it about that A. Notice that this is the same kind of argument we use to resist
the formula Ross found objectionable: if I have been commanded to do anything
to bring it about that A, it does not follow that I have been commanded fo do
anything to bring it about that A v B.

Before ending this section we will prove that S is indeed a fragment of the
imperative logic I of Section 2; that is, that I is conservative over S. Let us be-
gin by making this claim more precise. If A is a formula of the restricted lan-
guage, then we define a formula A* in the richer language by the following set
of conditions:

P, = P,, for every propositional letter P,

=1
(ADB)*=A*DOB*
(1A)* = 16A*.

Evidently, A* = A, for all Boolean formulas A (which of course are common
to the two languages). What is meant by the claim that I is conservative over S
is that a formula A in the restricted language is provable in S if and only if the
translation A* is provable in 1.

It is obvious that, in this sense, anything provable in S is provable in 1. Sup-
pose that A, is a formula of the restricted language which is not provable in S.
Let ¢ be a maximal, S-complete set of formulas such that Ay € t—such a set ex-
ists, again by Lindenbaum’s Lemma. Let B, T', and v = {vy, v,) be as in the
proof of Theorem 6.1. Then T fails to require A, in B under v. We shall now
construct a model in the sense of Section 3 and a command system in the sense
of Section 4 which, in a sense to be defined, will simulate the situation described.

From now on, for greater legibility we shall often drop parentheses in func-
tional applications. Let #y be some object not occurring in B; for example, we
might define ¢, = (¢,0). Define

U={t,UB
P=XUYUZ, where
X = {{to}),

Y = {v,A : A is Boolean}
Z = {{ty} U v;A: A is Boolean}
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@, if X = {t,}
DX =1 {(tp,x): x € 1A}, if X = v,A or X = {{y} U 1,A,

for some Boolean formula A

A={DX:X€ P]}.

Then § = (U, A4, D, P) is a standard frame, in the sense of Section 3. This is a
claim that should be argued for.

Lemma 6.2 F satisfies conditions (FA1)-(FA2), (FD1)-(FD2), and
(FP1)-(FP2).

Proof: That (FA1) holds is easy to prove. For (FA2), suppose that DX, DY €
A, for some X, Y € P. Now it is a general fact that whenever {x,y) € DZ, for
any Z € P, then x =fpand y € B. As ¢, & B, it follows that DX|DY = . But
& € A, for D{ty} = . Thus trivially DX |DY € A.

That (FD1) holds is easy to prove. For (FD2), assume that

DX < (u,vy:ve Y}.

If X = {{}, then DX = & and the situation is trivial. Assume therefore that
X =0vA or X = {ty} U v,A; in either case, DX = {{fy,x) : x € v,A}. From the
assumption, then,

UzA cY.

If Y = {#}, then v,A must be empty and DX = &, and again the situation is
trivial. Assume therefore that Y = v,B or Y = {75} U v,B; in either case, DY =
{(ty,») :y € v,B}. Take any (fy,x) € DX; note that x # #y,. Then x € v,A, so,
by what we have just proved, x € Y. Hence, x € v,B, and so (fy,x) € DY.

That (FP1) holds is easy to prove. For (FP2) we must show that IpxY € P,
if DX € A, for some X € P, and Y € P. That is to say, we wish to prove that
the set

L={xeU:vwwe U(Kx,y>eEDX=>y€eY)]

is an element of P. We have to work through a number of cases. First (Case 1)
suppose that X = {#,}. Then DX = &, and so £ = U. Next (Case 2) suppose that
X =v,A or X = {f} Uv,A, for some Boolean formula A. In this case DX =
{(to,u):u € v,A}. Consequently, X reduces to the set

{(xeU:vy((x=t, &y € v,A)=y€Y)}.
Here we have three subcases. If (Case 2.1) Y = {f}, then & = . If (Case 2.2)
Y = v,B, for some Boolean B, then
U, if 1)2A c UzB
" | B, if 1A & v,B.
If (Case 2.3) Y = {{,} U v,B, for some Boolean B, then X is as in Case 2.2.
We have now covered all cases. Since &, U, B € P, it follows that in every case

L € P. This shows that (FP2) holds. The proof that ¥ is a standard frame is now
complete.
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Define
I'*(ty) = {Dv,A: A is a Boolean formula & v,A € T'}.

Moreover, for u # ty define

Py 2|22 E T*(t)
u) =
@, if S & T*(1,).

Lemma 6.3 '™ = {I'*(u):u € U} is a command system.

Proof: Each T'*(u) satisfies (C1) and thus is a command set in the sense of
Section 4. For suppose that DX, DY € I'*(u), for some X, Y € P. We wish to
show that DX N DY € T*(u). If u + t,, this is trivial. But if DX, DY € T'*(¢,),
then there are Boolean formulas A and B such that DX = Dv,A and DY =
Dv,B. Furthermore, v,A, v,B €T, hence v,A N v,B =v,(AAB) €T, and so
Du,(A AB) = DX N DY € T*(¢,).

For (C2), suppose that DX |DY € I'*(u), for some X, Y € P. We wish to
show that DX € I'*(u). If u # t,, this is trivial. Suppose therefore that u = #,.
As we saw in the argument for (A2) above, DX|DY = &, hence we have & €
T'*(4). If X = {¢#,}, then DX = O, and so trivially DX € T'*(¢,). If DX + O,
then there must be some Boolean formula A such that DX = Dv,A. As & €
T'*(¢y) there must be some Boolean formula C such that Dv,C = & and v,C €
I'. By the definition of D, it must be that v,C = &, so @ €T. Hence ! L € ¢.
But in the logic defined in this section, { L D A is an axiom, by (S2). Therefore
IA € ¢, hence v,A €T, hence Dv, A € T*(1,); that is, DX € T'*(¢,).

For (C3), again suppose that DX |DY € I'*(u), for some X, Y € P, and
also suppose that {u,v) € DX. Note that v # ¢,. We wish to show that DY €
I'*(v). If u # ¢y, then T'*(u) = A, and so & € I'*(¢,); whence I'*(v) = 4. If
u = ty, then & € I'*(1y), as DX|DY = O, and so again I'"(v) = A. Hence trivi-
ally DY € T'*(y) in either case.

For (C4) assume, for some X, Y € P, that DX € I'*(u) and that Vo (u,v) €
DX = DY € T'*(v)). We wish to show that DX|DY &€ I'*(u). The case u # ¢,
is trivial. Suppose therefore that u = ¢,. Our assumption, then, amounts to this:

(1) DX € T*(¢y)
(2) Yvv(ty,v) € DX = DY € T*(v)).

If & € T'*(¢,) we are home. Suppose instead that & & I'*(#;). Then I'*(v) = @,
for all v # 1y, so (2) yields DX = &. Hence, by (1), @ € I'*(;). Thus the latter
case is impossible.

The following defines a valuation in U: for all propositional letters P,:
V(P,) = {to:v1(P,) = T} U 0:(Py).
Let WM = (U, A, D, P, V). Notice that for all Boolean formulas A:
JAI™™ = (ty: v;A = T} U 1,A.

This claim is readily proved by induction on A. It has a corollary which will be
used in the proof of the next lemma: for all Boolean formulas A:

D|A|™ = Dv,A.
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Lemma 6.4 For all formulas A of the restricted language,
T,v kB A if and only if T* E)JY A*.

Proof: The claim is proved by induction on A. Recall that B = B*, for all
Boolean formulas B.
First the basic step: A is a propositional letter P,. In this case,

T,vEBP,iff v, (P,) =T
iff t, € V(P,)
iff I'™* E)C P,.

The Boolean cases of the induction step are unproblematic. Assume that
the claim holds for some Boolean formula B. Then

I,v EB IBiff v,(B) €T
iff Dl)zB (S F*(to)
iff D|B[™ € I'*(t,)
iff | 6B € '™ (t)
iff I™* EX 156B.

As Aj fails to be required by I'* at ¢ in 9, the claim we set out to prove
has now been established:

Theorem 6.5 1 is conservative over S.

7 Comments on the Ross Paradox It would be interesting to know what
Professor Ross thought of the name “paradox” for his objection to the model-
ing of imperative logic proposed by his colleague, Professor Jorgensen. The name
is hard to justify; there is really no paradox here. If one accepts a modeling &
la Jorgensen (so that one is commanded to post or burn the letter if one is com-
manded to post it) and at the same time accepts the verdict of common sense (so
that one is not commanded to post or burn the letter if one is only commanded
to post it), then one has a contradiction which is not just apparent. Jergensen’s
monotonicity rule clashes with the requirements of the logic of imperative va-
lidity, that’s all.

However, the modeling presented in this paper is not touched by Ross’s ob-
jection. The command sets of our modeling are closed under an operation which
is reminiscent of intersection. This condition reflects the fact that when an
authority issues commands, then he or she or it means for them all to be obeyed.
But there is no reason to close a command set under a dual condition such as
union: to command is to confine the options of the agent.

In our modeling we stipulate that a given imperative (or command) is valid
if the action it prescribes is commanded (“required”). An imperative is satisfied,
on the other hand, if the agent’s action has yielded a certain outcome. Thus our
modeling does something for both the logic of validity and the logic of satisfac-
tion. There is obviously much work to be done before we have a really compre-
hensive logic of imperatives. This acknowledged, it is gratifying that the logic
presented here does justice to Ross’s insight in a way that seems natural.



IMPERATIVE LOGIC 221
REFERENCES
[1] Chellas, B., The Logical Form of Imperatives, Perry Lane Press, Stanford, Cali-
fornia, 1969.

[2] Chellas, B., “Imperatives,” Theoria, vol. 37 (1971), pp. 114-129.

[3] Hilpinen, R. (editor), Deontic Logic: Introductory and Systematic Readings,
Reidel, Dordrecht, 1971.

[4] Jorgensen, J., “Imperatives and logic,” Erkenntnis, vol. 7 (1937-38), pp. 288-296.
[S] Kanger, S., “New foundations for ethical theory. Part I,” pp. 36-58 in [3].
[6] Ross, A., “Imperatives and logic,” Theoria, vol. (1941), pp. 53-71.

[71 Segerberg, K., “A completeness theorem in the modal logic of programs,” pp. 31-
46 in Universal Algebra and Applications, edited by T. Traczyk, Banach Center
Publications, Vol. 9, Warsaw, 1982.

[8] Segerberg, K., “Actions in dynamic logic” (abstract), The Journal of Symbolic
Logic, vol. 53 (1988), pp. 1285-1286.

[9] Segerberg, K., “Bringing it about,” Journal of Philosophical Logic, Notre Dame
Journal of Formal Logic, vol. (31), 1990, pp. 222-224.

[10] Surendonk, T.J., “A lemma in the logic of action,” Notre Dame Journal of For-
mal Logic, vol. 31 (1990), pp. 222-224.

Department of Philosophy
University of Auckland
Private Bag

Auckland, New Zealand





