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Gentzenizing Schroeder-Heister's Natural
Extension of Natural Deduction

ARNON AVRON

Abstract Our purpose here is to provide an example of how the use of the
Gentzen-type sequential calculus considerably simplifies a complex Natural
Deduction formalism. The formalism is that of Schroeder-Heister’s system
of higher-order rules. We show that the notions of Schroeder-Heister’s that
are the most difficult to handle (discharge functions and subrules) become
redundant in the Gentzen-type version. The complex normalization proof
given by Schroeder-Heister can be replaced therefore by a standard cut-
elimination proof. It turns out also that the unusual form of some of the
elimination rules of Schroeder-Heister corresponds to the natural, standard
form of antecedent rules in sequential calculi.

In this paper we provide a Gentzen-type formulation of Schroeder-Heister’s
system found in [7]. This system is important from both the philosophical and
the practical points of view: Its philosophical importance is due to the charac-
terization it provides for the intuitionistic connectives, while the practical one
is due to the fact that its notion of higher-order rules and its method of treat-
ing the elimination rules were incorporated into the Edinburgh LF (a general log-
ical framework for implementing logical formalisms on a computer, which was
developed in the computer science department of the University of Edinburgh;
see [3], [4]). We shall show that the notions of Schroeder-Heister’s that are the
most difficult to handle (discharge functions and subrules) become redundant
in the Gentzen-type version. Schroeder-Heister’s complex normalization proof
in [6] can therefore be replaced by a standard cut-elimination proof. Moreover,
the unusual form of some of Schroeder-Heister’s elimination rules corresponds
to the natural, standard form of antecedent rules in sequential calculi. We also
believe that the sequential presentation sheds new light on the connection
between Schroeder-Heister’s higher-order rules and intuitionistic implication and
on Schroeder-Heister’s characterization of the intuitionistic connectives.
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We assume in what follows an acquaintance with at least the introduction
and the first two sections of [7].

1 The system GSH

1.1 The language As customary, to eliminate discharge functions we start
by introducing a new formal symbol I into the language (in [7] this symbol is
used only in the metalanguage):

Formulas: A
Rules: R := A|(R{,...,R,= A)
Sequents: S ::= FA|Ry,...,R, FA.
We use A, B as syntactic variables for formulas, R for rules, and I", A for
finite sets of rules. I' = A4 just means A in case I' is empty.
1.2 The pure system

Logical axioms: A F A

rr4

Weakening: ——M

eakening Tar4
(=h): ATy FA .. ApTW kA,

A1A29' "7Anr((Fl :Al),---y(rn =>1411) =A) '_A'

1.3 General GSH systems Schroeder-Heister permits in [7] the addition of
various basic “rules” to the basic system. In this way we really get a family of
systems. Now, for each system in this family we can construct a corresponding
general GSH-system by adding to pure GSH local inference rules as follows:
Whenever (T'; = A4,),(I', = A4,),...,(I', = A,) = A is a “basic rule” add to
pure GSH the nonlogical rule:

ALT FA; ... A, T, FA,
Ar,..., A, FA

Note that since we are using sequents rather than formulas in our calculi, we do
not need the concept of “discharge functions” which was used by Schroeder-
Heister!

Notation Let R be the rule (Ry,...,R, = A). We shall use A - R as an
abbreviation for A,R;,...,R,F A and A 5 R as an abbreviation for “A F R
is provable”.

Note The notation A + R was already used by Schroeder-Heister.

2 The relations between GSH and Schroeder-Heister’s system A natural
translation of a proof-tree in Schroeder-Heister’s formalism into a tree of
sequents can be obtained, as usual, by replacing each formula A4 in the origi-
nal tree by the sequent I' - A, where T is the set of assumptions (in the origi-
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nal proof) on which A depends. It is immediately seen that any direct application
of an assumption rule is transformed in this way into an application of (=}),
while every direct application of a basic rule is transformed into an application
of the corresponding nonlogical inference rule. In general, however, the result-
ing tree of sequents is not a proof tree in GSH, since Schroeder-Heister permits
in his formalism indirect applications of a rule as well, through a direct appli-
cation of one of its subrules (see definition below). Nevertheless, we shall show
that the resulting tree of sequents can be converted into a GSH proof-tree of the
root sequent.

Definition
(1) R is a subrule of itself.
(2) If every element of I'/ is a subrule of some element of I'; (1 < i < n) then

Ti=By),...,(I',=B,)= A
is a subrule of
(Fl = Bl),- . -’(Fn = Bn) = A.

In the rest of this section “5” will refer to some fixed general GSH.

Proposition 1 If T kG R and every rule in T is a subrule of some rule in A
then A l‘G R.

Proof: By induction on the length of the proof of the given sequent. The base
case requires the use of weakening. The other cases follow easily from the induc-
tion hypothesis.

Corollary If R is a subrule of R’ then R’ }-5 R.

Proof: By induction on the complexity of R it is easy to prove that R 5 R.
The corollary is then proved by applying Proposition 1 to this sequent.

Theorem 1 T' + A in a Schroeder-Heister system iff T' g A in the corre-
sponding GSH. (Note that “T' - A” is a metaproposition for Schroeder-Heister
systems, while it is a formal assertion in the corresponding GSH; “T" |5 A” is
also a metaproposition for GSH.)

Proof: The implication from right to left is proved by induction. The proof uses
the fact that the basic rules of a general GSH correspond exactly to the way in
which formal “higher-order rules” are applied according to Schroeder-Heister’s
definition of his system (but where I"' - A has the original meaning of a prop-
osition in the metalanguage of Schroeder-Heister’s formalism).

For the converse we prove by induction on the length of proofs the follow-
ing general claim: If A is derivable in Schroeder-Heister’s system from the
assumptions I', and every rule in I' is a subrule of some rule in A, then A +5
R. Details are similar to the proof of Proposition 1, and are left to the reader.

Theorem 2 (“cut elimination”) IfT'tg Rand A, R Fg R’ thenT,A kg R'.

Proof: By double induction on the complexity of R and on the sum of the
lengths of the proofs of the two given sequents. The treatment of = is similar
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to that of D in the intuitionistic sequential calculus, and so we omit the stan-
dard details.

Corollary 1 Let A be a finite set of rules. Then T' | A is derivable in the
corresponding general GSH (see Section 1.3) iff A,T' b A is derivable in the
pure system.

Proof: Using the corollary of Proposition 1 it is easy to show that FR is prov-
able in the corresponding general GSH for every R in A. It follows therefore
from Theorem 2 (applied to the general GSH) that if A,I" - A is derivable in
the pure system then I' A4 is derivable in the generalized one. The converse
can be proved by a direct induction on the length of proofs in the general GSH.

Corollary 2 Let A be a finite set of rules. Then T' - A is derivable in the
corresponding general GSH iff it is derivable in the system obtained from the
pure one by adding + R as an axiom for every R in A and taking cut as a
primitive rule.

Proof: This follows easily from the characterization given in the previous corol-
lary and the cut-elimination theorem for the pure system.

Discussion It might be useful to make a digression here to discuss the role
of cut elimination in Gentzen-type systems. As we emphasize in [1], what charac-
terizes a logic is usually not only its set of theorems, but the consequence rela-
tion (C.R.) defined by it. Now, given a Gentzen-type formal system, there are
two basic ways of associating C.R.’s with it (see [2]):

The external C.R. g Ai,...,A, kg Biff the sequent t B is derivable if we
addF A4,,..., F A, as axioms (i.e., basic sequents) to the system.

The internal C.R. I, Aq,...,A, F; B iff the sequent 4,,...,A4, F B is
provable (in the given formalism).

The cut rule should be taken as primitive in order for tz to be an actual C.R.
It is then immediate that it is at least as strong as ;. In the case of |, on the
other hand, Cut should be taken as primitive or else be shown admissible. If the
Gentzen-type system satisfies some natural conditions (see [1]) then in either case
f; will be equivalent to 5. The real meaning of cut elimination then is that
Ay,...,A, Fg Biff there exists a cut-free proof of 4,,...,A4, | B. If the given
formalism is well-behaved then this might imply the subformula property and/or
decidability for Fg. From this point of view Theorem 1 presents a true cut-
elimination theorem in the case of the pure calculus.!

The two characterizations of provability in a general GSH given in the last
two corollaries have a clear correspondence with the two C.R.’s described above.
They also describe two natural ways of defining a C.R. using a natural deduc-
tion formalism (usually, but not always, these two ways are trivially equivalent).
The official definition which was given in 1.3 corresponds to a third way which
was available in the present case and was chosen by Schroeder-Heister. The main
property of the systems which are obtained by this definition is that their non-
logical rules can never introduce in an antecedent something that has not already
been present in one of the antecedents of the premises. The fact that cut elimi-
nation obtains for these general GSH systems is due to this property. However,
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decidability and the subformula property are not guaranteed in the general case
by this cut elimination, and Theorem 1 may have therefore little significance in
case there is an infinite number of nonlogical rules. This is the case, e.g., when
the set of basic rules is defined using schemes —recall that Schroeder-Heister’s
notion of a “rule” is a local one and is identical to what is usually taken only
as an instance of a rule of inference! In Section 4 we shall have the opportunity
to characterize an important class of cases in which a significant version of cut
elimination again obtains.

The limitation of the language to sequents of the form I' |- A4 is, in our
opinion, artificial. Notationally, in fact, we have already abandoned it (and so
did Schroeder-Heister himself!). The next theorem “officially” removes this limi-
tation:

Theorem 3 I' b6 R iff T b R is provable in the system obtained by general-
izing the concept of a sequent to allow rules on the right side of the \- and by
adding to GSH the inference-rule:

T,R,,....,R,} A
TF(R,....,R, = A)’

Moreover, Theorems 1 and 2 are true for the extended system.

Proof: We leave the proof to the reader.

3 GSH and the intuitionistic implicational calculus Theorem 3 above indi-
cates that Schroeder-Heister’s system is just a new (somewhat strange) formu-
lation of the pure implicational intuitionistic calculus. We claim that there is no
real difference between Schroeder-Heister’s = and the intuitionistic O. The fol-
lowing definition and proposition make this claim precise:

Definition Let RU be the set of Schroeder-Heister’s rules, IMP the set of
sentences of the pure implicational calculus, and Int_, the pure intuitionistic
implicational calculus. Define v: RU — IMP, u:IMP — RU as follows:

MHovA)=A4

@ v(Ry,...,Ry,= A) = v(R)) D (0(Ry) D (...D (v(R,) D A))...)
(3) u(p) = p (p atomic)

@ u(A;D (42D (... (4, D p))...)) = u(A)),...,u(A,) = p (p atomic).
Note that since {R;,...,R,} is a set, v is multiple-valued!

Theorem 4

M u((R) =R

() Fines v(u(A)) = A

(B)IfRy,...,R, kg R then v(R,),...,v(R,) Fns V(R)

W If Ay,..., Ay b Bthen u(A,),...,u(A,) kg u(B).

Proof: The proof is straightforward.

Theorem 4 and the formulation of GSH suggest a new Gentzen-type for-
mulation of intuitionistic logic, in which the usual (DF) rule is replaced by:
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T FA, ... T, A,
Ty,....T(A;D(A,D...0B)...)F B’

It is not difficult to show that this formulation is correct and that it admits cut
elimination. It might even seem more intuitive than the ordinary one. The trou-
ble with it is that the new rule is not exactly a rule in the ordinary sense, not even
a rule schema: It includes an infinite number of rule-schemes (for each n there
is a corresponding rule with exactly » premises). So a natural question to ask
is: What should be done in order to replace this infinite number by a finite num-
ber of rules with a fixed number of premises? Well, the answer should allow us
to derive every n-instance of the new “rule”. This should naturally be done by
induction. For the base case we need the rule:

T'HA
IMADBFWB

For the induction step we need a rule which will permit us to pass from
rA,o0(A4,.12...0(A4;DB)...)FB
and from
F'kA,.,
to
I'NA4,,10A4,D...0(A;DB)...) B

If we denote A,,; by Aand A, D (...D (A; D B)...) by C we see that the
required rule is:

-4 I',CFB
rA>CrB

This is, of course, the ordinary (DF) rule in Gentzen systems. (Since B | B is
an axiom, the rule needed for the base case is also covered by this rule!)

4 On introduction and elimination rules Schroeder-Heister presents in [7]
the following method for adding new n-ary operators to a language L:

Let ®,(Ay,...,A4,),...,9,(A1,...,A4,), (m = 0), be a list of lists of rule-
schemes. A new n-operator S, expressing the “common content” of ®;,...,9,,,
can then be introduced by the following rule schemes:

Introduction rules: ®;(A,,...,A,) = S(A4,,...,4,), (1 =i=<m).

Elimination rule: (®; = A),(®, = A),...,(®, = A),(S(A4y,...,4,)) = A4,
(where ®;, = ®;(A,,...,A4,),i=1,...,m).

Schroeder-Heister then shows that the validity of these rules is a necessary
and sufficient condition for the following to be true:

(*) Forall 4,...,A4, and for every R: S(A4;,...,A4,) FRiff, foralll <=i=<
m, q)i(Al,...,An) F R.
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Examples

Conjunction: Here m = 1, ®,(A,B) = {A,B}. The rules are:
introduction: A,B=AAB
elimination: (4,B= C),(AAB)=>C

Disjunction: Here m =2, ®,(A,B) = {A}, ®,(A,B) = {B}:
introduction: A = Av B B=>AvB
elimination: (4 = C),(B=C),(AvB)=>C

Implication: Here m = 1, ;(A,B) = {A = B}:
introduction: (A = B)=>A 2B
elimination: (4 = B) = C),(4A D> B) = C.

Turning now to our Gentzen-type version, suppose that ®; = {R;,,...,
Rim}, (i=1,...,m). Then for each i/, the i-introduction rule of Schroeder-
Heister’s is translated according to 1.3 into the basic rule:

A FR(Ar,. .. Ap) Ay F R (AL, . Ay) oo Ay F R (Ar,. . Ay)
A Ay, Ay FS(Ay, . LAY '

The elimination rule, on the other hand, becomes:

I,& FA T,,8,+A...T,8,FA AFS(A,,...,Ay)
AT,,T;,.... T, FA '

In the context of Gentzen-type systems it is, however, much more natural
to replace the natural deduction-style “elimination” rules by introduction rules
in the antecedent. This can be achieved by substituting {S(A4,,...,A,)} for A
in the above version of the elimination rules. Using the axioms we then obtain:

I, o FA T, FA...T,,&,FA
S(Ai,...,A,),I,T,,....T FA

Using cuts it is not difficult to show that the two formulations above are in fact
equivalent.

Examples
disjunction: The rules we get are
r-A4 '+B T'y,A-C TI,,BHC
r'+trAvB I'+rAvB r,Il,,AvBFC

conjunction: We get

L+FA TL,EB Ir,A,B+-C
n,r,-rAAB ' AABFC

implication: We get

I''rA=1B ( I‘,AFB) rA=BFC
'rADB 'rADB IMADBFC’
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Note that the rules we got for conjunction and disjunction are the usual Gentzen-
type rules. This is true even for conjunction, the elimination rule for which looks
somewhat unusual in Schroeder-Heister’s formulation. For D we just get the
identity between = and D.2 Again the corresponding rules are more intuitive
than in Schroeder-Heister’s setting, but the fact that Schroeder-Heister treats =
as basic forces us in this case to derive the usual rules for D by the detour
through = which we made in the previous section.

Using standard methods, it is not difficult to show that any system which
can be defined by gradually introducing new operators, using the above two
kinds of introduction rules, admits cut elimination.? From this we can easily de-
duce Schroeder-Heister’s result concerning the conservative character of his
introduction and elimination rules (Theorem 4.8 of [7]). Schroeder-Heister him-
self used for this a normalization theorem he proved in [6]. Normalization is,
of course, the natural deduction counterpart of cut elimination. However, at
least in the present case, cut elimination is easier to show and to use, since we
are free here from the complications caused by the notions of subrules and dis-
charge functions.

Finally, a remark about Schroeder-Heister’s characterization of the intui-
tionistic connectives and their definability power. As we showed above, there
is no real difference between = and the intuitionistic D. It is almost trivial, there-
fore, that the “common content” of ®,,...,®,, is given by

m m,

V /\ U(R,"j), (where q’,‘ = {Ri,ls . 9Ri,m,~})'

i=1 j=1
This is the real content of Schroeder-Heister’s theorem about the definability
within the intuitionistic propositional calculus of all the connectives which can
be gradually defined using his method of introduction and elimination rules (L
corresponds to the case m = 0).* The philosophical significance of this charac-
terization depends on the degree of priority one is willing to attach to Schroeder-
Heister’s “higher-order rules” over the corresponding implicational sentences.
Because of the local character of Schroeder-Heister’s rules (as opposed to what
we usually call “rules of inference”) the two notions seem to me, at least, just
to be variants of each other. Another reservation which I have concerning this
characterization is that it seems to force us to regard negation as a derived rather
than a primitive connective: I see no way of directly defining it by introduction
and elimination rules without introducing L first!

NOTES

1. It would have been better to call it the “sub-rule” property here, but unfortunately '
this name already has another meaning.

2. This is more evidence that there is no real difference between the two.
3. This is the important case we promised to discuss in Section 2.

4. A similar characterization of the definability of logical connectives was given in [5].
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