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On Finite Models of Regular Identities
JOZEF DUDEK and ANDRZEJ KISIELEWICZ

Abstract It is a known result of Austin that there exist nonregular identi-
ties with all nontrivial models being infinite. In this note a certain analogue
of this result for regular identities is presented and some remarks in this con-
nection are given.

1 Perkins [4] proved that it is undecidable whether an identity (and in con-
sequence, a finite set of identities) has a nontrivial model (i.e., a model of cardi-
nality greater then one). Austin [1] in improving th€ result of Stein [5] found
an identity with infinite models but with no nontrivial finite one. McKenzie [3]
proved that it is also undecidable whether an identity (a finite set of identities)
has a nontrivial finite model.

All these results are based on properties of nonregular identities. For reg-
ular identities (i.e., those with the same variables appearing on both sides, cf.
[2]) the model problems mentioned above are trivial. It is known that for each
finite set of regular identities the so-called 7-semilattices provide models of arbi-
trary cardinalities.

More precisely, let 7 be a finite type of algebras, i.e., a sequence {ny,...,
n,) of nonnegative integers, and xy a semilattice operation on a set A (a semi-
lattice operation can be defined on every finite set A). For 1 =i = k we define
an n;-ary operation on the set A by f; = x1x;...x,,. The algebra (A4, fi,.., )
is then called a 7-semilattice. Any 7-semilattice is polynomially equivalent to the
corresponding semilattice and clearly is a model for any set of regular identi-
ties in type 7. Let us also note that each one-element algebra is a 7-semilattice.

Thus, 7-semilattices can be treated as trivial models for regular identities.
Let us now inquire about other models.

We will show that a set of regular identities close to the lattice identities
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has models that are not 7-semilattices, though each such model is infinite (The-
orem 1). This is a result analogous to those of Austin [1] and Stein [5], and in
consequence leads to a problem for regular identities analogous to that consid-
ered by McKenzie [3]. In this case, however, the situation is more complex, since
as we will show each single regular identity has a finite model that is not a 7-
semilattice (Theorem 2), and therefore the approach of [3] and [4] does not apply
here.

Our terminology is standard. If the need arises we recommend that one
refer to [6]; some basic notions of graph theory are also assumed to be famil-
iar to the reader.

2 Let + and - be binary function symbols. Consider the following set of
identities (we write xy for x-y):

E:x+x=x

xx = X,
xX+y=y+ux
Xy =YX,

(x+y)z=(x+2)

Theorem 1
(a) Each finite model of ¥ is a (2,2)-semilattice
(b) There is a model of ¥ which is not a {2,2)-semilattice.

Proof: (a) Let A =(A,+,-) be amodel of £. If x + y = xy holds in ¥, then by
the last identity in I the operation x + y = xy is associative and so U is a (2,2)-
semilattice. We prove that in the opposite case the number of binary polynomials
over ¥ is infinite, which implies that ¥ itself is an infinite model. More precisely,
we show that for n = 0,1,2,. .. the following polynomials

Sp(x,y) =x+ 2"y

(where x + ky abbreviates (... ((x +y) + y) +...) + y with y occurring k-
times) are pairwise distinct over 2.
Using the identities of L, it is easy to check that

M (2N y =xy
) (S (x%Nx =sp_1(x,2).

Indeed, for (1) we have that (x+ ky)y=(x+ (k= 1Dy)+»)y=QO+ (x+

k=D»)y=Q+y»)x+k-1Dy)=x+((k-1Dy)y=...=x.
For 2), x+2"y=((x+ 2"-1Dy)+y)x=(x+y)(x+ 2" - 1)y) =
(x+Q"=2)y)+y)(x+ ) =x+2)(x+ 2" =2)y) =...= (x +

277 1y)(x + 2" y) = 8- 1 (X, ).

Now assume that s,(x,y) = s,,(x,») for some 0 = m < n. Then by (2)
Sn_m(%,¥) = So(x,y) = x + y; that is, for some k = 1, s;(x,y) is commutative.
Using (1) and (2) it follows that si_;(x,¥) = (S (X, ¥)x = (s (3, X)X = yx,
which is commutative as well, and by applying this argument again and again
we get that so(x,y) = yx, that is, x + y = xy. This is a contradiction, proving (a).
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Figure 1.

(b) Let T be the set of the finite binary trees on a countable set S with roots
as in Figure 1. Isomorphic trees are considered as identical. We define a binary
operation @ on T as follows: if f,u € T, then ¢t ® u is the tree obtained from
t and u by adding one more node (intended as the root of t @ u) and two edges
connecting this node with the roots of ¢ and u (see Figure 1). The operation
t @ u is commutative, but not associative.

Now we define the binary operations + and - on T as follows:

4 X, ifx=y
X+y= ]
xX®y, otherwise.

Clearly, x + y is idempotent and commutative, but not associative. To define
x-y, we first introduce some notation. Let

ya=(...(®x)P®x)®PD...) Dx,, where a = (X1, X3,...,X,), n =0
yaa= (... (ya) @ x,) D Xp-1) D ...) D xy
yaza= (... (ya) ®z2) D xp) D Xp—1) ... ) D x1.

By induction on the total number of nodes we define

C . _
ya, if x = yaa for some a

xa, if y = xaa for some a
x-y =1 (ya)-t, if x = yara for some ¢ and a

(xa)-t, if y = xara for some ¢ and a

L otherwise.

By 1 we denote here the one-element tree, which is included in 7. Note that for
a empty (n = 0) we have that x-x = x, showing that x-y is idempotent. Clearly,
it is also commutative.

Now, let T, be the subset of T of all those trees not containing a subtree
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of the form x @ x. Then, x + y and x-y are still operations on 7;. We show
that

x+y)z=(x+2)y=(y+2)x

holds in 7.

For x = y = z this is trivial.

If x=y # z, then (x + )z = xz, and (x + z2)y = (x + 2)x = xz (since
X + z = xaza with empty a). Similarly, (y + z)x = xz.

We may thus assume that x, y, and z are pairwise distinct. According to
the definition of x-y we consider four special cases with regard to the term
(x+y)z.

Nz=(x+y)aa=(x@Py)aa

2 z=(x®y)ara ) )
(3) x ® y = zaa (then either y = (z @ x)bb, or dually, x = (z @ y)bb)
4) x ® y = zata.

In case M), (x+y)z=(x®y)a,and (x+2)y=2Z+x)y=(y®x)aa®
x)y = (ybb)y = yb = (y ® x)a, as required. The same is true for (y + z)x. In
case (2) the proof is analogous. In case 3), (x+y)z=za (x+2)y=y(z@®x) =
(z@ x)bb)(z @ x) = (z @ x)b = za (since, in this case, b is obtained from a
by deleting the first element x), and also (¥ + z)x = ((z @ x)bb) @ 2)x =
(((x ® z)bb) @ z)x = (xc€)x = xe¢ = (z @ x)b = za. The same proof applies
for the dual case x = (z @ y)bb. Again, in case (4) the proof is analogous.
Otherwise, (x + y)z = 1. Then, also (x + z)y = (¥ + 2)x = 1, because if (x + z)
or (¥ + z)x # 1, then applying the proof like that above for y(x + z) or y(y +
z)x, respectively, we obtain that (x + y)z # 1. Hence, {Tj, +, - ) is a model of
L, which completes the proof of the theorem.

3 In view of results of McKenzie [3] and Perkins [4], one can conjecture that
the question of whether or not a finite set of regular identities has a nontrivial
(not 7-semilattice) model is undecidable. However, our problem is more com-
plicated than those treated of in [3] and [4]. As a matter of fact, their results
concern single identities, the undecidability of the question for a finite set of
identities being a simple consequence. In contrast to this, for our question we
have:

Theorem 2 Each single regular identity has a nontrivial finite model (not a
T-semilattice).

Proof: To show this, first note that the problem in question actually concerns
the sets of identities with at least one having just a single variable on one side.
Indeed, otherwise an algebra (A4, F) with all the operations equal to a fixed con-
stant provides a suitable model. If a regular identity has a variable on one side,
then this is the only variable appearing in this identity. Thus, all that remains
to show is that each such identity I has a finite model other than a 7-semilattice.
This we show as follows. Suppose that the identity I has a variable x at the right-
hand side, and r is the number of the occurrences of x at the left-hand side. If
r =2, then putting f(x) = x for all unary operators appearing in I, we have just
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the identity xx = x, and any finite idempotent noncommutative groupoid (with
some trivial unary operators added) provides a model as required. If r = 1, then
the problem is trivial. For r = 3, suppose at first that the only function symbol
appearing in I is a symbol of a binary operation xy and consider the set of iden-
tities
L' = {Lxy = yx, (xy)z = x(y2)}.

Then the identity I can be replaced by just

x"=x

and it is clear that any cyclic group of order r — 1 is a model for X, and there-
fore a model for I itself (by the assumption that r — 1 > 1).

Now, if I is an identity in a type 7, then we construct an algebra of type
7 from a cyclic group of order r — 1 by the same construction as that applied
to semilattices in Section 1. The result, which we may call a 7-cyclic group, is
clearly a model for I, which completes the proof.
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