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On Finite Models of Regular Identities

JOZEF DUDEK and ANDRZEJ KISIELEWICZ

Abstract It is a known result of Austin that there exist nonregular identi-
ties with all nontrivial models being infinite. In this note a certain analogue
of this result for regular identities is presented and some remarks in this con-
nection are given.

/ Perkins [4] proved that it is undecidable whether an identity (and in con-
sequence, a finite set of identities) has a nontrivial model (i.e., a model of cardi-
nality greater then one). Austin [1] in improving the result of Stein [5] found
an identity with infinite models but with no nontrivial finite one. McKenzie [3]
proved that it is also undecidable whether an identity (a finite set of identities)
has a nontrivial finite model.

All these results are based on properties of nonregular identities. For reg-
ular identities (i.e., those with the same variables appearing on both sides, cf.
[2]) the model problems mentioned above are trivial. It is known that for each
finite set of regular identities the so-called r-semilattices provide models of arbi-
trary cardinalities.

More precisely, let r be a finite type of algebras, i.e., a sequence <«!, . . . ,
nk) of nonnegative integers, and xy a semilattice operation on a set A (a semi-
lattice operation can be defined on every finite set A). For 1 ̂  ir ϋ k we define
an Λz-ary operation on the set A by f( = xxx2.. .xnr The algebra (A9fι,..,fky
is then called a τ-semilattice. Any r-semilattice is polynomially equivalent to the
corresponding semilattice and clearly is a model for any set of regular identi-
ties in type r. Let us also note that each one-element algebra is a τ-semilattice.

Thus, τ-semilattices can be treated as trivial models for regular identities.
Let us now inquire about other models.

We will show that a set of regular identities close to the lattice identities
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has models that are not r-semilattices, though each such model is infinite (The-
orem 1). This is a result analogous to those of Austin [1] and Stein [5], and in
consequence leads to a problem for regular identities analogous to that consid-
ered by McKenzie [3]. In this case, however, the situation is more complex, since
as we will show each single regular identity has a finite model that is not a r-
semilattice (Theorem 2), and therefore the approach of [3] and [4] does not apply
here.

Our terminology is standard. If the need arises we recommend that one
refer to [6]; some basic notions of graph theory are also assumed to be famil-
iar to the reader.

2 Let + and be binary function symbols. Consider the following set of
identities (we write xy for x- y):

Σ : x + x = x9

XX = X,

x + y = y + *>

xy = yx,

(x + y)z = (x + z)y.

Theorem 1
(a) Each finite model of Σ is a <2,2>-semilattice
(b) There is a model ofΣ which is not a (2,2)-semilattice.

Proof: (a) Let 21 = 04,+, > be a model of Σ. If x + y = xy holds in 21, then by
the last identity in Σ the operation x + y = xy is associative and so 21 is a <2,2>-
semilattice. We prove that in the opposite case the number of binary polynomials
over 21 is infinite, which implies that 21 itself is an infinite model. More precisely,
we show that for n = 0,1,2,... the following polynomials

sn(x,y) =x + 2ny

(where x + ky abbreviates (... ((x + y) + y) +...)+ y with y occurring k-
times) are pairwise distinct over 21.

Using the identities of Σ, it is easy to check that

(1) (sn(x,y))y = xy
(2) (sn(x,y))x = sn-l(x,y).

Indeed, for (1) we have that (A: + ky)y = ((x + (k - l)y) + y)y = (y + (x +
(* - \)y)y =(y + y)(x + (* - l)y) = ( * + ( * - \)y)y =... = xy.

For (2), x+2ny = ((x + (2n - l)y) + y)x = (x + y){x + (2n - l)y) =
((x + (2n - 2)y) + y)(x + y) = (x + 2y)(x + (2* - 2)y) = . . . = (x +
2n-ιy)(x + 2"-ιy)=sn_ι(x9y).

Now assume that sn(x,y) = sm(x,y) for some 0 ^ m < n. Then by (2)
sn_m(x,y) = so(x,y) = x + y; that is, for some k ^ 1, sk(x,y) is commutative.
Using (1) and (2) it follows that sk-χ{x,y) = (sk{x,y))x = (sk(y9x))x = yx,
which is commutative as well, and by applying this argument again and again
we get that s0 (x,y) = yx, that is, x + y = xy. This is a contradiction, proving (a).
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Figure 1.

(b) Let Γbe the set of the finite binary trees on a countable set S with roots
as in Figure 1. Isomorphic trees are considered as identical. We define a binary
operation © on T as follows: if t, u e T, then t ® u is the tree obtained from
t and u by adding one more node (intended as the root of t ® u) and two edges
connecting this node with the roots of t and u (see Figure 1). The operation
t ® u is commutative, but not associative.

Now we define the binary operations + and - o n Γ a s follows:

f x, if x = y
x + y =\

\x ® y<> otherwise.

Clearly, x + y is idempotent and commutative, but not associative. To define
x-y, we first introduce some notation. Let

j a = ( . . . ((y@xι)®x2)® ...)®xn> where a = <Xi,x2> >*«>>« = 0
j>aa = (... (((ya) ® xn) ® xn-{) ® . . . ) ® xx

y2LZ* = (.. . ((((ya) ®z)®xn)®Xn-i)...)®Xi>

By induction on the total number of nodes we define

j>a, if x = >>aa for some a

xa, if y = xaa for some a

x y =" (^β) /, if Λ: = .ya/a for some t and a

(xaH, if y = xa/a for some t and a

1, otherwise.

By 1 we denote here the one-element tree, which is included in T. Note that for
a empty (n = 0) we have that x x = x, showing that x y is idempotent. Clearly,
it is also commutative.

Now, let To be the subset of T of all those trees not containing a subtree
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of the form x © x. Then, x + y and x-y are still operations on Γo. We show
that

(x + y)z = (x + z)y = (y + z)x

holds in Γo.
For x = j> = z this is trivial.
li x = y Φ z, then (A: + j )z = xz9 and (x + z)y = (x + z)x = xz (since

JC + z = xaza with empty a). Similarly, (y + z)x = xz.
We may thus assume that x, y, and z are pair wise distinct. According to

the definition of x-y we consider four special cases with regard to the term
(χ + y)z.

(1) z = (x + j)aa = (x ® j>)aa
(2) z = (x ® y)ata
0) x® y = zaa (then either y = (z® Λr)bb, or dually, x = ( z ® ^)bb)
(4) x © j> = za/a.

In case (1), (χ + j)£ = (x©j>)a, and (χ + z)y= (z-\-x)y= ((.>>© x)aa©
*λy = (ybb)y = j b = (y ® x)a, as required. The same is true for (y + z)x. In
case (2) the proof is analogous. In case (3), (x + j>)z = za (x + z).y =.y(z©x) =
((z © x)bb)(z ®x) = (z® x)b = za (since, in this case, b is obtained from a
by deleting the first element x), and also (y + z)x = (((z © x)bb) © z)x =
(((x ® z)bb) © z)x = (xcc)x = xc = (z © x)b = za. The same proof applies
for the dual case x = (z © y)bb. Again, in case (4) the proof is analogous.
Otherwise, (x + y)z = 1. Then, also (x + z)y = (y + z)x = 1, because if (x + z)
or (j> + z)x Φ 1, then applying the proof like that above for y(x + z) or >>( j +
z)x, respectively, we obtain that (x + y)z Φ 1. Hence, < Γo, + , > is a model of
Σ, which completes the proof of the theorem.

3 In view of results of McKenzie [3] and Perkins [4], one can conjecture that
the question of whether or not a finite set of regular identities has a nontrivial
(not τ-semilattice) model is undecidable. However, our problem is more com-
plicated than those treated of in [3] and [4]. As a matter of fact, their results
concern single identities, the undecidability of the question for a finite set of
identities being a simple consequence. In contrast to this, for our question we
have:

Theorem 2 Each single regular identity has a nontrivial finite model (not a
τ-semilattice).

Proof: To show this, first note that the problem in question actually concerns
the sets of identities with at least one having just a single variable on one side.
Indeed, otherwise an algebra (A,F) with all the operations equal to a fixed con-
stant provides a suitable model. If a regular identity has a variable on one side,
then this is the only variable appearing in this identity. Thus, all that remains
to show is that each such identity I has a finite model other than a r-semilattice.
This we show as follows. Suppose that the identity I has a variable x at the right-
hand side, and r is the number of the occurrences of x at the left-hand side. If
r = 2, then putting/(x) = x for all unary operators appearing in I, we have just
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the identity xx = x, and any finite idempotent noncommutative groupoid (with
some trivial unary operators added) provides a model as required. If r = 1, then
the problem is trivial. For r ^ 3, suppose at first that the only function symbol
appearing in I is a symbol of a binary operation xy and consider the set of iden-
tities

Σ' = {I,xy=yx, (xy)z = x(yz)}.

Then the identity I can be replaced by just

xr = x

and it is clear that any cyclic group of order r — 1 is a model for Σ, and there-
fore a model for I itself (by the assumption that r — 1 > 1).

Now, if I is an identity in a type r, then we construct an algebra of type
r from a cyclic group of order r — 1 by the same construction as that applied
to semilattices in Section L The result, which we may call a r-cyclic group, is
clearly a model for I, which completes the proof.
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