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Infinite Sets of Nonequivαlent Modalities

FABIO BELLISSIMA

Abstract The set of irreducible nonequivalent modalities for a class of nor-
mal modal logics is determined. All the logics considered (KT, KD, K4, KB,
among others) have this set infinite.

Introduction The study of irreducible nonequivalent modalities has been
mostly devoted to those modal logics which have a finite number of such modal-
ities. In all these cases the proof that a logic L has finitely many nonequivalent
modalities is obtained by determining the set of irreducible modalities for L.
Some attention has also been paid to the matter of showing that certain logics
have infinitely many nonequivalent modalities; in fact it has been proved that
the logics S2 [4], KT [5], KD4 and KTB [3], and KBAlt3 [7] belong to this class
(see also [1], §3.2, for a summary). But, in all these cases, the proof consists in
finding an infinite set of modalities, usually obtained by reiterating one oper-
ator, which are nonequivalent for the logic under examination; therefore the set
of the irreducible nonequivalent modalities for such logics remains undetermined
(the only exception is constituted by the logic K, since Kit Fine has shown that
no distinct modalities are K-equivalent).

In Section 2 we will show that if L c KAlti or L Q KTAlt3 then no distinct
modalities are L-equivalent; as a consequence we obtain, if we indicate by Mod
the set of all modalities (in normal form) and by YL the set of nonequivalent
irreducible modalities of L, that YKΌ = Yκτ = Mod. On the other hand, we will
show in Section 3 that the set YK4, although infinite, is properly contained in
Mod and is structurally simple; it is in fact obtained by reiterating the initial
operator of the modalities of yS4> which is, as is well-known, a finite set. More-
over, in this context the addition of the axioms D and T is not useless, because
it holds that r K 4 £ *KD4 £ Iκτ4 (i.e., YS4).

1 Preliminaries Modal formulas are formed in the usual way from the lan-
guage {P, Λ, v, -i, -», s , Π, 0), where P is the set of propositional variables
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and D, 0 are the so-called modal operators, A (normal) modal logic is a set
of modal formulas containing all classical tautologies and the formula D (p -»
q) -»(Ώp -• Ώq), and which is closed under modus ponens, necessitation, and
the rule of substitution. K denotes the smallest modal logic; it satisfies the fol-
lowing proposition.

Proposition 1.0 K h Φ -> Ψ iff K h DΦ -> ΠΨ iff K h OΦ -• OΨ.

The names of the following formulas are standard:

D = Dp-><>/?, Ί = Ώp-+p, B=p-+\J0p9 and 4 = Up-» DΏp.

We shall also consider the formula Altπ = Ώp\ v Π (p\ -+P2) v . . . v Π (p\ Λ . . . Λ
Pn ->Pn+\)' Semantic structures are frames (ordered pairs F = (WyR) where W
is a nonempty set and R^WxW) and models (ordered pairs M= (F9ρ) with
F a frame and p a function, called a valuation, from P into (P( W); we write
M=<iW,R,p) instead of «*F,i?>,ρ». The well-known Kripke truth-definition
defines the notion "the formula Φ is true at the point w of M" (in symbols
M (= Φ[ w]); as usual, M1= Φ means that M1= Φ[ w] for each w G W, and F h Φ
means that <F,p> f= Φ for each p on F The following result is standard: KD,
KT (also called T), and K4 are complete with respect to the class of models
whose relations are, respectively, serial, reflexive, transitive. Moreover (see [7]),
F1= AltΛ iff |{ v: wRv}\ < n for each w e Wholds.

Proposition 1.1 Let M be a model whose relation is reflexive; then
(i)Mt=Φ impliesMt= DΦ andMN OΦ

(ii) M t= -ιΦ implies M1= -1 DΦ and M t= -ιOΦ.

Let F = (W,R) and w, v G W\ we write wRnv if there exist uOy.. ,9un of
W such that w = u0RuxR... Run = v. We denote by R+ the ancestral of Z?, i.e.
i?+ = «w, f>: there exists an n such that wRnv}.

Following [7] we define a formula φ to be a modality if it is expressed in
the language {-ι,Ώ,0,p).1 A modality φ is in normal form if φ = tit2» >
-fkp where t, G {- |,D,Oj and if / ̂  1 then t/ =£ -1. From K (- (-1O-1/7 s D/?) Λ
(-1D-1/? Ξ 0/?) it follows that each modality φ is equivalent to a modality in
normal form; throughout the paper we consider only modalities in normal form,
denoted by φ, ψ9 0, £, etc. If ti Φ ~" then the modality is positive, otherwise it
is negative. Πm and 0m denote strings of m D-operators and m O-operators
respectively, and D°φ = 0°φ = φ. Thus we may indicate each positive modal-
ity by the form

φ= Πk'0k2...Ώkr-'0krp,

where kj = 0 implies that kj = 0 either for each j < i or for each j > i. This
condition, instead of the more usual "&,- = 0 only if / = 1 or / = f\ will be
convenient in our proofs; so, for instance, the modality OD2/? may be writ-
ten in the forms D°0 1 D 2 0°p and D 0 0 ° D 0 0 1 D 2 0 0 A but not in the form
D°01 D 0 0 0 D 2 0°p. Moreover, when it will be useful to distinguish between the
exponents of the D-operators and those of the O-operators, we will write φ in
the form

φ = D m i 0 Λ l D W 2 0 " 2 . . . D^O^/?.
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The dual of a modality φ is the modality which results from φ by interchang-
ing D and 0 throughout φ. Obviously, if φ and ψ are equivalent in a logic L,
so are their duals; we shall call this property "duality".

WesetFo = <{wo},0>,F1 = <{w1},{<w1,>v1>}>,F2 = <{w2,y2), {W2>v2) x
[w2,v2}>9 Pχ+{P) = ίwi), Pι-(p) = 0 , ρ2(p) = ίw2}.

Lemma 1.2 Let X be any finite string of modal operators (i.e., Xp is a pos-
itive modality). We have that Fo N DXp, Fo ψ OXp, <Fupi+) N Xp, {Fupx_) #
Xp, <Fi,P2> N JTOA <F2,p2> VXDp.

The proof is trivial.

2 Nonequivalent modalities in KT We define the frame Fτ = < WΎ,RΊ) as
follows: WΊ is the set of finite sequences of 0 and 1 (as usual, (ai9... ,as) *
<bu...,br) = <αi,. . . ,α ι S ,6 1 , . . . ,6 Γ », a n d i ? τ = {<w,w>,<w,w * <0», <w,w*
<1» : w G H τ̂} (see Figure 1).

\ / \ / \ / \ /
\ / \ / \ / \ /

\ / \ / \ / \ /

α o α o
<o,o> #<o,i> <i,o> <i,i>

V V
# <o> <i>

Fτ = <Wτ,Rτ> Q0

Figure 1

We indicate by °| iv| and ι\w\ respectively the number of O's and Γs in the
sequence w. Let X £ wτ; we set

X0n = [u G WΊ : u = v * <0,... ,0> for v G X]

ft-times

X\n = {ue WΊ : u = ι ; * < l , . . . , l > for v G X]

Λ-times

XAn = {u G WT : u = v * v\ where v G X and
the length of v' is less than or equal to n\.

If X= [w] we simply write wθn, wln, and wA" instead of [ w]0n, {w]ln, and
{w}An. Observe that wAn is the set {v G WΎ : wRψv for m < AI), and hence,
since i? τ is reflexive, wAn = {i; G WΎ : w/?χί;}.
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Lemma 2.0 Let ψ = D^O* 1 Π ^ O " 2 . . . ΠmsO"sp; there exists a valuation
pψ on Fτ such that <Fτ,p^> 1= ψ[w] iffw = 0orw terminates with 1.

The intuitive idea behind the proof is as follows: Suppose that v = 0 or
v ends in 1. Among the infinitely many sets X<^WΊ having the property that
if p is true at each point of X then ψ is true at v9 we choose the set/(t;) (the set
of "green" points relative to υ) following this criterion: whenever the subformula
Oφ of ψ must be true at z in order that φ be true at v9 we impose that φ be true
at z * <1>. In other words, looking at Figure 1, we choose the set/(ι;) as far on
the right as possible among the X's. If, on the contrary, the point u ends in 0,
we choose/(w) (the set of "red" points relative to u) among the infinitely many
sets y c ^ τ having the property that if p is false at each point of Ythen ψ is
false at u, following this criterion: whenever a subformula Πφofψ must be false
at t in order that ψ be false at u, we impose that φ be false at t * <0> (in this case
f(u) is as far on the left as possible). Since we shall show that no point of WΊ

must be simultaneously green and red, then p(p) = {w: w is green relative to
some v) will be the required valuation.

Proof of Lemma 2.0: If φ is a positive modality then, for each w E WΊ and
each p o n F τ , there hold:

(1) (Fτ,p) |= Πsφ[w] iff <Fτ,p> t= φ[w'] for each w' E wAs

(2) <Fτ,p> M Osφ[w] iff <Fτ,p> ¥ φ[w'] for each w' E wAs

(3) (FΎ,p) N Osφ[w] if <Fτ,p> 1= φ[wls]
(4) <Fτ,p> ¥ Ώsφ[w] if <FΎ,f>) Vφ[wOs].

Let F = {v E WΊ : υ = 0 or v terminates with 1} and U = WΎ - V. We
define a function / from # τ into (9{Wτ) as follows: if f E Fthen/(ι;) =
ί;ΔWl l^iΔ 7" 21" 2 . . . Δm*Γ* and if u E £/then/(«) = u0miAni0m2A"2...0m*ΔΛ*.
From (1) and (3) it follows that for each p on Fτ and each v E V

(5) iϊf(v) c p(p) then <F,p> N ^[t;],

while, from (2) and (4) we obtain that for each p on FΎ and each u E U

(6) if/(!/) Π p(p) = 0 then <F,p> ^ ^[w].

Next we will show that

(7) U Άv) Π U /(«) = 0.

Let ?; E Fand w E ί/: we show that/(t;) Πf(u) = 0 . Let z E/(t;) and t Ef(u).
If iλK+« (i.e., u = ι> * x for a sequence x) then

°|z| < ° k | + Σm,and°|ί | >°|t/| + t ^
ι = l ι = l

But vR+u, v E F, and u E (7 imply that °|i/| > °|t;| and, therefore, °|z| <
s

°\t\ and z*t. On the other hand, if uR+v then M l̂ ^ Ί y l + Σ Λ / > Ί w l +

Σ Λι ^ J Ul a n d hence z ^ /. Finally, suppose that uψ^υ and ^ + M and let

v = <αi, . . . , αr) and u = <Z>!,..., br>). Since M ^ I ; there exists an / < inf {r, r'}
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such that dj Φ bi and hence, since t and z start respectively with u and v, the
/th component of z differs from the ith component of t, i.e. t Φ z, and this
concludes the proof of (7). Now let pψ(p) = (J / ( f ) . By (7) we have that

Pψ(p) Π (J /(«) = 0 and hence from (5) and (6) it follows that pψ satisfies

the Lemma.

Theorem 2.1 # £ αwtf θ are distinct modalities then KT\fξ = θ.

Proof: If £ is positive and 0 negative, then from F{ 1= KT and Lemma 1.2 it
follows that KT V £ = 0. If £ and 0 are both positive we distinguish two cases:

Case A. 0 is a subformula of £. Then, since £ Φ 0, either 00 or D0 are subfor-
mulas of £. Let us consider (Fτ,pθ); since for each w E Wτ there exist a i G F
and a u E U such that w/?τι; and wi?τw, from Lemma 2.0 we obtain that 00
and D0 are respectively true and false at every point of Wτ; i.e., {FΊ,pθ) t= 00
and (FΎ,pθ) 1= -ι D0. Now, if 00 is a subformula of £, then by Proposition 1. l(i)
we obtain that (Fτ,pθ) \= £ which, together with (FΎiρθ) #θ[(0)] (see Lemma
2.0), implies that KT 1/ £ = 0; on the other hand, if D0 is a subformula of ξ,
then from Proposition 1.1 (ii) it follows that <Fτ,p^> f= ->£ which, together with
<FΎ,pθ) t= 0 [ 0 ] , again implies that KT \f ξ = 0.

Case B. Neither 0 is a subformula of ξ nor ξ is a subformula of 0. Let ψ be the
largest common subformula of £ and 0, and suppose that 0^ is a subformula
of 0 and Π^ of ξ. Following the proof of Case A we obtain that <Fτ,p^> 1= 0
and <Fτ,p*> 1= "•£.

Remark 2.2 In order to show that two modalities ξ and 0 are not equiv-
alent in a logic L, it is enough to find a point w of an L-model M such that
M1= ξ [ w] and M1/ 0 [ w], or vice versa. By the proof of Theorem 2.1 we real-
ize that KT "separates" the modalities in a stronger sense; in fact, for each £ and
0 we have obtained a model M such that M1= £ and M P 0 or vice versa. Fur-
thermore, the proof of Case B is still stronger: If neither £ is a subformula of
0 nor 0 of £, there is an M such that M1= £ and M N -ι0 or vice versa. But this
fact cannot be extended to Case A: If £ = Op and 0 = /? it is impossible to find
a KT-model M such that M N £ and M f= -10 or M t= 0 and M1= -.£. This limi-
tation that KT-models have in separating modalities persists even for the class
of all Kripke models (i.e., the class of models for K): we show that it is impos-
sible to find a model M = (W,R9p) such that MY Up and MY -iDOD/?, or
M V D0D/7 and M 1= -iD/λ In fact, if W contains a terminal point (a point
w such that wfiυ for each v G W) then M P ->•/? and Λf ^ -iDOD/7. Hence
suppose that W is without terminal points; then M N Dp implies that M N
ODp and M1= DODp, and thus MΨ ->DODp. On the other hand, MYΠOΠp
implies that M \= ODp, and hence M N Dp[w] for a w G W; therefore M ^
->Dp.

From Theorem 2.1 it also follows that in KD all distinct modalities are
nonequivalent. Moreover, this theorem can be strengthened as follows:

Corollary 2.3 If £ and θ are distinct modalities and L c KTAlt3 then L \f
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Proof: FΊ NKTAlt3.

At this point the following question arises: Does Corollary 2.3 hold if we
substitute KTAlt3 by KTAlt2? The answer is negative, as shown in the follow-
ing theorem.

Theorem 2.4 KTAlt2 h DOD2p s D2ODp.

Proof: First we show that

(l)KTAlt 2= Th(F*)9 where F* = <ω,{<m,m>,<m + l,m>:m£ω}>.

In fact, using methods analogous to those used in the Tree Lemma of Sahlquist
(see [6]), it is possible to show that KTAlt2 is complete with respect to the class
X of finite reflexive linear intransitive trees; i.e. it is complete with respect to
{<{0,...,«}, {{m,m):m < n] U {{m + l,ra>:m<«}>, « E ω ) . Since each frame
of A" is a generated subframe of F*9 we obtain (1). Hence, setting ψx = DOD2p
and φ2 = D 2 0Dp, we must show that F * N ^ = ψ29 i.e. that for each p onF*
and each ra G ω, (F*,p) \= ψx s ^ 2[m] (we simply write m N T/Ί = ψ2) If w ^ 3
then the following (a)-(e) are equivalent, and so are (a')-(e'):

(a) m\=φι
(b) m N 0D 2 p and m - 1 t= 0Π2p
(c) m - 1 N D2/? or (m N D2/7 and m - 2 N D2/?)
(d) m - i N/? for 1 < / < 3 or m -j \=p for 0 < j < 3
(e) m - i N/7 for 1 < /< 3

(a') m ¥ φ2

(br) m-iV OD/7 for 0 < / < 2
(cr) (m h Dp and m - 2 1= Dp) or (m - 1 1= Dp and m - 2 ( = Dp) or

(m - 1 1= Dp and m - 3 1= Dp)
(d') m - / 1= p for 0 < / < 3 or m - j 1= p for 1 < j < 3 or, if m > 3,

m - A * N p f o r l < A < 4
(e') m- jVp for 1 <y < 3.

Since (e) = (e') we obtain that m V ψx = ψ2 In the same way we can show that

2)rψι*=> (0 l=pand 1 Np)<^2 N φ2

1 μ ^ j ^ o h p ^ l h^2
0 t=\ti^O Np<^>0 t=^2,

thus concluding the proof.

Theorem 2.5 The set Γ of all logics without equivalent distinct modalities,
ordered by inclusion, is without maximum.

Proof: Let us consider the logic KAlti (=K U {Op -• Dp)). Since Fx is a frame
of KAltls if £ is positive and θ negative then KAlti 1/ £ Ξ= 0. Hence suppose that
£ and θ are both positive and let X be the largest initial part common to £ and
θ; the possible cases are the following:

(i) ξ = XΏψ and θ = XOφ (or vice versa)
(ii) ξ = XΏφ and θ = Xp (or vice versa)

(iii) £ = Xp and θ = X<>φ (or vice versa).
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Let s be the number of operators in X and consider the frame N = <ω, {(n +
l , n ) : « G ω ) ) . We have that N\=XΠψ[s], N#X0φ[s], and <iV,p> \=Xp[s]
iff 0 E p(/7). Hence, for all of the above cases, N # ξ s 0. But, on the other
hand, TV (= Op -> Dp, and therefore no distinct modalities are equivalent in
KAlti, and KAltj E Γ. Moreover, from Theorem 2.1 it follows that KT E Γ.
Now, let us consider KTAltx (=KT U KAltO. From KT h Up -> Op and KAlti h
Op -• D/7 it follows that KTAlt! h Dp = Op, and hence KTAlt! £ Γ.

J Nonequivalent modalities of K4

Lemma 3.0 Let X be a finite, possibly empty, string of modal operators. The
following are theorems of K4:

ΦQ:U0X0p= DO/7
Φr.ΠOXΠpm ΠOΏp
Φ2:0ΠXΠp=0Πp
Φ3:0ΠX0p = OΠOp.

Proof: First note that the following may be easily established as theorems of K4:

(1) D00/?s= DO/7
(2) D0DD/7Ξ= DOD/7
(3) DODO/7 m D00/7.

We now prove Φo inductively. The case where X is empty is (1). Otherwise
X is OY or ΏY. We show that in each case the following is a theorem:

(4) Π0X0p= DOrO/?.

If ΛΓis OF then (4) is (1) with YOp/p. IfXis D Y and Fis empty then (4) is (3).
If Xis D Yand Yis OZ then (4) is (3) with ZOp/p. If Xis D Yand 7is DZ then
(4) is (2) with ZOp/p.

As regards Φ\, if X is empty then <J>! is a tautology. Otherwise X is 0 F or
D 7. We show that in either case

(5) ΠOXΠp^ ΠOYΏp.

If AT is Oy then (5) is (1) with YΠp/p. If Γ̂ is Dythen: if Y is empty then (5)
is (2); if y is OZ then (5) is (3) with ZΏp/p; if Y is DZ then (5) is (2) with
ZΏp/p.

Since Φ2 and Φ3 are duals respectively of Φo and Φu the proof is con-
cluded.

Theorem 3.1 Let Yi = { D W I O W 2 D W 3 A 0" ί l D W 2 0 W 3 /? :m 2 ,m 3 G {0,1}}
tfm/ y4 = Yί U {-iφ: φ E y4'}. *Γέ? have:
(i) /or etfc/z modality ψ there exists a ξ E y4 swcΛ ίΛatf K4 h 0 s ξ

(ii) z/£,0 GY4and ξΦθ then KAVξ^θ.

Proof: The proof of (i) trivially follows from Lemma 3.0. Regarding (ii), since
Fo, Fι, and F2 are K4-frames, we need only, via Lemma 1.2 and duality, to
consider the case in which ξ and θ are positive modalities whose first and whose
last operators are D. Then we set ξ = ΏmιOm2Ώm3p and 0 = D^O^D"3/? and
consider a model N= <ω,>,p> where p is such that 0 £ p(p). If #*! > ̂  then
(since N Vp[0], N # 0ψ[0], and TV t= D^[0] for each ψ) we obtain that ΛT1=
ξ[nγ] and iV t̂  β[/ii]. Hence suppose that mx = nx\ since ξ and 0 terminate
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Πn<>Up ̂ t Πn+ιOΠp

it It

*£ ' ' ' '
P tf

^ i 1 i 1
0n+ιp ϊ+ 0np XX O π + 1 Dp τz OnΠp

It it

0n+ιΠ0pτ2 0nΠ0p

Figure 2.

with D, from the fact that ξ Φ θ it follows that w 2 = m3 = 1 and Λ2 = # 3 = 0
(or vice versa). But N ^ D ^ O D / ? ^ ] and N1= Ώm'p[mx], and so the proof
is concluded.

Using Theorem 3.1 we can also draw the pattern of implications among
irreducible modalities of K4. Figure 2 pictures the implications among positive
modalities; for their negations reverse the arrows. The arrows not proved in The-
orem 3.1 are straightforward.

Corollary 3.2 Let Y£4 = [Ώ<>Up,ΏOp,Ώnp\n S ω] and YΌ4 = Yί>4 U
{-iφ : φ E FEM)- For each modality ψ there exists a ξ E YΏ4 such that KD4 h
ψ = ξ andifξ,θe YΌ4 and ξ Φ θ then KD4 H ξ = θ.

Proof: By Theorem 3.1 we need only show that: (i) KD4 \f Πn+ΐp -> Πnp9 (ii)
KD4 h Πn+ιOp-+ ΠnOp, and (iii) KD4 h Π}n+ιOΠp-> ΠnOΠp. Let us consider
the model N' = <ω,<,p> where p(p) = ω - {AZ}; we have that ΛΓ ^ Dπ/7[0]
and N' N DΛ + 1/?[0], and hence (i) is proved. Regarding (ii) and (iii), we show
that for each φ KD4 h Ώn+ιOφ -* D^Oφ. Suppose that F ψ DnOφ[w]9 i.e. F \=
0nO-ιφ[w] hence there exists a v such that wΛΛι; and F1= D->φ|>]. By tran-
sitivity and seriality it follows that F\=Π2-*φ[υ] and F1= OD-ιφ[ι;] thus we
obtain that FI=<0Λ + 1D-iφ[w] and F# Ώn+ιOφ[w],

Finally, we observe that for the systems KB (i.e., K +p -• DO/?), KTB, and
KDB it is possible to show that any positive modality is equivalent to a modality
of the form D W l 0 W 2 . . . D ^ - 1 0 m s p where for each /, 1 < / < s, if mt Φ 0 and
/W/ < m / + 1 then m/.! < m, . No distinct modalities of this form are equivalent.

NOTE

1. Under an alternative definition (see for instance [1] or [3]), a modality is a sequence
Xof symbols from the set {-i,D,OJ. In such a case Xand X' are said to be equiv-
alent in L if L h A/? = X'p.
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