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An Elementary Proof for Some Semantic

Characterizations of Nondeterministic

Floyd-Hoare Logic

ILDIKO SAIN*

Abstract We give a relatively simple and direct proof for Csirmaz's char-
acterization of Floyd-Hoare logic for nondeterministic programs [5]. (This
also yields a very simple proof for Leivant's characterization [13].) We also
establish a direct connection between "relational traces" and "time-models"
for nondeterministic programs.

Introduction In this paper we investigate semantic characterizations of the
program verifying power of Floyd-Hoare logic of nondeterministic programs.
Our main aim is to obtain a relatively simple and direct proof for Csirmaz's
model-theoretic characterization (this is the main theorem of [5]). Furthermore,
as a byproduct of Makowsky-Sain [14] and our direct proof for Csirmaz's char-
acterization herein, we get a self-contained and straightforward proof for Lei-
vant's Proposition 9 of [13] (which is a characterization of Floyd-Hoare logic
in terms of Henkin-type (or nonstandard) second-order logic): it was shown in
[14] that our Corollary 2.1 immediately yields Leivant's characterization, hence
our rather easy proof of Corollary 2.1 herein provides an equally easy proof for
Leivant's result by [14].

To find simpler proofs (and direct constructions) for Csirmaz's important
characterization is a problem which goes back to 1980. A characterization for
deterministic programs was found in early 1980 (see [7]) and a stronger char-
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acterization for nondeterministic ones was found somewhat later in 1980 (see
[5]) that extended a result of Andreka and Nemeti from 1977 (see [2] and [3]).
These are among the central results of the Nonstandard Logics of Programs
(NLP) approach, and so it was considered important to simplify the proofs of
these rather deep and hard theorems (cf. [17], [19], and [8]). For the result of
[7], a short proof was obtained in [22]. The proofs of our Theorem 1.1 and
Corollary 2.1 together provide a relatively simple proof for the sharper result
of [5].

Another problem was to clarify the connection between [7] and [5]. Because
[7] uses "relational traces" (see Theorem 1.1 herein) while [5] uses "time-models"
like the ones in temporal logics or in [4] and [8] (see Corollary 2.2 herein), the
connection between the two semantics was not quite obvious for nondeterminis-
tic programs. Here we show how to construct a time-model from any relational
trace (in the nondeterministic case too). The other direction is easy (to construct
relational traces from time-models). Another aim of this paper is to provide a
direct, elementary construction (of a time-model to any unprovable program)
for the main theorem of [5]. As a byproduct, we obtain various construction
methods for (traces and) models of programs; see the proofs of Corollary 2.2
and Proposition 2.3. We also obtain some (simpler) equivalent versions and gen-
eralizations of the semantical characterization of Floyd-Hoare logic for non-
deterministic programs (cf. Theorem 1.1, Corollary 2.2, and Remark 2.2).

To keep the formalism simple and short, we use Csirmaz's rather general
notion of a program. Motivation for this notion may be found in [5] or [7]
where it is also shown that block-diagram programs, regular programs, and pro-
grams are all special cases of this notion. A detailed proof of the latter fact can
be found also in Chapter 1.7 of [8]. Recursive programs were treated within the
NLP approach in a rather natural and elegant manner in [17], which therefore
gives rise to the problem of extending the results of the present paper to those
kinds of programs too. We will leave this problem unsettled. However, the form
of NLP used in [17] is very close to that found in [14] and [15]. Hence one might
ask the more concrete question whether the characterization in [14] and [15]
(first-order parameter-free comprehension) also works for Floyd-provability of
recursive programs.

To avoid the many-sorted logic formalism of [4], [8], [16], [21], [25], etc.,
we shall use an equivalent version called time-traces instead of the original, more
natural and more flexible, notion of time-models. The reason for this is that
time-traces are shorter to define.

/ Relational trace semantics

Notation Throughout, let d be an arbitrary similarity type (i.e., signature,
i.e., ranked alphabet). By a (first-order) d-formula we understand & first-order
formula of similarity type d, and by a d-model we understand a first-order model
of similarity type d. The universe of a d-model D will always be denoted by D.
By a d-theory we understand a set of d-formulas; the set of all d-formulas is
denoted by Fd. Let ω denote the set of all natural numbers. For every n G ω,
let FJ/ denote the set of all d-formulas which have their free variables among
\Xi:i < n}. Throughout, we write φ Λ ψ ->7 for (φ Λ ψ) -> 7.
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Definition 1.1 If TΓ E F%k for some k E ω then we call TΓ a (nondeterminis-
tic, &-ary, d-) program. The number /: is fixed throughout (and will not always
be explicitly indicated). That is, whenever we say that TΓ is a program, we mean
that TΓ is a Λ>ary d-program.

We shall use the conventional infix notation xπy for π(x9y).

Remark 1.1 (i) Intuitively, τr(x,j>) defines the state transition relation of our
program (and not its input-output relation). Sometimes TΓ is called a state-
transducer. Roughly speaking, the input-output relation of TΓ is the transitive clo-
sure of the relation defined by TΓ.

(ii) Our definition of a program is slightly more general than that found
in [5] and [7], for in [5] and [7] programs are defined relative only to theories
Th c F$ with the constraint that Th 1= Vxly(xiry). So the relation defined by
TΓ must be everywhere defined in [5] and [7] while we allow partial state-
transducers too. In our Corollary 2.2 we show that the main theorem of [5]
remains true for our more general notion of a program.

Definition 1.2 Let d be a similarity type.
(i) By a d-partial correctness assertion (d-p.c.a.) we understand any formula

of the form φ -> D (TΓ, φ) where φ,ψ EΈj and TΓ is a £-ary rf-program for some
kGω.

(ii) Let φ, TΓ, ψ,k be as in (i) and Th be a cf-theory. We say that φ -> D (TΓ, ψ)
is provable in Floyd-Hoare logic from (data) theory Th, in symbols Th \^-
φ -* • (TΓ,^), iff there is a d-formula Φ E F§ such that

T h h φ ( j ) - Φ ( x ) ,
Th h Φ(x) Λ xπy -• Φ(y), and
Th hΦ(Jc) ΛXTΓX-+Φ(X),

where h is first-order derivability, and x, y stand for sequences of variables of
length k.

Definition 1.3 Let d be a similarity type and k E ω, and let TΓ be a Λ>ary d-
program.

(i) Let D be a rf-model, R c kD, and a E kD.

(a) Let x be a rf-formula. Then indr^ίx,^), or indr(χ) for short, is
defined to be the induction formula

(χ(ά) Λ (Vx,y E R) [χ(x) Λ *τry -> χ(y)]) -> (Vx E R)χ(x)

where χ(a) is obtained from χ by substituting a for x in χ (Notice
that the formula indr(χ) is not a d-formula because a new constant
symbol ά and a new Ar-ary relation symbol R occur in it, which are
not symbols of d.) Now Iar Λ β = {indrα(χ,Jc): x is a rf-formula and
x is a sequence of variables of length k]. We call Iar^α the set of
relational induction formulas (with respect to the input a and the
set of states R in D, for program TΓ). Whenever there is no danger
of confusion, we shall omit the subscript R,a from I a r ^ .
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(b) We say that R is closed under TΓ if VJc, y[R(x) Λ xπy -+R(y)], that
is, if x is in R then every possible next state y (allowed by program
TΓ) is also in R.

(c) We say that R is a relational trace of TΓ in D with input ά, in symbols
D t̂ = π[R,ά]9 iff α e £, R is closed under TΓ, and <D,R,a) Mar.

(ii) Let φ,ψ G F§ and let Th be a tf-theory. We say that φ-+ Π(π,ψ)
follows from Th in relational trace semantics, in symbols Th )β= φ -*
D (TΓ, ψ), if for every model D of Th, for every R c kD and α G JR we
have that D t= TΓ[R,a] implies D 1= (φ(a) Λ bπb) -> ̂ (6), for every
bER.

We note that the relational trace semantics \^= defined above is a straight-
forward generalization of the relational trace semantics given in [7] and [23] for
nondeterministic programs.

Theorem 1.1 Let φ -• D (TΓ, ψ) be a d-partial correctness assertion and let Th
be a d-theory. Then

Th t^-φ-+Π(π,ψ) iff Th £φ-+D(τr, i/ ' ) .

Proof: The proof is exactly the same as that of the Theorem in [22] except the triv-
ial change that, instead of R(x) -+R(π(x))9 we always have to write Vy[R(x) Λ
xπy-+R(y)].

(The Theorem in [22] states our Theorem 1.1 for deterministic programs
only. The change indicated above follows from this difference: if we want to say
that

(1.1) R is closed under TΓ

then, instead of the functional formulation vx[R(x) -»R(ττx)], we have to say
the relational (or nondeterministic) version Vx,y[R(x) Λ *τry -> R(y)]. The
same applies, of course, if (1.1) is formulated for some set other than R. E.g.,
clO/0 is defined to be ψ(q) Λ Vx,y[ψ(x) Λ Jcτry-> ψ(y)].)

Remark 1.2 Csirmaz and Pasztor independently suggested the following cor-
rection and simplification of the proof in [22]:

1. There is a misprint on p. 346: the definition of Φ^ should be Λ{C1(I/0 -+
ψ(x):ψeπ}.

2. The same proof goes through if we use the much simpler set ( Λ Π 0 :
Πo £ {Φir: i < m}} instead of the set Π of all Boolean combinations of

Φθ» >0m

2 Nonstandard'time semantics In this section we first recall the so-called
nonstandard-time semantics \= for programs (or for p.c.a.'s) as it was formu-
lated in [5]. This is the semantics developed in Nonstandard Logics of Programs
(see e.g., [l]-[4]f [8]-[10], [12], [16], [17], [19H21], [23], [25]). Then we shall
recall Csirmaz's characterization (in terms of t=) of nondeterministic Floyd-
Hoare logic from [5] as Corollary 2.1 herein, and we shall show that it is a con-
sequence of our Theorem 1.1. Finally we shall give some generalizations and
simple equivalent versions of Corollary 2.1 (i.e., Csirmaz's theorem).
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Definition 2.1 (see [5], Definitions 1.1 and 1.2)

(i) Let T denote an arbitrary model of successor arithmetic, with universe
denoted by T. That is, T is elementarily equivalent to <ω,0,suc>. We
call T a time-structure.

(ii) Let D be a tf-model, T a time-structure, TΓ a £-ary d-program, and
Q:T-+kD.
(a) We say that the function β is a Έ-homomorphism iff D 1=

Λ e(/)τrβ(suc/).

(b) For every tf-formula χ, the time-induction indg(χ) is defined to
be (χ(β(0)) Λ Λ tx(β(O) - X(<2(suc /))]) -+ Λ χ(β(/)). Let

indg =def {indQ(χ): χ is a tf-formula).
(c) β is called a time-trace of TΓ in D iff it is a τr-homomorphism and

D 1= Ind e .
(iii) Let φ -> D (TΓ,^) be a d-p.c.a. and Th a ^/-theory. We say that φ ->

D (TΓ, ̂ ) follows from Th //i nonstandard-time semantics, in symbols
N

Th l==φ -* Π ( TΓ, φ), iff for every model D of Th, for every time-struc-
ture T, and for every time-trace β : Γ-> kD of TΓ, if D N <£(β(0)) then
D h Λ [G(O = β(suc/)->tf(β(/))].

Corollary 2.1 (Csirmaz [5]) Let φ -+ D (TΓ, ψ) be a d-partial correctness asser-
tion and Th a d-theory. Assume that Th N \/xly(xτy). Then (i) and (ii) below
are equivalent:

(i)Th \^φ->Π(τc9φ)
(ii)Th \^= φ-» Π(π,ψ).

Proof: (i) => (ii) is easy to prove, therefore we prove here only (ii) => (i). Let
Th,φ,^,τr be as in the formulation of Corollary 2.1. Let d+ denote the follow-
ing expansion of the similarity type d. For every / E ω, we add to d a new k-ary
relation symbol Rj and k new constant symbols c{,c|,... ,c(, and k more new
constant symbols ex,e2,... , ^ Let c, = (c[,cι

2,... ,c|> and β = <βi,e2,... ,^>
Roughly speaking, our expanded similarity type is d+ = dU {Ri9Ci,e:i E ω}.
Let Th+ denote the following set of formulas of similarity type d+:

Th U [φ(x/co)9 eπe, Ci>κci+U Iar*.,c., R^e), Λ/(c/), Λ/ 2 Λ/+1, (Vx E
/?/)(3^ E Ri)xτy :i E ω, x and j> are sequences of variables of length k].

If (VJC E i?)(ly E R)xπy for some £-ary relation i?, then we say that R is weαWy
closed under TΓ. If i? is weakly closed, and in addition Iar^ a holds for R and
for some a E /?, then we say that R is a wββ/c relational trace of TΓ (with input
"a") . Using this terminology, Th + claims, among other things, that for every
/ E ω, Rj is a weak relational trace of TΓ with input c, and terminating at e.

For proving (ii) => (i), it is enough to prove Claims 2.1.1 and 2.1.2 below.

Claim 2.1.1 Th \^= φ - D (τr,t/O => Th+ N ^(e).

Claim 2.1.2 Th+ h^(e) =* Th ^ 0 -> D(τr,^).
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Proof of Claim 2.1.1: Assume that Th N̂= φ -+ D (π,ψ) and that 3Π (= Th+

for some 9TI = (Dfe9ci9Ri)ieω with D G Mod^, and e,c, G Ri Q kD. We may
assume that 911 is ω+-saturated.1 We want to prove that 911 h ψ(e).

Let i?oo =def Π {JRβ : /Gω),C =<&/ {c,: i G ω}, and 5 = ^ /?«> U C. We now
show that:

(2.1) S is a weak relational trace of τ in D with input c0 and terminating at e.

In the proof of (2.1) the only nontrivial thing is proving

(2.2) <D,5,co>t=Iar.

To show (2.2), assume that (2.2) fails. Then

(2.3) Φ,S9c0))rχ(c0)Λ(Vx9yeS)[χ(x)ΛXiry^χ(y)]A(lzeS)-iχ(z)

for some χ G F r f with parameters from D. Let such a % and z be fixed. Then
z G Roo and D 1= χ(c 7) for every / G ω. So, since 9H (= Th+, we have that 9H 1=
IarΛ/fCί Λ RjiCj) Λ Λ, (z) Λ χ(c,) Λ -iχ(z) for every / G ω. Thus, for every / G ω,
there are jc, ,J?, G Λ, such that JC/TΓJ/ Λ χ(x, ) Λ ->χ(j>/) holds. Then, since Λ, 3
Λ, + i by Th+ and since 9H is ω-saturated, there are Jr*,, j>oo G #«> £ S with D 1=
Xaoicyao Λ χ(JCoo) Λ -»χ(joo). This contradicts (2.3), thereby proving (2.2).

By (2.2), (2.1) is also true, i.e., S is really a weak relational trace. From
this particular weak relational trace S it is easy to construct a time-trace of TΓ
starting at c 0 and terminating at e. Then, by our assumption that Th f = φ ->
D (TΓ,*/'), we have that D N ̂ (e ) , which proves Claim 2.1.1.

For the sake of completeness, we include here the straightforward construc-
tion of a time-trace Q from S:

If e G C then the desired time-trace is <c,: / G ω>. Assume that e §£ C For
constructing a time-trace in this case, we first show that

(2.4) every element of R^ has a π-predecessor in i ^ .

First observe that if c, G /?<» then C/ has a π-predecessor in /?«,, because if c, has
no 7r-predecessor in i?Λ then it has none in Rn+Ϊ either. Therefore by Ind^>C/7

and IndΛn+1>c#l+1, we have that both c, = crt and c, = c r t + 1 . Thus C/irc,-, proving
that C/ rfoes have a τr-predecessor in each Rn. Then, by compactness, it has one
in Roo too. To prove (2.4), let b G /?«. By the above we may assume that b £
C. Then, by Ind#.)C., & has a τr-predecessor in every Rh Hence, by compact-
ness, it has one in R^ too. We have proved (2.4).

Let Z denote the set of all integers. For every b G Rw there is a τ-
homomorphism Qb: <Z, suc> -> R<χ> with b G Rng(Q^), since every yER** has
a π-predecessor by (2.4), and a π-successor since 5 is weakly closed. Let Q£ be
the same as Q^ with the only change that its domain is made disjoint from
everything else (e.g., we may choose Dom(β^) = Z x {b}). For every b G /?«>
let us fix such a Qt. Now we let Q =def (U { ζ # : & G /?<»}) U <c,:/ G ω>, and
define 0 and sue on T =def Dom(β) in the obvious way.

It is easy to see that Q is a time-trace with the desired properties.

Proof of Claim 2.1.2: Assume that Th+ tψie). Then, by compactness, there
is a finite subset Ax c T h + such that Ax f= ψ{e). We may assume that there is
an n G ω such that
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Ax = Th U [φ(x/co)9 eτe, C/τrcz+1, IarΛ ί > C /, Ri(e)9 Λ, (c/),
Ri Ώ Ri+ι, (VJc G Ri)(ly G /?,) Jt7ry :i<n9x and J?

are sequences of variables of length k).

Let this n be fixed, and let φm(x) be the formula

*ZQ...3Zm[φ(Zo) ΛZW =*ΛZ07ΓZi Λ Z i « 2 Λ. . .Λ Z m -i1ΓZ m ].

Let η(x) be φΛ(Jc). Now Claims 2.1.2.1 and 2.1.2.2 together prove Claim 2.1.2.

Claim 2.1.2.1 Th ^ η -> D(τr,ψ) => Th l 5 ^ φ-> D(τ,tf).

Proof of Claim 2.1.2.1: Assume that Th \^- η-^Π(πyφ). Then by the defi-
nition of H^-, there is a formula Φ(x) G F^ such that

(2.5) Ύh\=η(x)-+Φ(x)
(2.6) Tht=Φ(Jc)ΛJory->Φ(.y)and
(2.7) ThNΦ(x)ΛJC7rx-^ψ(Jc).

Let Φ+(x) be Φ(x) v (v{φm(x): m < Λ}). We now show that Φ + establishes Th
\^- φ -> D (TΓ,^). Indeed, the following holds

(2.8) Th 1= φ(x) -• Φ+(x)

since φ(x) => ψo(*) =* Φ+(^) Next assume Th together with Φ+(x) Λ xτy. If
Φ(Jc) then Φ(j) by (2.6). If -iφ(x) then ->τ/(jc) by (2.5), so since Φ+(Jc), there
is an m φ n such that φw(Jc) holds (by the definition of Φ + ) . By the definition
of φm+i, Ίhtφm(x)ΛXπy-+φm+1(y). Thus Th hΦ+(j0 since m + 1 < AZ. We
have proved

(2.9) Th t= Φ+(x) Λ jory -^ Φ + ( ί ) .

Next we assume that Φ+(x) Λ JCTΓX. This implies Φ(Jc), since by xπx we have that
(vm < Λ) [ 0 W ( X ) => ry(Jc)] which, by (2.5), yields Φ(x). Thus, by (2.7), we have
proved

(2.10) ThhΦ+(x)ΛXπx->^(Jc).

(2.8), (2.9), and (2.10) together prove that Th ^ φ-^Π(π,φ).

Claim 2.1.2.2 Ax 1= ψ(e) => Th ^ η -+ D(τr,ψ).

Proof of Claim 2.1.2.2: Assume that Ax 1= ψ(e) and Th fc^- η -> D(π,ι^).
Then, by Theorem 1.1, there are D,£,#,/? such that D 1= η{a) Λ -^φ(e) Λ ̂ πe
and R is a relational trace, etc.

By η(a) then there are co,Cι,... ,cn G *£> such that φ(c0) Λ 00^0^02...
cn_ιτcn = α. Let Rm =def [cm,... ,cn] U i? for all m < «, and let 2fll = <D,^,c0,
. . .,cn9RQ,Ru...,Rny. Then 9TI1= Ax which imples 9H t=^(^), i.e., D t=^(^)
by our assumption. This contradicts the definition of D, proving that Th 1^-
η-+Π(ic9ψ).

Claims 2.1.2.1 and 2.1.2.2 together prove Claim 2.1.2. And since we have
now proved both Claims 2.1.1 and 2.1.2, this completes the proof of Corollary
2.1.

Corollary 2.2 Corollary 2.1 remains true without the assumption

Th 1= Vxly(xτy).
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Proof: In this proof we use the terminology and notation of the proof of Corol-
lary 2.1. Do not assume that

(2.11) Th t=v*3j(jcτry).

The whole proof of Corollary 2.1 works for the present Corollary 2.2 as well,
except the proof of Claim 2.1.2.2 therein. In the proof of Claim 2.1.2.2 we had
an R which was a relational trace by Theorem 1.1. This R was also a weak rela-
tional trace there because Corollary 2.1 assumes (2.11). Assuming (2.11), every
relational trace is a weak relational trace as well. Without (2.11) R is not nec-
essarily a weak relational trace. To fill in this gap, it is sufficient to construct
a weak relational trace from the relational trace R. This is what we are going
to do now.

Let Ό,e,a,R be as at the beginning of the proof of Claim 2.1.2.2. We may
assume that <D,R) is ω+-saturated. Let R+ Q R be the largest subset of R with
(V* G R+)(iy G R+)xπy, i.e., let R£ =def R, Rϊ+ι =def {xGR^: (3y G R+)
xπy], and R+ =def f] R+. Clearly e G R+, and also a G R+ (since <D,Z?> is

ω+-saturated). Also, (D,R+) is clearly ω+-saturated. We now prove

(2.12) i? + hlar .

Assume

(2.13) R+ # indr(χ) for some rf-formula χ.

Then x is preserved in R+ and R+ ^ χ.

Claim 2.2.1 There is an n G ω such that χ is preserved in R$.

Proof: Assume that, for every n G ω, there are bn,cnG R% such that χ(bn) Λ
bn-κcn Λ -»χ(c«). Then there are b^.c^ G R+ such that χ(Z?oo) Λ b^τc^ Λ
-•xίCx), since <D,R+) is ω+-saturated, which is a contradiction.

Let this n be fixed, and let χ+(x) =def [x G R% -> χ(x)].

Claim 2.2.2 R V indr(χ+).

Proof: It is easy to check that x + is preserved in R (assume that bπc and inves-
tigate the cases b ER% and b £Rn\ use Claim 2.2.1, and observe that (xτy Λ
y G Rt) -> x G Λ+. It follows that χ + (α) and i? # x by Λ+ c R and (2.13).

But i? P indr(χ+) contradicts the definition of JR, so we have proved
(2.12). Now we can repeat the whole proof of Corollary 2.1 with R replaced by
R+ in the proof of Claim 2.1.2.2, thus establishing Corollary 2.2.

Remark 2.1 Corollary 2.2 has a shorter proof, too. We wrote down the long
proof above because we wanted to show how one can construct the "total part"
of such a trace of a program π in which TΓ is only partially defined. The shorter
proof goes as follows: Let π+(x,y) =def {xπy v (^ly(x-κy) A x = y) and
Ψ+ =def xπx ->ψ(x). Now φ -> D (τr+,i/' + ) has a Floyd-Hoare proof Φ by
Corollary 2.1. It is not hard to show that Φ is a Floyd-Hoare proof for φ -*
Π(π,ψ) as well.
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In the proof of Corollary 2.1 we have seen how to construct a time-trace
from a relational trace. In the proof of Proposition 2.3 below, we show how to
construct a relational trace from a time-trace. The main point in Proposition 2.3
is not its statement (i) <-» (ii), since this equivalence trivially follows from Corol-
lary 2.2 and Theorem 1.1. Instead, the point is in the proof which provides

r N

a transfer principle between f= and N=. This is a direct construction of a rela-
tional trace άER^kD from any (nonstandard) time-trace Q:T^kD and vice
versa. (Note that we do not assume that Th 1= ly(x-κy) in Proposition 2.3.)
Proposition 2.3 Let φ -* D (TΓ, ψ) be a d-p.c.a. and Th a d-theory. Then (i)
and (ii) below are equivalent:
(i)Th £=φ-+Π(π,ψ)

(ii)Th \^= φ-+Π(π9ψ).

Proof: Proposition 2.3 follows from Theorem 1.1 and Corollary 2.2. However,
we include a constructive proof here, to reveal a direct connection between the
two semantics N= and ( = .

The construction for (ii) =» (i): Let 21 = (Ό,R,ά) be a relational trace wit-
nessing Th ft φ -+ D (TΓ,^). Form any nontrivial ultrapower 2Γ = <D',/?',α'>
of 2ί with index set ω. Then 2f is ω-saturated. Now, the construction in the
proofs of Corollaries 2.1, 2.2 gives us a time-trace Q: Γ-> R' 9 D' witnessing
Th \^= φ-> Ώ(τr9φ).

The construction for (i) => (ii): Let Q: T-* kD be a time-trace of TΓ in D
witnessing Th ^= φ-> Π(τc9φ). We construct a relational trace R of TΓ in D
witnessing Th b^ φ -> D (τr,ψ) as follows.

Let i? be the smallest set containing Rng(ζ)) and closed under TΓ. It is not
hard to see that D £ τr[£,Q(O)], since, trivially, Q(0) E # and i? is closed
under TΓ, and <D,JR,Q(0)> t= Iar can be seen as follows. Assume that K <Ξ R is
definable by some rf-formula χ, Q(0) E #, and ^ is closed under TΓ. Then
x(Q(0)) Λ /\ [χ(Q(/» -> χ(Q(suc /))], since Q is a π-homomorphism. From

this we conclude that /\ χ(β(/)) by IndQ. Thus Rng(β) ^ K ^ R, which
i(ΞT

proves R = K (by the definition of R and by R being closed under TΓ), and there-
fore <D,i?,β(0)> Mar.

We have proved that R is a relational trace of TΓ with input Q(0). By the
definition of β, Q(j) = Q(sucy) and ^φ(Qϋ)) for some y E Γ. Since
β(y)irβ(sucy) and Q(j) e R, R witnesses Th ft φ - D (π9ψ).

Remark 2.2 At the end of the Introduction of [5] the problem is raised whether
Theorem 2 in [6] is true or not (since the proof in [6] contains an error). Using the
notation of [16] and [23], Theorem 2 of [6] says that ^ = D (Ind^/ U Tord
t=), that is, for any p.c.a. p, H^- p iff (Ind^/ U Tord) \= p. In terms of our
Definition 2.1, Tord means the assumption that the time-scale T is linearly
ordered, say by <, and Ind^/ is a strengthened version of our time-induction
Indρ. To be more precise, lndtgf is a "time-induction principle" ranging over
those formulas in the language of the two-sorted model «T,< >, D, Q) which do
not quantify over the elements of T. Parameters from both sorts are allowed in
Ind ί β Λ

It appears that the answer to Csirmaz's problem is affirmative. Namely,
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Theorem 2 of [6] seems to be provable by a suitable modification of the proof
method of our Corollary 2.1 herein. However, I have not checked the details
carefully.

Remark 2.3 The results and methods in the present paper were applied in
[8] to obtain an analogous characterization for Hoare's inference system in its
original axiomatic form; see Theorem II.5.21 on p. 155 there. The point of that
result is in its concrete and explicit formulation concerning the syntax (of both
Hoare's logic and the programming language). We note that Hoare's inference
system was also characterized in [11].

NOTE

1. This is so because all the properties we are investigating are first-order ones; hence
if we replace the original Sfϊl with its ω+-saturated ultrapower nothing will change.
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