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The Fibrational Formulation of Intuitionistic
Predicate Logic I: Completeness According to
Godel, Kripke, and Lauchli, Part 1

M. MAKKAI

Abstract  Following the pattern of Lawvere’s notion of hyperdoctrine, we single
out certain classes of fibrations and use them, in the present paper and its sequel, to
give an algebraic framework for the proof theory of intuitionistic predicate calcu-
lus. The two papers are organized around representation theorems that correspond
to and strengthen the completeness theorems of the title. The present first part
deals with the fibrational analog of Gddel’s completeness theorem and gives fibra-
tional liftings of well-known categorical constructions. The present first part is a
preparation for the main results to be given in the second part.

0 Introduction  This is an introduction to both the present first part and the second
part of the paper (cf. Makkai [18]). The numbering of the sections of the second part
continues that of the first part; Sections 1 to 3 form the first part, Sections 4 to 6 the
second part.

By the “fibrational formulation of predicate logic” I mean the approach to pred-
icate logic using the notion of hyperdoctrine, originally introduced by Lawvere in
[15],[16], and its variants. Although Lawvere, and other authors following him (see
below), used pseudofunctors as the basic ingredients, in this paper I adopt the es-
sentially equivalent language of fibrations; hence the reference to fibrations in the
title.

A fibration is given by two categories B and C, the base category and the total
category, respectively, of the fibration, together with a functor C — B; certain
conditions have to be satisfied by these data for them to form a fibration; at this point,
it is not important to know what these conditions are. In the fibrational formulation
of logic, a(n axiomatic) theory is construed as a fibration. This is in contrast to the
more widely discussed categorical approach to logic in which a theory is made into a
(single) category (with appropriate properties). From the point of view of the present
paper, the reason for adopting the more elaborate approach of fibrations is that it has
the capability of incorporating the notion of proof (formal deduction), and not just
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provability, which is what is grasped by the “one-category” approach. In brief, the
fibrational formulation gives a categorical proof theory.

As was said above, Lawvere introduced the notion of hyperdoctrine in [15] and
further discussed it in [16]. The original concept is made to suit higher order logic; it
has “too much structure” for the purposes of first order logic. In Seely [23], a “first
order” version of hyperdoctrine is attributed to Bénabou [1] (a source not available
to me). Seely [23],[24] uses a notion of “first-order” hyperdoctrine, closely related
to the one I use in this paper, to build structures of proofs for theories in first order
intuitionistic logic; his is the first systematic study of categorical proof theory for
predicate logic.

A version of the notion of hyperdoctrine, essentially identical to the one used
in this paper although formulated only for posetal fibers, is given and called “first
order hyperdoctrine” by Pitts [21]. The (main) version in this paper, called Heyting
fibration, or more neutrally h-fibration, was arrived at by considering exactly what one
needs to model the structure of proofs in an arbitrary theory in first order intuitionistic
logic.

The categorical approach to the proof theory of propositional logic is due to
Lambek; his work relates the proof theory of a range of propositional calculi with
concepts of structured category. References are [10],[11],[12], and the recent book
with Scott, [13]. Szabo’s work [25] on the algebra of proofs is a thorough investi-
gation of several propositional calculi from a categorical point of view. Whereas the
Lambek-style proof theory for propositional logic requires (single) structured cate-
gories (e.g., cartesian closed categories), for the proof theory of predicate logic the
more elaborate structures of fibrations are needed.

Lawvere pointed to the possibility of the uses made in this paper of the concept
of hyperdoctrine and its variants already in [16] as the following quotations show:
“Thus, this hyperdoctrine [F(Se?) in the present paper; see Section 1] may be viewed
as a kind of set-theoretical surrogate of proof theory (honest proof theory would
presumably also yield a hyperdoctrine with non-trivial [non-posetal] P(X) [fibers],
but a syntactically presented one).” “It appears that abstract structures of this kind
[hyperdoctrines] are also intimately related to ... Liuchli’s complete sematics for
intuitionistic logic [the work in Lauchli [14]], although the precise relationship is yet
to be worked out.”

In fact, the main result of the second part of the present paper [18], Theorem
6.1, a representation theorem for Heyting fibrations, was inspired by Liuchli’s work
mentioned by Lawvere, and it is intended as a generalized and strengthened version
of Lauchli’s result.

In (the two parts of) this paper, an abstract theory of the relevant types of
fibration is given, giving results of a representation theoretic nature; in the sequel
(Makkai [19]), I will discuss in detail the connections of these concepts to the usual
concepts of proof theory. To help understand the motivation for this paper, I will now
give an informal description of how the fibrational formulation works.

IfC E is a fibration, A is an object in B, then C4 denotes the fiber of C over A: the
subcategory of C with objects and arrows that map to A and 14 respectively. Given
a theory in possibly many-sorted intuitionistic predicate logic, we form a fibration
along the following lines. The arrows of the base category are given, in a natural
way, by the terms of the theory; the objects are formal products of sorts. The only
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categorical structure we need in a base category is given by finite products; we have
that here; in fact, the base category is the “Lawvere algebraic theory” given by the
operational part of the language of the theory, with no axiom-identities. The fiber over
[T < Si consists of formulas ¢(X) (X = (X;)i<m, X; a variable of sort S;) as objects,
and proofs (formal deductions) of entailments ¢(X) F+ ¥ (X) as arrows @(¥) —
¥ (X). The propositional connectives are captured by the appropriate categorical
structure within the fibers, the quantifiers by canonical functors between fibers (all
this categorical structure is automatically present; it need not be specified by further
data). The abstract structure represents the structure of deductions given by axioms
and rules of inference, together with a certain systematic identification of “‘essentially
equivalent” deductions; this identification is closely related to ones discussed in the
proof-theoretic literature (see, e.g., Girard [5]). Seely [23],[24] gives a detailed
explanation of how the fibrational structure is constructed from the theory and the
proofs, although the contextin the latter sources is not exactly the same as in this paper.
In particular, the crucial fact that the fibrations obtained from a theory and its proofs
is free in an appropriate sense needs the specifics of the present paper.. The precise
connections of the symbolic-logical proof theory and the fibrational formulation will
be discussed in [19]. For intuitionistic propositional logic, these connections are
given in Harnik and Makkai [7] in detail.

As the title indicates, the paper is organized around three completeness the-
orems: Theorem 2.1, “Godel completeness theorem,” in Section 2; Theorem 5.1,
“Kripke completeness theorem,” in Section S; and Theorem 6.1, “Léuchli complete-
ness theorem,” in Section 6.

The Godel and the Kripke theorems refer to a simplified kind of fibration, namely
ones in which the fibers are partially ordered sets. Such posetal fibrations play an
important role in Pitts’s work (cf. [20],[22]). One important difference between the
ones appearing in this paper and the ones in [20],[22] is that the ones in this paper
have less structure; this circumstance makes working with them, in the context of
completeness theorems, harder than it would be with the fuller versions. The posetal
version of the basic concept of this paper, that of Heyting fibration, is introduced
and discussed from the syntactical point of view by Pitts in the notes [21]. The
difference between the poorer and fuller concepts is related to that between logic
without equality and one with equality, as explained in [21].

Godel’s completeness theorem is about classical logic; yet here we talk about
Godel completeness in the context of intuitionistic logic. The explanation is that
Godel completeness, in the view adopted in categorical logic, is a result applying to
coherent logic, a common fragment of classical logic and intuitionistic logic. In fact,
completeness for full classical logic is an immediate consequence of that for coherent
logic, because of a simple implicit definability of the additional logical operations of
classical logic within the coherent framework (see Makkai and Reyes [17]).

The Godel completeness theorem is proved by an appropriate version of the
method of slice categories, used already long ago by Freyd [4] and Volger [26],
among others, for categorical completeness theorems. The result applies to the
concept of coherent posetal fibration in full generality. It seems difficult to deduce the
result directly from some known version of Godel completeness. This circumstance
seems to be explained by Pitts’s syntactical analysis of the notion in [21], which is a
nontraditional sequent calculus combining two levels of judgments.

Not only classical logic, but also intuitionistic logic, is analyzed profitably in
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terms of the coherent fragment. Joyal gave a completeness theorem for intuitionistic
logic, the “canonical version” of Kripke’s well-known result (cf. [9]), in which the
category A of the ordinary set-valued models of the theory in question gua coherent
theory (ignoring the noncoherent logical operators) gives the model; more precisely,
the category Set4 of all functors from A to the category of sets has a canonical
conservative model of the full intuitionistic theory; this is nothing but the evaluation
morphism from the theory to Setd . Known variants of Kripke completeness can be
readily deduced from Joyal’s canonical theorem. This importantresultis givenin[17]
as 6.3.5. The proof of Joyal’s theorem uses the Godel completeness theorem as an
essential ingredient; besides, and “independently,” it uses the compactness theorem
of model theory.

The paper’s version of the Kripke-Joyal theorem, Theorem 5. 1, is proved along
the same general lines as the original version in [17], although new features enter.
In fact, the statement of the result has to refer to a subcategory of the category of
the coherent models, rather than the whole category. The subcategory is given by a
freeness condition on the underlying cartesian functors of the models. Theorem 5. 1
applies to a completely general posetal Heyting fibration. Variants for more special
classes of fibrations, needed for the final, Lauchli-type, result, are also deduced.

The rather long and computational Section 3 is a preparation for the Kripke
completeness result. The main result in Section 3, Proposition 3.6, says that the
fibration of all morphisms from any fixed prefibration to a fixed Heyting fibration,
the latter assumed to be “sufficiently complete,” is again a Heyting fibration. This
result is to be compared to the fact that $4 is cartesian closed, provided A is any
small category and S is a sufficiently complete cartesian closed category. I could
have saved space by only proving the special case of Proposition 3.6 needed later in
the paper, but it seemed a pity not to give the full result. Section 4 collects some
rather elementary facts needed later on free objects in various categories.

The Liuchli completeness theorem, 6.1, is a result that refers to nonposetal
fibrations. In fact, it refers to free Heyting™ fibrations, in an appropriate (natural)
sense of “free”; the minus sign on “Heyting” is there because one ignores the initial
objects of the fibers, getting a slightly poorer structure. It is a basic point that the free
Heyting(™) fibrations are exactly the ones that one obtains from an arbitrary theory
in intuitionistic predicate logic as the structure of proofs; the detailed explication
of this point will appear in [19]. The Liuchli completeness result applies to free
countable Heyting™ fibrations satisfying the disjunction and existence properties,
the latter corresponding to the well-known same-named properties for intuitionistic
theories. The theorem says that any such fibration has a structure preserving mapping
into the standard fibration of families of Z-sets, with Z the additive group of integers,
such that the mapping “does not introduce any new provability”: if there is no arrow
from X to Y in the same fiber where both X and Y are, then there are none such
between their images under the mapping either.

There is an abundance of familiar intuitionistic first order theories with the dis-
junction and existence properties; e.g., the (pure) theory without nonlogical axioms
(except equality axioms), or Heyting arithmetic. The result “represents,” to a signif-
icant extent faithfully, formal proofs in these theories, by equivariant maps between
sets with a specified permutation. The discussion on the meaning of the result in [7]
is relevant to the present situation too. There is a version, also included in 6.1, that
applies to fibrations not necessarily having the disjunction and existence properties.
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Theorem 6.1 directly specializes to the result of [7] when the base category is
taken to be the terminal category. In [7], it is pointed out in what ways the result goes
beyond Lauchli’s original result; in particular, in Liuchli [14] there is no mention
of formal proofs, only of provability (this is the reason why Lawvere talks about a
“complete semantics for intuitionistic logic” in connection with Lauchli’s work). I
feel that the main point of the work in the present paper, just as of that in [7], is the
explicit comparison of the “syntactically presented structure” of proofs mentioned by
Lawvere with a “purely semantical” structure, namely the category (Boolean, even
atomic, topos) of Z-sets.

Let me note that there is a corollary (6.7) to the main result that is similar to
the result of Section 4 of [7]. This gives a precise expression to the idea that treating
formulas as sets (of “‘abstract reasons” for the formula being true) and Liuchli’s
abstract proofs of entailments between formulas as functions (transforming reasons
for the premise to ones of the conclusion), and assuming that these sets and functions
are subject to constructions and laws of classical set theory, do not lead to wrong
conclusions about provability. The reason for this corollary is that the category of
Z-sets, or for that matter, the category of G-sets for any group G, has exactly the
same internal logical laws true in it as the category of sets; this is stated precisely in
[7]1 as well. The corollary is a fully abstract result, independent of concrete objects
such as the category of Z-sets.

Soon after Lauchli’s work appeared, Kock wrote a discussion of Lauchli’s work
which remains unpublished; however, he does not use the fibration of proofs, and his
formulation remains a “local” completeness theorem, referring to a single formula at
atime, much the same way as Liuchli’s original formulation.

In the present paper, there is a fairly detailed description of the basic framework
of fibrations; the paper should be readable with only an elementary knowledge of
category theory.

1 Basic notions  Cartesian, cartesian closed, and bicartesian closed categories
are discussed in detail in [13]. A category is cartesian if it has finite products (a
terminal object 1 and binary products A x B); it is bicartesian if, in addition, it has
finite coproducts (an initial object O and binary coproducts A + B). The category
C is cartesian closed if it is cartesian and it has exponentials: for any object A, the
functor A x (—):C — C has a right adjoint, denoted (—)4 ; the value of this functor
at B is B4, the exponential of B and A . For exponentials (although not named
as such) and cartesian closed categories, see also Mac Lane [2]; note however that,
unlike both [2] and [13], we do not require a specified operation of exponentiation; in
other words, for us, B4 is determined only up to an isomorphism. In this, we follow
anormal practice in category theory of not specifying categorical operations beyond
their universal properties. A category is bicartesian closed if it is both cartesian
closed and bicartesian.

A bi cartesian, resp. bi~cartesian closed, category is like a bicartesian, resp.
bicartesian closed, category except that the existence of the initial object is not re-
quired. In other words, a bi~cartesian (bi~cartesian closed) category is a cartesian
(cartesian closed) category with binary coproducts.

Corresponding to any of the above notions of structured category there is anotion
of functor preserving the structure. E.g., let C, D be bi~cartesian closed categories.
A functor F:C — D is bi~cartesian closed if it preserves, in the usual sense,
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finite products, binary coproducts and exponentials. In particular, preservation of
exponentials means thatif e: A x B4 — B is the evaluation arrow for an exponential
in C as shown, then F(e): F(A) x F(B4) — F(B) has the universal property of
exponentials, that is, F (B4) qualifies as the exponential F(B)¥™ in D, with F (e)
as the evaluation map. (Note, in particular, that there is no requirement of an “on-
the-nose” preservation, which simply does not make sense unless the operation of
exponentiation is specified exactly, and not just up to isomorphism . )

For cartesian categories A, B, car(4,B) denotes the category of cartesian func-
tors A — B; that is, car(A,B) is the full subcategory of [A,B] , the category of all
functors A — B, with objects the cartesian functors. bicar(4,B), bi~car(4,B),
etc., have similar meanings.

A specific property that may hold in a bi~cartesian category is the distributive
law. For any objects A, B and C in such a category, there is a canonical arrow
(Ax C)+ (B xC) > (A+ B) x C given by the universal properties of the
operations involved; using the notation of [13], itis ((wa,c + 78,c), [ng,c, ng’c]).
We say that the distributive law holds for the sum A + B if the latter arrow is an
isomorphism for all C, and that the category at hand satisfies the distributive law if
the same arrow is always an isomorphism. We have that every bi~cartesian closed
category satisfies the distributive law; see Exercise 1, p. 68 in [13].

The concept of fibration to be described next is due to Grothendieck; see [6].

A prefibration is simply a functor C g; B is the base category, C is the total

category of the prefibration C; for B € B, €2 (or @1 (B)) denotes the (non-full) sub-
category of C with objects and arrows those X € C and z: X — Y for which X +—>
B and 7 —> 13 under the functor C; C? is called the fiber over B . We also say X
is over B, and z is over f if C(X) = B, C(z) = f. Given

X—=% vy

with z over f, we say that z is a (strongly) cartesian arrow if for any g: C — AinB,
and for any v over h =g, f g, there is a unique u: Z — X over g such that v = zu:

AN
u\s
X—*y
A—L B
£z

Note that if z is cartesian and u: X’ —> X is an isomorphism over 14, then zu is
cartesian over f; conversely, if z and 7’ with the same codomain are both cartesian
over f, then there is a unique u over 14 such that z = zu, and u is an isomorphism.
In words, a cartesian arrow with a fixed codomain and over a fixed arrow in the base
is determined up to a unique isomorphism in the fiber of the domain of the cartesian
arrow.

One can also easily show that the composite of two (composable) cartesian
arrows is cartesian, and if both yx and y are cartesian, then so is x.
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(We have called “cartesian” what is in [6] called “‘strongly cartesian”; the weaker
notion of “cartesian” results when, in the above definition, we restrict gtobe 14 . In
fibrations (see below) the two versions coincide.)

C is a fibration if for any f: A — B in B, and for any Y over B, there is a
cartesian arrow z over f with codomain Y.

For C a fibration, for any f: A — B in the base category, there is a functor
e/ = f*:@F — @4 assigning to ¥ € CF an object f*(¥) over A which is the
domain of a cartesian arrow y}’: f*¥) > Y;fory:Y — Y over B, f*(y) is the
unique arrow x: f*(Y) — f*(¥’) over 14 for which ny' ou=yoyf . The functor
f is defined after we have fixed a choice ny : f*(Y) — Y of a cartesian arrow for
every Y over B; two systems of such choices result in isomorphic functors for f*.

The functors f* are called pullback functors; in an important class of examples,
they are indeed related to pullbacks; see below.

Fibrations are closely related to pseudofunctors. A pseudofunctor &: B® —
CAT is an assignment B —> CZ of a category G2 (so denoted in anticipation of the
connection to fibrations) to every object B € B, together with an assignment

&:B®? — CAT
B|l—— 8-
/| i s
Apb—— 4
of a functor to any arrow in B; the ordinary functoriality conditions (14) = 1ga,

(fg)* = g* f* may fail, but the pseudofunctor comes equipped with distinguished
isomorphisms (natural transformations)

¢A:1@A — (lA)*1
one for each A € B, and
0rg: (f8)* — g*f*,

one for each pair of arrows C 2, B —f> A in B, satisfying the coherence condi-

tions:
B f* = @115, 104 = 014, 1
and the commutativity of the square,

(fghyr — 2Lz, (ghy* f*

Pef.h Pg,h © f

h* * h*o* f*
(f8) Y f

for any F: B — A, and for any D LNV RNy R AinB.
Given any fibration C as above, a choice of a cartesian arrow
v X — X
forany f:B — A in B, and X over A (such choices make up a cleavage of the
fibration) will furnish us with a pseudofunctor, defined in a manner partly indicated

by the notation in the definition of “pseudofunctor.” In fact, for C 2 B N A,
©f, is defined so as to be in €€ and to make the square,
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X
(forx — s, x

@r.0)x vy

e )—Fx— /X
Ve
commute for each X over A; note that the composite of the bottom and the right
vertical arrows is cartesian over gf, and so is the top horizontal one; hence, (¢r,¢)x
is indeed an isomorphism.

Let us note that, conversely, the so-called Grothendieck category of a pseudo-
functor (“category of elements”) gives the fibration corresponding to a given pseud-
ofunctor (see [6]).

The use of the functors f*, or of the pseudofunctor form of the fibration, which
are available only after some arbitrary choices, may help in formulating certain con-
cepts in a brief way; however, such uses are essentially alien to the concept of fibration
itself. The point in fibrations is that the notion of cartesian arrow, given by a universal
property, neutralizes the effect of the uncertainty about the choice of the values of
the functors f*.

Let C be a fibration as before, f: A —> B an arrow in the base; consider “the”
functor f*:@3 — @A, “The” left adjoint of f*, if it exists, will be denoted by
Yr. One can show that the existence of XX for X € @4 is equivalent to saying
that there is a cocartesian arrow over f with domain X: a cartesian arrow for the
opposite CP: C°? —> B°P prefibration (hence, the existence of X for all f is to say
that € is (also) a cofibration, i.e., that C°P is a fibration). In particular, if X € C4,
nx:X —> f*X;X is the X-component of the unit of the adjunction ¥y 4 f* ,then

nx o yfzf X — Tr X is a cocartesian arrow.

The right adjoint of f*, if it exists, is denoted by IT; . Let us spell out the
universal property of Iy X, without referring to the functor f*. 1y X comes with a
cartesian arrow y: U — [y X over f(U = f*[1;X) and an arrow a: U —> X
(the X-component of the counit of the adjunction f* - Ily) over 14 such that, for
any cartesian arrow ¥’V —> Y over f, and any u: V —> U, there is a unique
2: Y —> Iy X over 1p for which the diagram,

yl

Y

commutes; here v is the unique arrow (= f*z) over 14 for which the quadrilateral
commutes. Note that what has the universal property is the diagram,

U—Y— TI; X
1 o (1)
X
rather than the mere object Iy X. In practice, we pick a definite choice o }‘ X

—> X for « above, so that (1) witha = a}‘ andy = yfnf X has the requisite universal
property.
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Let

a

I,

B — D

B
{b
> B @

be a commutative square in the base category B, let X € C# and Y = I1;(X) € C2.
Assume (1’) has the universal property for I X. Using the arrows a and b, we can
“pull” (1) back over f’; when we have that the resulting diagram has the universal
property for Iy, a*X, we say we have stability with respect to the square (2). In
more detail, consider the diagram,

% * Y
U’ Y
a,l /3( yl
X/
/

B/

over (2); here, the arrows denoted by y are all cartesian; y’ is the unique arrow
making the upper quadrilateral commute ( y’ exists by (2) being commutative and
the cartesianness of y over b; moreover, y’ is cartesian), o is the unique arrow over
14, making the left quadrilateral commute. We say that I1; is stable with respect to
the square (2) if (y’, ') satisfies the universal property for I1; X’ whenever (y, o)
does for Iy X. If [1y is stable with respect to all pullback squares of the form (2),
we say [y is stable.

The stability of ¥y is defined in a similar way. In fact, because of the equivalent
formulation with cocartesianness, we have the simpler way of expressing stability as
follows. In the situation,

, X ¢ Y
/ /
X/ 7 Y’
A f B
a
/ ) %
A 7 B

with z over f, etc., both ys cartesian, the upper quadrilateral commutative, if z is
cocartesian, so is z'.

Let us note that in the literature, what we called stability is mostly referred to
as the Beck—Chevalley condition. The condition is usually required with respect to
pullback squares (2). Also, it is usually expressed in the following shorter but less
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precise manner. Starting with the commutative diagram (2), we consider the diagram
of functors,
eA_Hf_. eB
a*l l b*
A B
Stability takes place (with respect to (2)) if this diagram commutes up to a “‘canonical”
isomorphism: b* o Iy = Il o a*. More precisely, the commutativity of (2) and the
adjunction f"* - Iy give us a “canonical” arrow b* o Iy —> Tl o a*; this is the
one that is required to be an isomorphism for stability.
Starting again with (2) and (3), assume that X, and ¥, exist, and let us take the
left adjoints of all functors in (3):

eA f * eB
Eat , T ;b

eA~7,T cB @)
If (3) commutes up to an isomorphism, then so does (4); moreover, it can be seen
that the “canonical” isomorphism for (3) gives rise to the “canonical” isomorphism
in (4). What this says is that the Beck—Chevalley condition for Iy for the square (2)
implies the same for X, for the same square (but with changed roles for the sides).

If f: A — Bisaproduct projection, f = 7 : C x B —> B, and B is carte-

sian, then for any b: B* — B, the pullback square (2) exists; (up to isomorphism)
itis:

cxB —L . B
1cx B I
CxB’ — B’ @)
/4

Let us discuss Frobenius’ reciprocity. Suppose C 2 is a fibration with the fibers

cartesian categories, and the pullback functors cartesian functors. Let f:A — B
be an arrow in the base category such that X: @B — @4 exists. Given X over A
and Y over B, we have a canonical arrow,

T ('Y xX) — ¥V x B X over 14;

infact, by f being cartesian, we have the canonical isomorphismu: f*(Y x Xy X) -
Y x f*ZpX; with v: f*Y x X —> f*Y x f*EyX defined as 15y x ex =
(rry,x, €X Oy x), Withex: X —> f*Xr X the counit, we have z as the transpose
with respect to the adjunction £y - f* of u™' o v: f*Y x X — f*(¥ x TfX).
We say that X satisfies Frobenius’ reciprocity if, for any X and Y as above, z is an
isomorphism.

It is a well-known fact (which we leave to the reader to verify) that, in case the
fibers of € are cartesian closed, then X satisfies Frobenius reciprocity if and only if
f* preserves exponentials (it is a cartesian closed functor).

The two main concepts we are interested in this paper are given in the next
definition; they are intended as a conceptual framework for both the semantics and
the proof theory of intuitionistic predicate calculus without equality.
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Definition 1.1 (A) A Heyting fibration (h-fibration for short) is a fibration C g
satisfying the following conditions (i) to (iv).

(i) B is a cartesian category.

(ii) Each fiber CA(A € B) is a bicartesian closed category.

(iii) Each pullback functor f*: €8 — @4(f: A — B in B) is a bicartesian closed
functor.

(iv) For every product projection f in B, f* has both a left adjoint X; and a right
adjoint Il both of which are stable.

(B) An h™-fibration is defined similarly, except that references to the initial objects
in the fibers are removed. In other words, in conditions (ii) and (iii), “‘bicartesian
closed” is replaced by “bi~cartesian closed.”

For reaching the results on Heyting(~) fibrations, it is necessary to consider the
fibrational formulation of coherent logic without equality.

Definition 1.2  (A) A coherent fibration (c-fibration) is a fibration C ;; satisfying
the following conditions.

(i) B is cartesian.

(ii) Each fiber G4(A € B) is bicartesian and satisfies the distributive law.

(iii) Each pullback functor f*: (L CA( f:A —> Bin B) is a bicartesian func-
tor.

(iv) For every product projection f in B, f* has a left adjoint X; which is stable,
and satisfies Frobenius’ reciprocity.

(B) A coherent™ fibration (c™-fibration) is defined as a coherent one except that
references to the initial objects in the fibers are removed; that is, in (ii) and (iii),
“bicartesian” is replaced by “bi~cartesian”.

Although we will not be particularly interested in the fibrational concepts relating
to logic with equality, for the sake of completeness and comparison, we will deal with
them occasionally.

Definition 1.3  (A) A Heyting fibration with equality (h=-fibration for short) is a
Heyting fibration whose base category has all finite limits, and in which Xy, Iy exist
and are stable, for every arrow f in the base category.

(B) A coherent fibration with equality (c=-fibration) is a coherent fibration whose
base category has all finite limits, and in which X exists, is stable, and satisfies
Frobenius reciprocity, for every arrow f in the base category.

Remarks Many of the basic ideas of categorical logic, and in particular, the concept
of hyperdoctrine, are due to Lawvere; see [15] and [16]. I am proposing to replace
the expression “hyperdoctrine” and ones derived from it with expressions around the
word “fibration.” Irefer to the introduction for some historical notes on the evolution
of concepts related to that of hyperdoctrine. Let me emphasize here that the concept
of Heyting fibration as given here was first formulated, although only for the case
when the fibers are preorders, by Pitts [21]. In the notes [21], the relations between
Heyting fibrations with fibers that are preorders, called first order hyperdoctrines, on
the one hand, and theories in intuitionistic predicate logic without equality on the
other, are presented in detail. The connections of Heyting fibrations with structures
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of proofs in an appropriate deductive system will be presented in [19]; in a somewhat
different way, the reader can see them in [23] and [24].

The concepts in Definition 1.3, again for the case of (pre)orders as fibers, were
formulated and used by Pitts in [20]; for (A), the expression polyadic Heyting algebra,
for (B), polyadic distributive lattice is used in [20].

The “minus” versions in Definitions 1.1 and 1.2 are introduced because they are
the ones needed to formulate the Liuchli theory. In most cases however, we will be
able to handle the two versions, for each of the Definitions 1.2 and 1.3, simultaneously.
To abbreviate, we will talk about h(™)-fibrations and c¢(™)-fibrations, meaning either
of the versions; of course, in a given context, always the same is to be understood. A
notation like c(<)-fibration is also used to talk about two concepts at once.

The most important kind of example starts with an arbitrary category B. Let
C be the category B, the category of arrows of B, with commutative squares as
arrows (B is a category of functors). Let C be the prefibration I&; assigning to an
object f: X —> A of C the object A (second projection), with the obvious action
on arrows. Inspection shows that an arrow (z, f): )‘i{ — )ziz over f:A —> Bis

cartesian iff the square

is a pullback. Thus C is a fibration iff the category B has pullbacks. Note that the
fiber C4 is the comma-category B/A with objects arrows x ); in B, and arrows x
x5y

x A/ y

ii{—ﬂy E commutative triangles with composition of arrows as in B;

for f: A —> B, the functor f*: B/B —> B/ A takes the pullback of any é along
f.

We denote the (pre-) fibration € just introduced by F(B), and call it the (pre-)
fibration of families in B. In case B = Set, the category of (small) sets, an object
of (the total category of) F(B) is an arrow f )ff; of sets which we may consider as a

B-indexed family ( f ~1(b))pep Of sets.

If B is sufficiently well-structured, then F(B) is a h=-fibration; this is the case
when B is a topos, in particular, when B = Set. (Elementary facts of topos theory
immediately add up to this assertion; see Johnstone [8].) In fact, with B a topos, F(B)
is a lot more than a h=-fibration; e.g., the fibers are toposes themselves; F(B) is a
hyperdoctrine in the original sense of [16].

Let us turn to morphisms of the structures introduced above.

A morphismC g — ¢ C;/ of prefibrations is apair (F, ®) giving acommutative

square,
1 o I,

1 |

B _T) B 5)

of functors. Composition of morphisms of prefibrations is defined in the obvious
manner; we have that the (global) category of prefibrations is CAT ", with CAT the
(meta-) category of categories.
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Note that, in (5), forevery A € B we have an induced functor ®4: G4 —s /T4,
When the morphism (F, ®) in (5) is denoted by a single letter, say ¢, then for
A € B, ¢(A) isthe same as F (A), for X € C ¢(X) is &(X), and similarly for arrows.
The morphism (5) is an inclusion if both F and & are inclusions of categories.
A subprefibration of a prefibration is one that has an inclusion into the latter. C ; is

a full subprefibration of €’ C;/ if in the inclusion (5), F and & are full and each $4 is
an identity functor (!).

(5) isamorphism of fibrations if C, €’ are fibrations, and the functor ®:C — C’
takes cartesian arrows into cartesian arrows.

In general, a morphism of fibrations of any one of the specific kinds we in-
troduced above is a morphism of fibrations preserving the relevant structure in the
straightforward sense. For instance, if € and €’ are h~-fibrations, then (5) is a mor-
phism of h™-fibrations, or more briefly, an h™-morphism if:

(i) F cartesian;

(ii) for any B € B, the induced functor ®2:C% — ©'FB 3 bi cartesian closed
functor;

(iii) & takes cocartesian arrows over product projections into cocartesian arrows;
and

(iv) forany f inB,if X <>~ U -2 Y in C satisfies the universal property for I1; X,
then ®X <% &U 2% &Y satisfies the universal property for Iy ®X.
Let us fix the base category B until further notice. If in (5), we have B’ = B and

F = 1p, we have a morphism of prefibrations over B. In other words, a morphism
of prefibrations over B,

¢

— D

S0
[SoP )

c2p

is a functor ®:C —> D making the triangle of functors ¢ g*~ 2 commute
(strictly; not justup to an isomorphism). Note that & induces the functors &4: €4 —
D4 on the fibers.

A morphism of fibrations over B, with C and D fibrations, is a morphism of
prefibrations over B that takes a cartesian arrow into a cartesian arrow. (Incidentally,
the word “cartesian” is obviously overused. The expression “cartesian functor” is
often used in the sense of morphism of fibrations; in this paper, a cartesian functor
is one preserving finite limits.) The category of prefibrations over B (with objects
prefibrations, arrows morphisms of prefibrations, with the obvious composition) is
simply the comma category CAT/B. The category of fibrations over B (with arrows
morphisms of fibrations), Fib(B), is a nonfull subcategory of CAT/B.

Next, we explain a simple general construction, that of the pullback of a fibration
along a functor into its base category, which in some sense allows the reduction of
an arbitrary morphism of fibrations to one over a fixed base category. Let R ;f bea
fibration, F: B —> S a functor. Let

D—\y—>R

F'(®) = 7 1 R

B—— S
F
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be a pullback in CAT, the category of categories (“‘pullback” meant in the commonest,
“on the nose”, sense). In a concrete representation, the objects of D are pairs (B, U)
such that U is over F(B) in R; arrows (B, U) —> (A, V) are pairs (f, w) with
f:B — Aand w:U —> V over F(f) in R; composition is the natural one, and
the effect of W is to forget the first components of the pairs. Note that the fiber over
B in D is essentially just the fiber over F(B) in R.

We have that the pullback F ~1(R) of a fibration R is a fibration again; more-
over, other properties of R are also inherited to its pullback. The easiest way of
thinking of these properties is to realize that, in the correspondence of fibrations and
pseudofunctors (see above), the operation of pullback corresponds to composition:
if R:S —> CAT is the pseudofunctor corresponding to R, then the pseudofunctor
corresponding to D is R o F:B —> CAT.

Letus continue with the above notation. Given a morphism (F, ¢): C E — R E
of prefibrations, by the definition of the pullback, there is a unique functor X: H —>

D making the diagram,
§ N
X'p 7 R
C\ |p R
B 7 S

commute; let us denote ¥ by F ~1(®). In other words, a morphism of fibrations
over different base categories can be “reduced” to one over the same base category,
after taking the pullback of the codomain fibration along the functor between the
base categories. It is important, and easy to see, that good properties of the original
morphism & are preserved to the pullback F~1(®).

The above remarks are summarized in the following proposition.

Proposition 1.4 (i) Let F:B —> S be a cartesian functor between cartesian
categories. If 521; belongs to either of the classes of fibrations defined in 1.1 and 1.2,

then so does F~1(R). If B, S have all finite limits and F preserves them, the same
will hold with respect to the last two classes in 1.3.

(ii) Let also ¢ = (F, ®): Gg —> R be given. If ¢ is a morphism of any one of

the kinds corresponding to the classes in 1.1 and 1.2, then so is F~1(®). Under the
additional conditions of the last sentence of part (i), the corresponding statement for
the remaining two classes of 1.3 also holds.

Proof: The proof is by inspection.

Next, we discuss arrows between morphisms of prefibrations.
Assume two morphisms (F, ), (G, V): Mbg::(? g of prefibrations with the
same domain and codomain. An arrow (F, ®) — (G, V) is of the form (4, ¢) with
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h, ¢ natural transformations 4: F — G, ¢: & —> ¥ forming the diagram,

q
M 4 C
v
M e
F
{h
G

with the natural commutation condition, i.e., C o ¢ = h o M. We write [M, €] for
the category whose objects are the morphisms (F, ®): M —> € and whose arrows
are the (f, ¢): (F, &) — (G, ¥); composition is the obvious one.

[M, €] is the total category of a prefibration: ['rii] is the forgetful functor

(F, ®) —> F, (h, ) —> h. We refer to this preﬁbra[ti’orl as (M, C). In particular,
note that the fiber of (M, C) over F € [L, B] consists of those (F, &), ® € [M, C1],
for which (M) is over F(L) if M is over L, and ®(m: M —> M’) is over
F{:L — L") if mis over £.

A particularly simple example of the construction (M, C) is obtained by taking
Mtobe l; Ifwith I aset (discrete category). The result is C/, the cartesian power of

C by the exponent I; the objects of the base category (total category) of @/ are-tuples
of objects of the base category (total category) of C, etc.

Let M Ag, e ; be prefibrations. The prefibration (M, C) inherits many properties
of C; this phenomenon is analogous to the fact that limits and colimits are inherited
from a category C to the functor category [M, C]. For instance, this holds for the
notion of cartesian arrow. ¢: $ —> W over h: F —> G is cartesian (meaning
that (h, ¢): (F, &) —> (G, V) is cartesian) in (M, C) provided, for each M € M,
om: (M) — Y (M) is cartesian in C.

Given L € L, we have the projection functor z: [L, B] — B of evaluation
at L:wp (F) = F(L), and similarly for arrows. For M € M, 7. [M,C] — Cis
defined by mp(F, &) = $ (M), and similarly for arrows; finally ms: (M, €) — C
is given as the commutative square,

V.C]

™M

L B
(L, B] o
Iterating the construction of the prefibration of morphisms leads to the important
notion of evaluation morphism. Let C ;, P ;fbe prefibrations; consider the derived

prefibrations (C, P), ((C, P), P). We have a canonical “evaluation” morphism e =
(el’ 62): e g ((ea iP)’ :P):

C——f— (&, 7, 7]
e (e, ), )
B [B.S1S]
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here, e; is the usual evaluation functor; e, is defined similarly: e;(X)(L, M) =
M((X), etc.

More generally, if M is a subprefibration of (C, P), with i: M —> (C, P) the
inclusion, we have an evaluation morphism C — (M, P); it is the composite i* o e,
with i*: ((C, P), P) —> (M, P) defined by composition with i, and e as defined
above. Usually, we just write e: ¢ —> (M, P) fori* o e.

Given coherent fibrations €, €/, ¢[C, €'] denotes the category of c-morphisms
C — €; c[@, €' is the full subcategory of [C, C'] with objects the c-morphisms.
Similar notation can be used for categories Heyting fibrations, etc.

If in the prefibration € every fiber is a partially ordered set (as a category; that
is, between any two objects in the fiber there is at most one arrow, and all iso’s are
identities), we have a po-prefibration; we use the prefix “po” with the concepts in
1.1, 1.2, and 1.3 with a similar meaning.

Thus, in a po-fibration, the category structure reduces to a relation (partial or-
dering) in each fiber. A further simplification of structure is the fact that for any
f:A —> B in the base, X over A, Y over B, there is at most one arrow X —> Y
over f; we write X <y Y for saying that there is one. This is clear if one reflects
that the arrows X — Y over f are in one-to-one correspondence with the arrows
X — f*Y over 14.

P(B)

The standard example for a po-prefibration is P(B) ! which is essentially,

F(B) with all objects ¢ in the total category restricted to be monomorphisms; more

precisely, an object of P(B) is a pair (A, X) with A € B and X a subobject of A; an
arrow (A4, X) — (B, Y)isany f: A — B such that there is a (necessarily unique)
z: X —> Y making,

<
e =<

_z
—_—
f

commute; the two vertical mono’s are representing mono’s for the two subobjects
X,Y. If B is a topos (say), then P(B) is an h=-fibration. Let us call P(B) the
(pre-)fibration of predicates in B.

It is immediately seen that, with C, (M, C) is also a po-prefibration, with an
arbitrary M. The fibers of a coherent po-fibration, respectively a Heyting po-fibration,
are all distributive lattices, respectively Heyting algebras; the fibers of a po-h~-
fibration are h~-algebras, that is, “Heyting algebras without a bottom element,” in
the obvious sense. In the case of a po-fibration, we tend to write A for x, Vv for +,
X —> Y for Y¥ in the fibers, and 3y for X, V for I1f.

The coherent po-fibrations, respectively the Heyting po-fibrations, are concep-
tualizations of theories with a notion provability, but with no proofs retained.

There is a reflection functor from fibrations to po-fibrations with good preser-
vation properties. For any prefibration C ;, we can define its po-reflection, a po-

prefibration H E over the same base category B, witha collapsingmap y : Cg — }CI;’:

cbHH
e The simplest way of putting the definition is to say that the functor

C |— H:Fib(B) —> PoFib(B)
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is left adjoint to the inclusion PoFib(B) —> Fib(B). In other words, y:C — H
is the free po-prefibration-extension of C: for any y”:C — H’, with H’ a po-
prefibration, there is a unique §:  —> ' with ¥’ = & o . In more concrete terms,
we take first the preorder reflection P P, in which P has the same objects as C; for

any X over A and Y over B and for any f: A —> B in B, there is at most one
arrow X —> Y over f; there is one precisely when there is one in C; the meaning of
the functor P is clear. X is obtained by identifying isomorphic objects in each fiber
separately (but not across fibers).

Proposition 1.5  The po-reflection of a fibration is a fibration; if a fibration is a
member of any of the six classes of Definitions 1.1, 1.2, and 1.3, so is its po-reflection.

Proof: This is an important and essentially obvious observation, verified directly by
inspecting the definitions involved.

2 Godel completeness In this section, we prove the appropriate formulation of
Godel’s completeness theorem for first order predicate calculus. As we see it today,
Godel’s theorem is a result on coherent logic, the fragment of first order logic based
on the logical operations t (true), f (false), A, v and 3, the result for classical logic
being an immediate consequence of the one for coherent logic. Another point about
coherent logic is that it is a common part of classical and intuitionistic logic; and asin a
sense coherent logic suffices to explain classical logic, in another, more sophisticated,
sense it also suffices to explain intuitionistic logic. The last statement will get clarified
by our treatment of Kripke’s completeness theorem. More on coherent logic can be
learned from, e.g., [17].

Godel’s completeness theorem, expressed in the framework of fibrations, is an
embedding theorem for small coherent po-fibrations; it relates any small coherent
po-fibration with the “standard” one, P(Set) , the fibration of predicates on sets.

A functor F:A — B is said to be conservative if it reflects isomorphisms: if an
arrow f in A is such that F (f) is an isomorphism, then f itself is an isomorphism.
If here A and B are posets with binary meets and F preserves binary meets, then
F is conservative iff it reflects ordering: F(A1) < F(A2) implies A; < A, for all
A1, Ay € A. A morphism of prefibrations is conservative if it induces conservative
functors on the fibers. A morphism « of po-prefibrations is conservative at (X, Y) if
X, Y are in the same fiber of the domain prefibration, and X < oY implies X < Y.

Theorem 2.1 (Godel completeness theorem) For any small coherent(™ ) po-fibra-
tion C (with equality), there is a small set I and a conservative morphisms . C —>
(P(Set))! of coherent(™) fibrations (with equality).

Expressed in terms of morphisms into P(Set ), rather than a Cartesian power of it,
the assertion of Proposition 2.1 is equivalent to saying the following. Given any
fiber CB of @, and X, Y € CB, if X £ ¥, then there is (L, M): @ —> P(Set), an
appropriate morphism, such that M(X) £ M(Y). Still another equivalent way of
stating Gddel completeness is this: for any f : A —> B in the base category of C,
and any X € €4, Y e @3,

X <y Y <= for all appropriate M:C —> P(Set), M(X) <p(r) M(Y).



FIBRATIONAL FORMULATION OF INTUITIONISTIC LOGIC 351

The rest of the section is devoted to the proof of Proposition 2.1. Although in
this section we sometimes formulate auxiliary results for fibrations which are not
necessarily posetal, the main result 2.1 holds only for po-fibrations.

We formulate conditions on a ¢~ -fibration originating in the disjunction and
existence properties for intuitionistic theories (see e.g. [13]); in fact, the Heyting
fibration corresponding to a theory has the disjunction property, or the existence
property, just in case the theory has the same.

Let us write t (true) and f (false) for the terminal, respectively the initial, object
of the fiber over the terminal object of B .

The ¢~ -fibration C g has the disjunction property if for any X, Y € C'B, if

CB(z, X + Y) # O then either C'B(z, X) # O or C'B(¢, ¥) # 0. € has the existence
property if for every B € B and X € @B, if @'B(z, £,,X) # 0, then there is
by:1p —> B such that C'B(r, b*X) # 0 (13: B —> 1p).

In case C is a po-fibration, @!B(r, U) s 0is the same as to say U = t. Thus, the
disjunction property means that t is indecomposable (or prime): t = U v V implies
t=Uort = V. Inthe “po” case, the existence property says that 3,,X = ¢ (for
which we say that X has global support) implies the existence of a global element of
X, thatis, b:1 —> B suchthat b*X =t.

Note that C has the the disjunction or the existence property just in case its
po-reflection does. In fact, there are stronger forms of these properties that would
have to be considered if we were interested in a ‘“non-posetal” analog of Godel’s
completeness theorem.

Proposition 2.2  Assume that the coherent po-fibration C ; (with equality) has the

disjunction and existence properties and thatf # t. Then the category c&)[C, P(Set)]
has an initial object; in particular, there exists at least one ¢-morphism ¢ —>
P(Set).

Proof: We define (L, M):C —> P(Set) as follows. We let L = B(lp, —), the
functor B —> Setrepresented by the terminal object of B; it is well-known (and easily
seen) that L is the initial object of car (B, Set). In other words, forany B € B, L(B) is
the set of all global elementsof B, i.c.,allarrows b : 13 —> B in B. For X € @3 the
subset M (X) C L(B) consists, by definition, of all b € L(B) such that b*(X) = t.

The existence of a (unique) z: X —> Y over f is equivalent to saying that
X < f*(@Y). If so, then for any a € L(A), a*(X) < a*f*(Y) = b*(Y) for
b = fa € L(B); hence, if a € M(X), i.e., a*(X) = t, then b*(¥Y) = t, hence
b € M(Y). This says that M (z): M(X) — M(Y) is well-defined; it is a restriction
of L(f).

To see that (L, M) is a morphism of fibrations, we need to show that for any
a € L(A), fa € M(Y) implies a € M(F*(Y)). But this is immediate since
a*f*(Y) = (fa)*(Y).

To show that the functor (map of posets) @4 —> P(Set)*) induced by (L, M)
preserves binary joins, let X1, X, € @4; we need to show that a € M(X; V X»)
implies a € M(X;) or a € M(X;). But the assumption means a*(X; Vv X3) =
a*(X1)va*(X,) = t. By the disjunction property, this implies that either a*(X1) = t,
or a*(X,) = t, from which the assertion follows.

To show that (L, M) preserves cocartesian arrows over product projections (all
cocartesian arrows, in the case with equality), let f : A — B be aproduct projection
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(an arbitrary arrow in the case with equality); let X be over A in C. We need to show
that Lf maps MX surjectively onto M(3rX). Let b € M(3rX);ie,b:1 — Bin
B, and b*(3;X) = t. Consider the pullback,

AL ,p
¢ fo

C——1

Ic

(in the case without equality, A = C x B, g = 1¢ x b). By stability, t = b*(3Fs X) =
3,.8*(X). By the existence property, there is c:1 —> C such that c*g*(X) = t.
But then, for a = gc:1 —> A, we have a*(X) = t, hence a € M(X); also,
fa = fgc=bolcoc=b,hence L(f)(a) = b, as required.

The preservation of the terminal object and binary products in the fibers is rather
automatic.

For the unique arrow !: 13 —> 1p, !*(f) = f by stability. Therefore, by the
assumption f # t, wehave that ! ¢ M (f),i.e., M(f) = 0. Since (L, M) is amorphism
of fibrations, and 04, the initial object of the fiber C4,is 1% (), it follows that for all
A € B,M(04) = 0. We have shown that (L, M) preserves initial objects in the
fibers.

This completes the verification of the fact that (L, M) € ¢c&[C, P(Set)].

Let (K,N) € c¢®[C, P(Set)]. The unique £:L —> K takes any a =
L@® ({}=1=L(p),a:1g — A € L(A)) 10 £4(a) = Klal=arK (@) () ({!}
= 1 = K(1p)), by the naturality square,

Ldp) — 7@ L@

big £a

and, if (¢, m): (L, M) — (K, N), for X € €4, myx: M(X) —> N(X) must be the
restriction of £4. This certainly shows that there is at most one arrow (L, M) —
(K, N). But, for any a € M (X) as before, the “cartesian square”,

t=a*(X)—E—> X

¢
13-——-—77—9 A
is taken by (K, N) to the pullback,
1=Nt)——— NX)

incl

1= K(IB)—K,—(a—)——» K(4)
from which it follows that K[a] € N(X). Thismeansthat £4: L(A) —> K (A) does
restrict to an arrow my: M(X) — N (X); clearly, we have an arrow (£, m): (L, M)
—> (K, N) as desired.
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Proposition 2.3  Assume that the ¢~ -po-fibration C E has the disjunction and exis-
tence properties. Then the category c~[C, P(Set)] has an initial object.

Proof: The proof is the same as that of Proposition 2.2; just ignore references to the
initial objects. Note that, for c™-fibrations C, €', c~[C, €] is never empty. In fact,
it has a terminal object (L, M): € —> €’ in which L is terminal in car(B, B’), and
M takes every object in any fiber into the corresponding terminal object.

The key to the proof of completeness is an appropriate version of the slice-
category (comma-category) construction. Recall ([4],[26]) that the slice-category
C/C (C | C in the notation of [2]) inherits many properties of C, and that the
passage from C to C/C corresponds to adjoining an indeterminate arrow of the form
x:1 — C to C (see also Exercise 1, p. 64 in [13]). The latter fact relates the
slice-category construction to the process of adjoining new individual constants in
the usual (Henkin-style) proof of completeness.

Let C ; be a prefibration, A € B and X an object over A. We can form

the slice-categories C/X, B/A (an object of B/A is an arrow B — A, an arrow
B—>C

(B — A) — (C —> A) is a commutative triangle el ). There is an

obvious functor C/ X —> B/ A given by the functor C: it maps the object ¥ —> X to

ey =, A, and similarly for arrows. By definition, this is the prefibration C/(A4, X),

or C/X (A can be suppressed in the not}z}tion }s{ince it is given with X). Thus an object

over B—> Ain C/X is of the form p _, 4, where the mapping is by C.

We have the forgetful morphism of prefibrations (F, ®): ¢/X —> C where
F:B/A — Band ®:C/X —> Carethe usual forgetful functors (F maps B — A
to B, etc.).

In the following proposition, we use the expression “create” in a sense analogous
to the one found in [2]; the precise sense is revealed in the proof.

Proposition 2.4 (i) The forgetful functor (F, ®):C/X —> C creates cartesian
arrows, and cocartesian arrows.

(ii) If C is a fibration, (F, ®) creates initial objects and binary coproducts in
the fibers.

(iii) If C is a fibration whose fibers have pullbacks, then the fibers of C/ X have
binary products. If C is a po-prefibration, (F, ®) creates binary products in the

fibers.

(iv) If C is a fibration, then the terminal object of the fiber over B -i> Ain
C/(A, X) exists and it is the cartesian arrow f*(X) —> X over f. (Thus, the
terminal objects in the fibers are not created by the forgetful functor.)
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Proof: (i) Consider the following diagram.

The numbers il}?dicate tge order in which the anovgs areintroduced. The data marked 1
give an arrow f« — }4’ in B/ A and an object )i( in €/ X over the codomain of this

arrow; the goal is to find a cartesian arrow over the given arrow with the given
codomain. The claim is that if we forget A and X, and we take the cartesian arrow
Y — Z over B — C, then we can uniquely complete the picture and get a
cartesian arrow as desired. So, let Y —> Z (marked 2) be a cartesian arrow (in C) as
said. Composing Y — Zand Z — X gives Y —> X, and now we have an object

;i{ over I;‘ with an arrow ii( — ?{ To verify that the latter is cartesian, we test it
withli — Z¢ (marked 4; U —> X is necessarily the composite U — Z — X)

over the comp031te }a — ¢ — }1 Using cartesianness in C, we get a unique
U— YoverD — B makmg the upper triangle commute. The commutat1v1ty
of the quadrangle UY ZX expresses the fact that we have an arrow };{ — )¢( ; this
completes the verification that 1 — i is cartesian over ¢ — ¢

Let us turn to cocartesian arrows We consider this dlagram

Y 2 Z

N

\*@;‘/
/’/*\

B C

The arrow ¥ — Z is assumed chosen to be a cocartesian arrow over B — C.
The universal property of Y —> Z gives us Z — X over C —> A making
YZX commute; now we have an object i in ¢/X, and an arrow i’ — f over
; — ¢ ‘When testing the latter for cocartes1anness by ¢ — ¢, we can choose the
(umque) Z — U over C — D by the cocartes1anness of Y —> Z in C, and
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then we use the uniqueness part of the cocartesianness of Y — Z to conclude from
(UXoZU)o YZ = ZX o Y Z that the triangle ZU X commutes, which fact is needed
to have an arrow ¢ — ¢

(i1) Suppose l, ¢ are two objects over f l and that ¥ + Z exists in C. Then, the

arrows ¥ — X, Z —> X giverise to axrows Y — f*X,Z — f*X inthe fiber
@B, and by the universal property of Y + Z we have a specificarrow Y +Z — f*X
which, composed with the cartesian arrow f*X — X over f, gives Y + Z — X

over f, defining the object Ygz in €/ X; we claim that this is the coproduct of land
X

f. We leave it to the reader to verify the required universal property, as well as the

proof for the initial object.
(iii) Let y 1, z T be objects over f §, let c: f*X —> X be a cartesian arrow
X X A

over f,lety:Y — f*X,7:Z —> f*X be arrows over 1g suchthaty = co y/,

z=-coZ7 andlet
w—L2 >y
ql fy
Z—él_-) f*X

be a pullback diagram in @2 . The desired product of y and z in (C/X)/ is the
composite W LN f*X -5 X, with d the (common) diagonal in the pullback
square; the projections are given by p and g. The verification of the universal
property is straightforward.

The second assertion for the case of C being a po-fibration is a special case,
since in that case the pullback w is the same as the product Z A Y.

(iv) The assertion is obvious; the difference to the other operations is noteworthy.

Let now C g be a fibration, and assume that the fibers of C have binary products

and that the pullback functors preserve them. Let X be an object over A € B. By
Proposition 2.4 (i), C/(A, X) is a fibration. Under these conditions we have the
morphism:

c—2.c/x
el }e/x
(D,8):€—€/(A,X)z:  B——>B/A

of prefibrations defined as follows.D is the “usual” functor;

Bx A fx1a x A

D(B) = n’BEA Cand DB L5 €)= T~ /

To define A, let Y be over B; consider the product projections B <— B x A =, A,
andlet Y x X=4,m*Y x ’*X, an object over B x A. We let A(Y)=4¢sY x X.
To define the effect of A on arrows, let us first note that, under the hypotheses,
the binary products in the fibers have a more general universal property that acts
across fibers, as follows. Given Y and Z over C, the arrow f: B —> C, the object
W over B, and the arrows y: W —> Y, 2z W —> Z over f, then there is a unique
w:W — Y x Zover f suchthat y = 7w o w, z = 7/ o w (briefly, we have the
product property “over a fixed f in the base”). The proof of this is straightforward,
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by pulling back the product diagram Y S vxz N Z over C along f into the
fiber over B where it remains a product diagram by assumption.

Givenu:Y — Zover f:B — CinC,wedefineu x X:¥Y x X — Z x
Xover f x14:B x A—> C x A. The commutative square,

Bx A IXla, cx A
7!11 17'[2
—C

f

&

gives a unique v: 7Y — 7, Z over f x X making the square,

Y Yo iz
v |y

Y—— 27
u

commute (the ¥ denote the corresponding cartesian arrows). Similarly, we get the

arrow w: 7j*X —> w}*X. With the projections 7}¥ £ ¥ x X N *X, we
have vo p1:Y X X — n;Z, wo p1:Y X X —> mj*X over f x 14, and by
the extended universal property of the product Z x X = 7} Z x n}*X, we get the
desiredu x X:Y x X — Z x X.

The definition of A on arrows is A(Y LN Z) = u x X. We leave it to the
reader to verify the functoriality of A. This completes the definition of § = (D, A) :
C— C/X.

Proposition2.5 AssumeC € is a fibration, its fibers have binary products, preserved

by the pullback functors. With X € C, let §: ¢ —> C/ X be the canonical morphism.
(i) €/ X is a fibration and § is a morphism of fibrations.
(ii) 8 preserves existing binary products and terminal objects in the fibers of C.
(iii) § preserves any binary coproduct in a fiber which satisfies the distributive
law and is preserved by pullback functors. & preserves the initial object in a fiber
provided it is preserved by pullback functors.
(iv) & takes cocartesian arrows over f into cocartesian arrows provided % is
stable and satisfies Frobenius’ reciprocity.

Proof: The verifications are based on the identifications given in Proposition 2.4 of
the operations in C/ X. We restrict ourselves to the proof of (iv) in the special case
when C is a po-fibration. Let us start with the diagram,

fxA

BxA ——————CxA
/4 b1
\ /
b2} A b1 23
B C
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in the base category, and let ¥ be over B. Using Proposition 2.4 (i), we see that
the assertion amounts to the equality 37, 4(Y A X) = 3;Y A X, where we have

replaced the notation x by A. But,

Ixa(l AX) = Fpa(r’¥ Amj*X)  (definition)

rxa@Y A (f x A)*n5*X) (since 7y = 75 o (f x A))
Arxa@{Y) A (757 X) (Frobenius reciprocity)

m*3rY Amy*X  (stability)

= Y AX (definition)

(Without assuming the fibers being posets, one needs to verify additional commuta-
tivities.)

Our interest lies in the case when € is a c()-po-fibration. €/(A, X) will not
be a c(™)-po-fibration since the base category B/A will not be cartesian (products in

B/ A require pullbacks in B). Therefore, we cut down the prefibration C/(4, X) to
a smaller one, denoted C//(A, X), which will have a cartesian base category. We

take the full subcategory B//A of B/A on the objects =’ BZA , the ones that are in

the image of the functor D: B — B/ A defined above. It is well-known (and easily
seen) that D preserves all products existing in B; it follows that B//A is cartesian,
and the induced functor, denoted by the same symbol D: B —> B/ A is cartesian as
well. The prefibration C//(A, X) is defined as the full sub-prefibration of €/ (A, X)
with base category B//A. In other words, the fiber of €//(A, X) over any | is the

A
same as the fiber of C/(A, X) over 1
A

Clearly, (D, A) defined above gives §x =6 = (D, A) : € — C//(A, X).
It is clear that Propositions 2.4 and 2.5 imply their own versions in which €/ X
isreplaced by C//X.

Corollary 2.6 (i) Suppose that C § is a ¢)-po-fibration, X € C. Then C//X is a

c)-po-fibration, and the canonical morphism 8x:C — C//X is a ¢ -morphism.
(ii) The analogous statement, with C/ X for C// X, for the case with equality.

Proof: The assertions follow from Propositions 2.4 and 2.5 (for €// X) . For (i), note
that by the assumption of € being posetal, the condition 2.4 (iii) on the existence of
pullbacks is satisfied.

Let me note that for not necessarily posetal c(~)-fibrations, there is a variant
(a third one) of the slice construction, €///X, with similar properties as stated in
Corollary 2.6; in this, we take full subcategories of the fibers in C//X, similarly
to the way the base category of €//X was constructed from that of C/X; in the
posetal case, the construction gives the same result as ¢//X. For ¢®-fibrations,
the construction 8x: @ —> €/ X, and for c(~)-fibrations, the construction §x: ¢ —
C/// X, answers the universal property of the (free) extension of € obtained by
adjoining an “indeterminate” global element of X; these facts will not be used here.

From now on, we will assume that C is a ¢(™)-po-fibration. We discuss how
slicing contributes to obtaining the disjunction and existence properties. Let X be
over AinC; 6§ =4x:C — C//X.
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We claim that, in C//X, éx has a global element. Note first that the terminal

x 145 x
object of the base category B/A of €//X is 14 %, and tof €//Xis | __ ¥ witn
A

d={14,14): A—> A x A we have, 1a
A
1 7’
da:leyx — 8(A) & A/d \ Ax A

5 =" 0% withX A X = 7*X An/*X, and d*(X A X) = d*n*X A d*n/*X =
XAX = })(( (it is mainly here that we use the “po-” assumption in an essential way).
Therefore, by Proposition 2.4 (i), in €// X, we have d}8(X) = t, which shows the
assertion.

It is a particular case of the last assertion that for U € C!2, we have §y(U) =t
in €//U. Namely, by the above, the object 6y (U) over 1p,4 has a global element,
from which it follows that it is equal to t.

Going back to the calculation of the second last paragraph, if Y is an object also

YAX |, . o
over A, thend}éxY = ;I( ; in particular X < Y in C justin case d}dxX < d};dxY
inC//X.

In the next proposition, we describe to what extent the morphisms dy are con-
servative.

Proposition 2.7 Assume that Cis a ¢)-po-fibration.

(i) Let X be over A in C. If X has global support (see before Proposition 2.2)
then 8x:C —> C//X is conservative.

(ii) Let X1 Vv X, = tin the fiber over 1, and assume Y £ Z in eB, Then for
eitheri = 1 orfori =2, 8x,Y £ 8x,Z (that is, either §x, or 8x, is conservative for
Yand Z).

(iii) Analogous statements for the case with equality, with C/ X for C// X.

Proof: (i) Assume Y, Z are over Bin C,and §xY <déxZ;thatis, Y AX <Z A X
over B x A. Looking at the pullback diagram,

BxA—""> A
ST
1

B——

!B

let us calculate:

3, Y AX)=3,#F*Y An"*X)

Il

Y A a’*X (Frobenius)

Y A(p)*3, X (stability)

Y A ()%t (full support)

= Y Algs (('p)* preserves 1)
Y.

Similarly, 3,(Z A X) = Z. Thus, the assumption Y A X < Z A X implies Y < Z
as desired.
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(ii) We show the contrapositive. Assume éx,Y < dx,Zin C//X; forbothi =1
and i = 2. This means ¥ A X; < Z A X; in C; taking the joins of the left sides as
well as the right sides and using the (dual of the) distributive law we conclude Y < Z
as desired.

For the proof of Theorem 2.1, we use directed colimits in the category Cat ™" of
small prefibrations in the standard sense; see e.g. [2]; in fact, we need only ordinals
(as well-ordered sets; every ordinal « is the set of ordinals < «) as indexing sets
for our colimits; we will use the well-known properties of directed colimits without
explicit quotations. A rather straightforward directed colimit construction (given
in Lemma 2.8 below) iterating the slice construction, ensures the disjunction and
existence properties in a suitable extension of any given c(~)-fibration; an application
of Proposition 2.2 (and its proof) will complete the proof.

Lemma 2.8 Assume C E is a ¢-po-fibration (with equality), X and Y objects

in it over the same A such that X ¢ Y. Then there is a ¢)-po-fibration D (with
equality), with a ¢ -morphism ( ¢&-morphism) ¢: ¢ —> D such that D has the
disjunction and existence properties and such that ¢ X £ ¢Y.

Proof: In the proof, we ignore the case with equality; there is essentially no change
in the proof for equality. The construction is by transfinite recursion.

Let A be an infinite cardinal at least as great as R, and the cardinalities of the sets
of arrows of C and B. An ordinal is even (odd) if itis of the form § +2n (§ + 2n — 1)
) with some n < w, n # 0 and with some limit ordinal §. Let a — (B4, ¥») be an
enumeration such that for every B, y < A there is at least one even, as well as at least
one odd, @ < A with ¢ > B such that (8, ¥) = (Ba, Ya)-

By recursion on ordinals «, 8 < A, we define the following items:

o G, ac™)-po-fibration; Cp = C;

o forB < a,ppa: Cp —> Coact)-morphism; the ppq satisfy pue = ide,, Ppa©
@yp = Py fOr y < B < a < A; furthermore, pou X % @0 Y for the given X
and Y;

e for each a < A, an enumeration (‘Z}g‘x)y< » of all objects of C, of global support;
Y

o for each a < A, an enumeration ((Uy, V;)), <, of all pairs (U, V) of objects
over 1p, with the property that U v V = t.

For « = 0, we put Co = €. Suppose 0 < & < A, and all items with indices
< « have been defined. If o is a limit ordinal, we consider the directed diagram
({Cp) p<ars (Vv )y <p<a), and welet €y be the colimit of this diagram in the category of
prefibrations. Because of preservation properties of directed colimits, it is pretty clear
that @, so defined is a c(™)-fibration (strictly speaking, this requires checking each
and every condition in the definition of “c{™)-fibration”). We let g, be the colimit
coprojection Cpg —> Cq; @pq is ac) -morphism, and the equalities ppo 0 ¥yp = Pya
hold for all y < B < o; @aa=aefide,. Since the cardinality of C, is clearly < A, we
can specify the two required enumerations for «; we do that in an otherwise arbitrary
way. Elementary properties of directed colimits imply that po, X % @or Y continues
to hold.

Next, let « be an even (successor) ordinal, « = § + 1. Find (B, ) = (Bua, Yu);
if B £ a,put Cy = Cs, 050 = lg;. If B < a, look at the object éwith global
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support in the given enumeration for 8. Note that ¢gs Z in C; has global support. Let
= Cs//epsZ, and sy = 87; Psa: Cs —> Cq is a morphism of c(-)-fibrations. By
Proposition 2.7 (i), ¢oa X % 90, Y is a consequence of gos X £ ¢os Y. The definition
of the (other) ¢g, is obvious.
Finally, when « is odd, we use the other enumeration for §; we use Proposition 2.7
(ii), and define C, as one of two possible slices making ¢o, X Z @0, Y continue to
hold.
This completes the recursive definition. We let D be the colimit of all the C,,
o < A, 9:€ — D the colimit coprojection; clearly, ¢ is a morphism of c(7)-
fibrations, and pX £ @Y. Let ¢qy: € —> D be the colimit coprojection, for any
a < A. Any object % in D with global support comes from some %of global support

in Cp for some B < [)’»; ie., W = ¢g.(Z); this is obvious from procperties of directed
colimits.
Wehavesomey < A suchthat-zr ‘f‘, and thereissomeevena > B,a = §+1,

such that (8, y) {Bas Ya). The consiructlon of C4 = Cs//ppsZ adds a global
element to @;, (<pﬂa Z) = ¢po Z, and then, of course, W = ¢p5.(Z) = @ar (9o Z) Will
also have a global element.

‘We have verified that the existence property holds in D. The verification of the
disjunction property is similar.

Proof of Theorem 2.1: According to the alternative formulation of Theorem 2.1,
assume X and Y are over A and X £ Y. Consider e= €//X, and X= diéx(X) =
t,and ¥ = d}éx(Y) in e. By the calculation before Proposition 2.7, X £ Y.
Apply Lemma 2.8 to €, X, . We get 9:C —> D, with pX £ ¢¥ [in particular,
f # t in case we have c-fibrations], and D having both the disjunction and existence
properties. Consider the initial model p = (L, M) D —> P(Set) given by 2.3
(2.4). According to the deﬁmtlon of (L, M), M(yp Y) C L(1p) = {!} consists of all
the global elements of <pY However, the only global element that could appear is
the umque arrow !: 1 B—> 1p, the identity; and if itis a global element of @Y, then
¢>Y —'*goY =t= qu a contradiction. This means that M (<pY) 0, the empty set.
We conclude that (up)(X) £ (ne)(Y), the first set being {!}, the second 0.

Consider the composite v = p o ¢ 0 §x: € —> P(Set). If we had v(X) <
v(Y), then (up)(Bx X) < (np) (BxY), hence (np)(d}éxX) < (up) (d3éxY),ie.,
(np)(X) < (u@)(Y), a contradiction. We have produced a model v = (K, N):
G —> P(Set) such that N(X) £ N(Y) as desired.

3 Some categorical constructions The first proposition to be stated in this section
is due to Day [3], and it concerns the fact that a “power” CA (= [A, C), the category of
functors A —> C) of a cartesian closed category C is again cartesian closed provided
C is sufficiently complete (has enough limits). (In fact, Day’s result is much more
general than this; it is about monoidal closed categories.) The formula expressing the
exponentiation operation for the functors uses the construction of ends (“integrals”)
(see [2]). Ends will be used in the fibrational generalization to be given later of Day’s
result as well.

An end is a particular kind of limit. LetA and C be categories, F:A°P xA — C
be a functor (a “bifunctor” because of the two variables, in this case both ranging
over A; see [2], especially IL.3, on special properties of bifunctors). We consider the
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diagram in C consisting of objects and arrows as follows:

P4 F(la, f)

F(A, B);

F(B, B) F(f,lB)

here, A, B and f: A —> B range over all objects and arrows of C. More precisely,
we have the graph E whose objects are all symbols (A) and (A, B) for A, B € A,
and whose arrows are all (f):(A) —> (A, B) and (f):(B) —> (A, B) with
f:A —> B in A; the diagram &:E —> C takes (A) to ®((A)) = F(A, A);
S((f) = F(la, 1), (f)) = F(f, 14).

A cone on ¢ is called a wedge (to F). In other words, a wedge consists of an
object P € C and of arrows P L4, F (A, A) (projections) such that all instances of

F(A, A)

/ F(l, )
P
commute.

A limit of &, if it exists, is called an end of F, and it is denoted by [ F, or more
descriptively, [4.4 F(4, A).

A particular bifunctor is given by exponentiation. Let C be a cartesian closed
category. Let us adopt the notation

F(A, B)

B F(B, B)

ea,B-AX BA — B
for the evaluation arrow, and
f~:C — BA
for the transpose of f: A x C —> B (thatis, ea,g 0 (14 X f™) = f).
We have the bifunctor:

Exp:CPxC — C
(A,B) —> B4
(f$,18) — B/:BY — B4
A/
(14,8} — g% B4 — B4
B/

where we use the notation Bf = (ear,B o (f x 1ga))™ and gl =(goean)”.

Proposition 3.1 (cf. [3]) Assume C is (bi(~)-)cartesian closed, A is any category,
and assume that C has limits indexed by graphs the size of A . Then CA is (bi(~)-)
cartesian closed as well. In particular, the exponential GF, for F, G € C4, is given
by the formula,

(GFY(A) = [ (GB)T®
A— BeA
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Remark. With A\ A denoting the “comma” category whose objects are the arrows
B

—
A —> B, and whose arrows are the commutative triangles A é , and with the
obvious forgetful functor A4:A\A — A, the formula in the proposition abbreviates
(GF)(A) = [Expo (AZP x A 4). The proposition is a special case of Proposition 3.6
below when the base category of C is taken to be the terminal category.

We introduce some notation for working with fibrations. Assume throughout
that € § is a fibration; for much of what follows, C is fixed; letters A, B, ... denote

objects of B, U, V, ... objects of C.

Although we emphasized that cartesian arrows are defined only up to isomor-
phism, to facilitate the discussion, we assume that appropriate choices of cartesian
arrows have been made; the notation an: a*Y — Y (already introduced in Section
1) refers to such a choice. Similar steps are taken in respect to the further structure
involved in c-fibrations, etc.

Along with notation, we list a few elementary facts; their proofs are left to the
reader.

Let w: W —> Y be over the composite of D —> C 25 B. The unique arrow
t:W —> a*Y over ¢ for which w = ybY ot is denoted by w" (strictly speaking, we
should write wj, ).

If, in addition, z: W — Zisover bc, u: Y — Z over 13, then

) a‘y Y
w w
W/ a*u W/ u
Z\‘ gtz ~ commutes iff Z\‘ z commutes. (1)

In the situation depicted we have the equality shown:

wz Ly

D-S5c-tp o) =002 @
and in particular,
zLy
D5 by g o¥H =) ©)

With data as in (3), we have the natural isomorphism ¢ = @5 .: c*b* =N (bo)*
defined in Section 1. For this ¢, and w: W —> Y over bc, we have,

pyow =w', C))

Lemma 3.2 (i) Let A € B and assume that the limit of T': I—>C4 exists and it
is preserved by all pullback functors a*: C4—>CB. Then the limit 1inl" € C4 with
projections y: 1imI'—>T I (I € I) satisfies the following “extended” limit property.
Given any a: B— A and any family (x;:Y —>T'I), 1 of arrows, all over a, such
that x; = Ui o x for all arrows i: [—> J in I (“extended cone”), there is a unique
x:Y—>1iml over a such that x;y = wyox forall I € L

(ii) The analogous property holds for colimits in the fibers, in fact, without any
assumption on preservation by pullback functors.
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Proof: (i) For any cone (y;: Y—>a*FI)l£€I in CB on the diagram T, let (YD rer
denote the unique y: Y —>a*(1iml") in C” such that y; = a*myoyforall I € I (y
exists by assumption). Then the required x is x = ¥} o (x}) ;1.

(ii) is similar.

Proposition 3.3 Let M Ag, e g be prefibrations.

(i) If C is a fibration, then so is (M, C), and the projections my: (M, C)—>C
are morphisms of fibrations (i.e., the fibration structure of (M, C) is computed com-
ponentwise).

(ii) If C is a c(~ )-fibration (with equality), then so is (M, C), and the projections
7wty (M, C)—>C are ¢(~ )-morphisms (c=-morphisms).

Proof: LetV be over G in (M, C), h: F—> G in [L, C]. Then for & = h*\V, we can
take the functor &: M— C defined as follows. For M over L in M, we put

S (M)=aerhy (VM)

and form : M— N over {: L—> K, &(m) is the unique arrow over F (£) that makes
the diagram,

y\llM
VM — s uM

(m) W (m)

YVhy
commute (i.e., ®(¢) = (Wm o y,iM); ). The cartesian arrow y,’: h*¥ —> W
has components y,f‘{ :h; WM — ¥ M, themselves cartesian in C. The verification of
these assertions is omitted.

(ii) Suppose h: F—>G in [L, C] is such that 3;,: €FL— %L is defined for
all L € L. Then 3;,: (M, C)F — (M, )€ is defined; its definition is “dual” to that
h* given above. If & is a product projection, then every component hy, is a product
projection; hence, if C is a ¢(7)-fibration, 3, exists. The componentwise nature of the
structures involved implies that the stability condition for 35 will also be inherited to
(M, C) from C.

The finite limit and colimit structure of the fibers in (M, C) uses Lemma 3.2.
Again, stability follows from stability in C by the componentwise nature of the
operations.

For the purposes of the next lemma, we introduce some further notation. Using
that the pullback functors a*: @8 — C4(a: A—> B) preserve binary products, we

have a canonical isomorphism a*(X x Y) =, 4*X x a*Y whenever X,Y e CB,

We write p for the inverse of this isomorphism, so that we have p:a*X x a*Y —
a*(X x Y) (it would be more precise to write px,y, but we will suppress subscripts, in
this case as well as with other canonical arrows). Also, if x: U— X, z: W—> Z are
both over ¢: B—>C, then x x z is the arrow U x W— X x Z over c, given by the
extended product property of X x Z, for whichwx zo(x xz) = x, n&yz o(xxz)=2.
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Lemma 3.4 (i) In a cartesian closed category, assume the data,

W UxW e 14
x| z y
Y Z XxZ Y
X q ®)
Then we have:
0
UxW —— >V
XXz y
XXZ —— Y
q commutes 6)
if and only if
W - VU*U‘
i / YU
X X
Z q~ Y Y commutes. @)

(it) More generally, assume C is a h(')-ﬁbration, and let the data under (5) be
“« By, . .
over c |” in C; that is, 0 over 1, q over 1¢, x, y and z over c. Then (6) commutes

iff (8) doces, where (8) is,

p—G VU{)U‘
4 Y
/(g* Y)x'

* *syv\c*X
CZ o €D @®)

a B
- . y ATh ¥ .
(iii) In addition to the assumptions of (ii), also assume >~ C, a commutative

triangle. Then, if (6) commutes, so does (9).
* ~
a*W {a 00 Q! > (a*V)(a*U) ((P o a*y-)a*U
\

poa*z (b*Y)a*U
/(I;*Y)(poa"x'

b* (b* Y)b*X

T ©)

Proof: The proof is a routine calculation. The second part is obtained by using the
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first; one passes from (6) to the commutative diagram,

UxW 4 \%
X Xz y
c*X xc*Z > c*Y
(c*q o p)

365

in the fiber @3, and one uses part (i) to the last diagram as (6). For (iii), we pull back
(8) along a, and one gets a pentagon whose commutativity implies that of (6) (in fact,

this does not even use the preservation of exponentials by pullback functors).

To introduce further notation, assume a: A—> B, and x over A; assume that
[T, X exists; the corresponding counit will be denoted af: a*I,X—> X. For any
x:a*Y—X, the notation x*: Y —>T1, X will stand for the unique arrow such that
x = aX o a*(x*) (x* is the transpose of x along the adjunction a* - T1,). With

v: U—>X over A, [T,v: TI,U—T1,X is given by [T,v = (v o oY

functor IM,: €4 —>@3.

Lemma 3.5 In the situation

z 4 Y
c b B
D A
c*Z d a*yY
| I
W X X

)¥; we have the

(in which v is in CP, Z € S, y is over b, d is over x, u is in C4), with the square in

the base category assumed to commute, we have that

ut :
Z oM | pemx

vt @*af oy, x)*

nw — 5 T.d*X

IT.(x") commutes
if and only if
o (yovd) .
v u
w X
x commutes

10)

an
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Proof: First, a remark of explanation. We have, by assumption, bc = ad; there-
fore, we have the canonical isomorphism :c*b* =, d*a*, the composite of
¢*b* > (be)* = (ad)* % d*a*; this is being referred to in (10).

By (3) and (4), one easily sees that d*(y o y%) = Yy o c*(y’). Therefore, using
(1), (11) commutes iff

* .
c*Z 4 (}’) c*b*Y WY d*a*Y
v u
L/ X d*X
(12)

does. By the naturality of the adjunction-isomorphism for c* - I1,, the left-bottom
composite in (10) is the tranpose (#) of the left-bottom composite in (12). Hence, it
suffices to show the analogous statement for the upper-right composites in (10) and
(12). But, again by naturality, the upper-right composite in (10) is the transpose of
the composite of the three left-hand side arrows in

c*u* OV C*Z\C*Z-

b1, X e Y
v \ [ v
d*a*T, X d*a*u? d*a*y

d% %
a*Xx

Thus, it suffices to have the commutativity of the outside perimeter of the last diagram.
The square in the middle is an instance of the naturality of 4. The upper triangle is
an instance of (1), after applying c*; the lower triangle is the defining commutativity
for u*, with d* applied to it.

Let « be an infinite cardinal. A category is of size < « if the set of its arrows
(and objects) is of size < «; a prefibration is of size < « if both its base and total
category are of size < «. The main result of this section is the following proposition.

Proposition3.6  Supposethe fibers of C have limits of < k-size diagrams, preserved
by the pullback functors of C, and suppose M is a prefibration of size < k. If Cisa
KO -fibration (with equality), then so is (M, C).

Proof: Part 1, exponentials in the fibers Let ®, ¥ be in (M, C)¥; we will construct
¥ = V¥®in (M, C)F; we will have, for any M over L in M,

M= ((Fo)*wN)Fo™oN 13)

/(L,M)—>(K,N)

&,m)

More precisely, let A € B, and let C\A denote the (“comma”-) category whose
objects are pairs (a: A—> B € B, Y € CB), arrows

(a:A—B e€B,Y € C®)— (b: A—C € B, Y € C°)
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a B
. . A ¥
in C\A are arrows (c, z) : (B, Y)—>(C, Z) in € such that “*;— ¢ commutes.
The composition in C\A is defined in the obvious way; we have a forgetful functor
A4:C\A—> B\ A. We define the bifunctor,

Exp, : (C\A)® x C\A—C4

by
(A 2> % N -Zg) —s (b*2)*Y,
b, C ®*2)*
A-5% a7 é, —inr— 1 (pob )™,
b Z (b/*zl)a Y
B (b*Z)“*Y
a/' Y b Z *s
( AP"‘ 1 <——|l¢ﬂs, A-—9r— U (/A et

(b* Z)aI*Y/
Given M over L in M, we have the functor,

Dy M\M—C\A

defined by:
@, m 4 & Ny — FL 5 "’L}?K
&, M) X, N) P FK N
(L, M) (,p) —> FL Fj| «— |®p
. T
(J, P) FJ dP

Wy is defined similarly. Let us consider,
O x Wiy 1 (M\M)*® x (M\M)—>(C\A)°? x (C\A)
and finally the composite,
T=4er Trr=aer Expy o (3 x War) : M\M)P x (M\M)—sC4. 14

The expression (13) stands for the end of the bifunctor (14).

To establish formula (13), let us consider an arbitrary E over F in (M, C),
together with an arrow u: E x ®— W in (M, @)F (recall that the product E x &
was calculated above). Let us fix L and M as before, and consider any m: M —> N;
L=g4or M(m): L— K. Let us define ¢, as the composite of,

(8my (((F&)*un)op)™

EM (FO*EN ((FO)*W N)FO"oN (15)

I claim that (&, )m:pm—~ i8S @ wedge to the bifunctor I". To verify this assertion,

m ¢ K
M P . L

let ™;— p beanarrow in M\M; let ~ 3z~ j be the triangle “underlying” the
previous one in L;

a/-B vy
c J
let A FLFE»FJ inB,
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®N EN SNxEN—HY L yn
let the data in (5) be bp ] Ep
&P EP &P xEP vP
np
t W S EN
andlet 7 ¢ be my = {&p
w B~ B8P

With this notation, let us apply Lemma 3.4 (iii). The commutativity of the diagram
(5) is part of the naturality of x. Hence, (9) commutes; in the diagram

* ~ *
o at w800 0), (gry)el S

T\ ¢ Oa*z' (b*Y)a*U
S 4 A 0 e
(b*q 0 p)
obtained from (9), the left-hand side triangle commutes, and the outside is the same

as '(m,m) ',

M I'(m,n)

\

n

1

['(n,n) %(P"ln)

This verifies the claim that (&, )m:m— n is @ wedge to T'yy.
For any (L, M) in M, let us define XM over FL by EM = [Ty, ie., by
formula (13); let

”,ﬁl = Tm = T(t,m):M—>N- EM—> ((Fe)*\pN)(Ft)*dw

be the limit projections for the end defining X M. Forany (¢, m) : (L, M) - (K, N),
there is a unique arrow over F¢, denoted ¥m, such that,

M n},‘fn
((Fj()*l]IP)(F”)*¢P _V) ((Fz)*q,P)(Fl)*d)P
Xm
my
XN (16)

commutes for all (j, p) : (K, N)—>(J, P); here, y is the canonical cartesian arrow
over Fj, coming from the fact that (Fj)* preserves exponentials. The reason is that
(y o n},‘fn) p 18, as is easily seen, a “generalized” wedge to I'y, consisting of arrows
all over Fj; the universal property of X N as an extended limit (end) (see Lemma 3.2
(ii)) implies the assertion.

It is easily seen that ¥: M—C is a functor; it is over F in (M, C).
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Next, we define vy : ®M x TM— WM so that (vp)~ = 7]f : TM—>
(W M)®M (for simplicity, we assume 1% = 1q4; there is enough freedom in the
choice of the pullback functors so that there is no loss of generality).

Note that in case p = 1y, the arrow y in (16) is the identity. Taking into account
the definition of vy, taking p = 1y, and pulling back (16) to over F£, we obtain the
commutativity of the following.

M T

Em)y (FO*WN)FO*oN

((F&)*vy 0 p)~
(FO*XN a7

Let us apply Lemma 3.4 (ii), with c: B— C standing for F¢: FL— FK, and (5)
standing for,

dM IM IMxIM—M upm
¢ml rXm

ON XN PN xXEN N YN
The diagram (8) now commutes; in fact, when we draw the diagonal into (8), as in,

W___ﬂi. VU ()")U

4 o (c*Y)V
*Z————— (7)) — Ty
¢ (c*q 0 p)~
the left-hand side triangle is (17), and the remaining quadrilateral is commutative
because (7,,)n, is a wedge. Thus we conclude that (6) commutes; this shows the
naturality of v = (vpr)p:  x T— V.

Let us verify the universal property of v as evaluation for ¥ = W®. Let
w: ® x E— WV be any arrow over 1 in (M, C). Let M be over L in M. As we
said above, (&) m:m— n as defined in (15) is a wedge to I'ps. Hence, by the universal
property of XM as an end of I"y, we have a unique ny: EM —> XM over FL such

that
\&~

nM ((Fe)*\pN)(FZ)*¢N

T

m

M (18)

[x]

M

commutes for all (¢, m) : (L, M)—> (K, N). Now, when we look at,

aM Em EN &‘
nM’ W Eren e
M S Xm Tp (19)
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withm as before, and any (j, p) : (K, N)—> (J, P), we find that the outside pentagon
commutes; the reason is that 7, o Xm = y o 7, from (16); the definition of ¢ easily
gives that £, 0 Em = y o {pp; thus, the commutativity in question reduces to (18) with
pm for m. The right-hand side triangle of (19) commutes by (18). We conclude that
the two diagonals s, t: EM— XN in (19) satisfy 7, o s = m, o ¢ for all p, which,
by the uniqueness part of the end-property of £ N, says that s = ¢. This means that
n = (npm)m : E—> X is natural.
Putting m = 1y in (18), we get that,

EM ~
m
T]M q,MCDN
M

commutes, which is equivalent to the commutativity of,
dM x EM
\Q‘
vYM
/v'

m
PM x EM

1¢M X T)M

in other words, 4 = v o (1¢ x 1) as required for the existence part of the universal
property. The uniqueness of n can also be read off what came before.

The preservation of exponentials by pullback functorsin (M, C) is aconsequence
of the same property in C and the assumed preservation of limits by pullback functors;
the details are left to the reader.

Proof: Part 2, 1, Let h: F—>G be in [L, B], ® over F, ¥ over G in (M, C),
and let r: h*¥— & be an arrow over 1p. In particular, for any K € L and N
over K, we have the component ry: hy W N—> ®N over FK, and by transpos-
ing, ry*: YN — [Ty, ®N over GK. Now, if we also consider m: M —> N over
£: L—> K, then we have ry* o Wm: W M—Tl,, ®N over G£, and gm=ger(rn* o
Ym) : WM—(GL)*I1,, PN over GL. We will point out that the gy, for fixed
(L, M), and varying (K, N) and (¢, m), satisfy certain commutativities, involving
further arrows, all over GL, so that the g, form a cone over a diagram defined us-
ing ®, without reference to W. The “generic” such arrow r, o : h*¥—> & with
¥ = I, ®, will be obtained through the limit cone on that same diagram.
Consider the following situation:

D A

W X X 20)
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with the diagram in the base category B assumed commutative, and with x over d (it
is obtained by adding some items to, as well as taking some away from, the one in
Lemma 3.5). We may deduce the arrows,

e*T, X
fr@*af oy, x)* o oply
MW ————— f*I1.d*X
SOV —snw @1)

~

all in CE; here, ¢: f*b* —> e* = (bf)* is the canonical isomorphism, ¥ is as in
Lemma 3.5. Assume given &: M—>C over F:L—B,h: F—G in[L,B],L € L
. K
LY
and M over L; for the time being, let us fix these items. Further, let ~ 37— 7 be
Pl
commutativein L, ~ ,~ p commutative over the previous triangle (the new items
are considered variable), and let

FK 7 FJ
N @p OP 2
instantiate (20). Let us denote the arrows in (21) derived from (22) as (20) by
Sn
"
S @

(note that the two sources in (21) depend on m and n, through £ and k, respectively,
in the same way; (23) is in the fiber @G L). The diagram we want is put together from
parts as in (23). More precisely, we consider the graph G whose objects areNsymbols

m
p
{m: M— N), (M is fixed; the rest is variable), and the symbols (@ %) ), with
the triangle commutative in L; the arrows of the graph are the symbols as in,
(n:M—P)

(n7 p)Z
N

(n, ph > P (24)
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The diagram I = I'y: G—> CF is defined by assigning (23) to (24). What we
claim is that the arrows qm=def(rN# o¥m) : YM—(GO*Iy, &N = §,, defined
above form a cone on I". This means the commutativity of the outside quadrilateral
in,

# .
U @ ow) e*Tl,x
b4 ¢
frutoy
o) f*z [* X
v"o02)
[t fr@d*aX oy, x)*
fH(d*ef o ¥n,x)* o p7?
[ra.w fr.d*X
Sr(x) (25)

where, in addition to the previous identifications, we also take

U v
Z/YM—QY to be \PNA}'H/WM\IJP

and
c*Z a*y hx¥YN h3¥ P
U[ N Ju to be er \rP
w N op P

But Lemma 3.5 is applicable, since (11) is the same as,

(h*q/)N_ﬂ*_q_’)_PL. (B*¥) P
N rp
SN bP

$p

which is the naturality of r. We conclude that the inner square in (25) commutes
(it is the same as (10) with f* applied to it). The left-hand side triangle in (25)
commutes by (4); the right-hand side triangle commutes by definition; and the upper
quadrilateral commutes, by applying (1), (2) and (4). Thus, (25) indeed commutes,
which shows our claim on (gm)m:m—n being acone on T.

Let us define EM=g1inl'e € CL. The definition of & on arrows, and the
proof that X so defined qualifies as IT, & are closely parallel to the corresponding
parts of the first part of the proof, and will be omitted.

The stability of I, & is true for similar reasons as the preservation of exponen-
tials by pullback functors. Together with Proposition 3.3, this proves Proposition
3.6.

In the sequel, we will only use the special case of Proposition 3.6 with C a
po-fibration. In this case, we can give simpler formulas for the operations; the reason
is that the diagram of any limit in a poset is the same as the infimum of the objects
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involved (the arrows in the diagram play no role). I may add that the direct proof of
the special case in question would be considerably simpler than that of Proposition
3.6.

Corollary 3.6' Assume C g is an hpo-fibration (with equality), each fiber of

C is a complete lattice, and all pullback functors a*: C8 —> @4 preserve infima of
arbitrary sets in CB. Then, for any prefibration M, (M, C) is an h™-fibration (with
equality), and we have the following formulas:

for &, W over F in M, C), M over L in M,

(@—V)(M) = A (FO*®N—> (FO*¥N);
(€,m):(L,M)—(K,N)

forh: F—G in[L, B}, ® over F in (M, C), M over L,
Vr®)(M) = A\ (GO)* (Vag ®N).

(&m):(L, M)~ (K,N)

Let M Ig, M’ bé be prefibrations and u = (H, E) : M'—>M a morphism

of prefibrations. Then we have an induced functor p* : [M, C]—>[M’, C] defined
by u*(F, ®) = (F o H,® o B). In fact, we have an induced morphism (u) =
(H, B)=4¢r(H*, u*) : (M, C)—> (M, €) of prefibrations.

For any functor F:A—> B, we say that F is quite surjective if the following
holds: for any A € A and any g: F(A)—> B in B, there is f: A—> A’ such that
F(f) = g (in particular, F (A") = B) (it would be enough to require the existence of
a commutative triangle,

F(A4) F(f) F(A/)

T~ =

B
with an isomorphism).

Proposition 3.6” (i) Assume C is a fibration (¢ -fibration). Then, for any mor-
phism (H, B): M'— M of prefibrations, the induced (H, E): (M, C)—> (M, @) is
a morphism of fibrations (¢ -morphism).

(ii) Assume @ is a KO -po-fibration (with equality). Assume each fiber of C is a
complete Heyting algebra. Let p = (H, B): M'—> M with E: M'—>M as a quite
surjective functor. Then (p): (M, C)—> (M, €) isan hO)-morphism. If, in addition,
M and M have initial objects and E maps the initial object of M into that of M', then
(1) is conservative.

Proof: (i) This is easy because of the pointwise nature of the operations in question.
(ii) We rely on the formulas in Corollary 3.6’. Let us consider the data in the
following diagram.

- d
! ~—
’T T T ® W=V, (d)
M M .
| b .| e
L L gz B F— G
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We have, for any (L, M) in M,
VM ®)(M) = 1A\ (GO*(Yng (PN)), (26)

(,m):(L,M)—(K,N)
and, for any (L', M") in M/,
VarPEYM') = /\ (GO)* (Vg (PN)). 27

@ ,m’):(L",M")—(K’,N")

With M = E(M’), the comparison of (26) and (27) shows that in (27), the set of
which the meet is taken is a subset of that for (26), and, if for all m: M— N, there is
m’: M'— N’ such that m = B (m’) (which holds by the quite surjective hypothesis),
then those two sets coincide, showing that the two values in (26) and (27) are equal.

This shows that (u) preserves Vys. The argument for the preservation of the
Heyting implications in the fibers is similar.

Under the additional hypothesis, the functor is surjective on objects. Thus, if
& £ &/ in the fiber over F, then there is M € M such that ®M % d'M; for
some M’ € M’, we have M = E(M’), hence ($ o E)(M') £ (¥ o E)(M'), hence
(P o E) £ (¥ o E), showing that (i) is conservative.

We will need the technical result Proposition 3.9 below; we prove it after some
preparations.

Lemma 3.7  Consider the following commutative diagram in Set:

e
X
/| ;o
X m
/ CXB m_|
%Xf l’”%
C' x B’ ] B’

and assume that e, g are surjective, the left-hand side quadrilateral is a pullback,
and m’ is one-to-one; also, the bottom square is built out of products as the notation
indicates. The ¢’ is surjective as well.

Proof: The proof is a diagram chase; here it is.

5 2

y X
g/‘” (lc B T
(c/,sb/)] gl

The numbers next to the elements indicate the order in which the elements are chosen.
y exists because e is surjective; ¢’ because g is surjective. At this point, we have
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(¢’, b") mapping to (c, b) by g x f. By the pullback property of the left face, there is
y’ mapping to (¢/, b’) by n’. Now, if x” is the element y’ maps to by ¢/, then, by the
commutativity of the front face, x” maps to b’ by m’; since x” also maps to b’ by m’,
x” = x’ by m’ being one-to-one. Our goal was to find y’ mapping to x’ by ¢/, and we
have achieved that goal.

For a c=-doctrine C € and an arrow f: A—> B in B, we say that f is cocarte-
sian if the (uniquely determined) arrow 14— 15 over f is cocartesian, i.e., when
Xr(14)—> 1p is an isomorphism.

Corollary 3.8 Suppose C ; is a c=-po-doctrine, and consider the following dia-
gram, partly in C, partly in B:

C’xB’ =7

object and arrows of the upper face are over the corresponding objects and arrows
as indicated. Assume that the bottom face is a commutative diagram in B, e and g
are cocartesian, v is cartesian. The ¢’ is cocartesian as well.

Proof: For C = P(Set), this follows from Lemma 3.7. Turning to the general case,
first note that it suffices to treat the case when C is small (one takes a suitable small
subprefibration). Given any c¢=-morphism M:C—> P(Set), the image under M of
the diagram of the corollary will be another such diagram in P(Set). Hence, for any
such M, M(¢') is cocartesian, i.e., M(3,, Y’) M@y M (X"). Therefore, by the
Godel completeness Theorem (2.1), 3,/ Y’ <m X ’,i.e., € is cocartesian.

Proposition 3.9 (i) Let C E be a ¢)-po-fibration, 8 ga c=-po-fibration, and let
us consider the fibration (C, 8) (see Proposition 3.3 (i), and the subprefibration
)@, 8) of (C, 8). Consider (G, ¥) € c[C,8), let F:B—>S be a cartesian
functor, and let h: F—> G be any natural transformation. Finally, consider the
cartesian arrow y . h*(V)— WV ogver h in (C, 8):

D
C—F—F  pey—L—y
[ i 3
B . F—p—G

Assume that for all C € B the component hc: F(C)—> G(C) is cocartesian (see
before Corollary 3.8). Then (F, h*V) € c[e, 81.

(ii) Without the last cocartesianness assumption, (F, h*W) still inherits from
(G, W) each preservation property figuring in the definition of “c-morphism,” except
for the preservation of cocartesian arrows.
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Proof: Note (see Proposition 3.3(i)) that & = h*(¥) is defined pointwise: ®(X) =

% (¥ (X)) for X over B in C. This means that for the induced functors W2: 2 —s
868, 8.8 8B, we have &8 = b} o VB, with h%: 892 — 875 the pullback
functor. Since both A} and W8 preserve finite products and binary coproducts, the
first by the definition of ¢~ -fibration, the second since W is a ¢~ -morphism, it follows
that &2 does the same, as required.

To see that & preserves cartesian arrows, let u: X—Y be cartesian over f:
A—> B. du: dX—> dY is the unique arrow v: X —> dY for which yy o v =
u o yx; since here yy, u, yx are all cartesian, v is cartesian as well.

Now, let e: Y —> X be cocartesian over 7, : C x B— B. Let

, Ly e WX
QY/T Pe X/y"{
GB
Ty

GC xGB
B

&

s

cxB=hc X hp

S

FC x FB
2

stand for the diagram of Corollary 3.8. The assumptions of Corollary 3.8 are satisfied;
we conclude that & (e) is cocartesian as required.
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