Extensions of the \aleph_{0}-Valued Łukasiewicz Propositional Logic

M. G. BEAVERS

Abstract

MV-algebras were introduced by Chang in 1958 preliminary to his providing an algebraic completeness proof for the \aleph_{0}-valued Łukasiewicz propositional logic, $\mathbf{L}_{\mathrm{x}_{0}}$. In this paper a method is given for determining, for an arbitrary normal extension of $\mathbf{E}_{\mathrm{x}_{0}}$, an MV-algebra characteristic for the extension. The characteristic algebras are finite direct products of two sets of linearly ordered MV-algebras identified by Komori. Conversely, it is shown that, given an algebra which is isomorphic to the direct product of elements from these two sets of linearly ordered MV-algebras, a single axiom can be determined which, when added to the axioms for $\mathbf{L}_{\mathrm{x}_{0}}$, yields an axiomatization sound and weakly complete for the given algebra. As a consequence of the lattice ordering of these products of MV-algebras the cardinal and ordinal degrees of completeness of any normal extension of $\mathbf{L}_{\mathrm{x}_{0}}$ can be determined.

1 Introduction In [4] Komori proves that any proper extension of $\mathbf{L}_{\mathrm{N}_{0}}$ has a characteristic matrix isomorphic to a finite direct product of elements of two fundamental types of MV-algebras, thus providing a type of characterization for any axiomatic extension of $\mathbf{L}_{\mathrm{x}_{0}}$. We will provide a somewhat stronger result in Theorem 4.4 below as the principal result of this paper. Our result improves on Komori's by giving a method for determining which MV-algebras occur in the finite products. Using the notion of the genus of a formula, given in Rose [11], we show that a formula is satisfied in the Komori characterization if and only if it is of a corresponding genus. By connecting Komori's characterization with Rose's notion of genus it is possible to link characteristic matrices with extensions of $\mathbf{L}_{\mathrm{K}_{0}}$. This result amounts to a soundness and weak completeness theorem for the characterizations provided by Komori.

2 Lukasiewicz matrices The n-valued Łukasiewicz propositional calculi (for n either an integer greater than 1 or \aleph_{0}) were defined with the aid of logical
matrices by Łukasiewicz in the 1920s. The matrix given by Łukasiewicz for the \aleph_{0}-valued system was the algebra

$$
\left[S_{\aleph_{0}}=\left\langle Q_{[0,1]},\{1\}, \rightarrow, \neg\right\rangle\right]
$$

of type $\langle 2,1\rangle$, where $Q_{[0,1]}$ designates the set of rational numbers in the interval $[0,1]$, that is, the matrix is composed of the rational numbers in the unit interval $[0,1]$, with the set of designated elements being $D=\{1\}$, having a binary operator \rightarrow and a unary operator \neg. Lukasiewicz specified that $a \rightarrow b$ is to be evaluated by $\min (1,1-a+b)$ and $\neg a$ is to be evaluated by $1-a$.

The matrices for the finite systems are gotten by taking subsets of $Q_{[0,1]}$ closed under the operators. The standard examples of these are algebras of the form

$$
\left[S_{n+1}=\langle\{0,1 / n, 2 / n, \ldots, 1\},\{1\}, \rightarrow, \neg\rangle\right]
$$

for n some integer greater than 1 . Let $S_{\aleph_{0}}$ denote $Q_{[0,1]}$, for n a positive integer let S_{n+1} denote $\{0,1 / n, 2 / n, \ldots, 1\}$ and let $S_{1}=\{1\}$.
$S_{\mathrm{N}_{0}}$ can be axiomatized with the rules modus ponens and substitution with the following axioms:

A1. $p \supset(q \supset p)$.
A2. $(p \supset q) \supset((q \supset r) \supset(p \supset r))$.
A3. $((p \supset q) \supset q) \supset((q \supset p) \supset p)$.
A4. $(\sim q \supset \sim p) \supset(p \supset q)$.
The first published proof of the weak completeness of axioms 1-4 for $S_{\aleph_{0}}$ is found in Rose and Rosser [12] . Chang [2] gives an algebraic proof of completeness using MV-algebras. The Lindenbaum algebra of a logic L is the algebra of equivalence classes of formulas of the logic determined by provable equivalence. Given a soundness and completeness result for a logic \mathbf{L} with respect to a matrix \mathbf{S}, we say that \mathbf{S} is characteristic for \mathbf{L}. We say that the logic L_{1} is an extension of the logic L_{2} if L_{1} and L_{2} have the same sentences and every theorem of L_{2} is a theorem of L_{1}. An extension is normal when closed under modus ponens and substitution.
$S_{\mathrm{x}_{0}}$ is characteristic for $\mathbf{L}_{\mathbf{x}_{0}}$, so $\mathbf{L}_{\mathbf{x}_{0}}$ has an infinite characteristic matrix, but there is no finite characteristic matrix for $\mathbf{L}_{\mathbf{N}_{0}}$. For a proof of this fact see Urquhart [16].

Chang developed MV-algebras in an attempt to parallel the treatment of classical two-valued propositional logic with Boolean algebras, i.e., as the algebras "that would correspond in a natural fashion" to the logic $\mathbf{L}_{\mathrm{x}_{0}}$. We give here not Chang's axioms but rather a simpler set provided in Mangani [8] and shown to be equivalent to Chang's axioms in Mundici [9].

Definition 2.1 The algebra $S=\langle S,+, \circ,-, 0,1\rangle$ is an MV-algebra if S is a nonempty set, S is of type $\langle 2,2,1,0,0\rangle$ with 0 and 1 distinct such that:

P1. $(x+y)+z=x+(y+z)$
P2. $x+0=x$
P3. $x+y=y+x$
P4. $x+1=1$
P5. $x=x$

P6. $0^{-}=1$
P7. $x+x^{-}=1$
P8. $\left(x^{-}+y\right)^{-}+y=\left(x+y^{-}\right)^{-}+x$
P9. $x \circ y=\left(x^{-}+y^{-}\right)^{-}$.
Theorem 1.18 of Chang [1] shows that MV-algebras are a variety. Chang goes on to show that the Lindenbaum algebra of an extension of $\mathbf{L}_{x_{0}}$ is an MV-algebra, and furthermore every MV-algebra satisfies the translation of the axioms of $\mathbf{L}_{\aleph_{0}}$. "Hence we conclude that the two sets of axioms (those of MV-algebras and those of the \aleph_{0}-valued Łukasiewicz propositonal logic) are equivalent under an appropriate relationship between C and N (that is, between \supset and \sim) and,$+ \circ$, and - ." (See [1], p. 473.) Chang then gives an MV-algebra, which he denotes by C, composed of the following elements: $[0, \varepsilon, 2 \varepsilon, 3 \varepsilon, \ldots$, and $\ldots, 1-3 \varepsilon, 1-2 \varepsilon, 1-\varepsilon, 1$.] The algebra is linearly ordered, the order being exemplified by the above sequence or more formally:

$$
x \leq y \text { if and only if } \begin{cases}\text { either } & x=n \cdot \varepsilon \text { and } y=1-m \cdot \varepsilon \\ \text { or } & x=n \cdot \varepsilon \text { and } y=m \cdot \varepsilon \text { and } n \leq m \\ \text { or } & x=1-n \cdot \varepsilon \text { and } y=1-m \cdot \varepsilon \text { and } m \leq n .\end{cases}
$$

The table for this MV-algebra can be considered the result of adding a band of "infinitesimals" adjacent to the values of the two-valued system. Komori generalizes Chang's C by, in effect, for each n, adding bands of infinitesimals around each of the elements of the n-valued algebra S_{n}. Komori defines the CN -algebras $\left\langle S_{n}^{\omega}, \rightarrow, \neg,(1,0),(0,0)\right\rangle$ for n an integer greater than 1 as follows:

$$
\begin{aligned}
S_{n+1}^{\omega}= & \left\{(x, y) \left\lvert\, x \in\left\{\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right\}\right., y \in Z\right\} \\
& \cup\{(0, y) \mid y \in N\} \cup\{(1,-y) \mid y \in N\}
\end{aligned}
$$

where Z and N are the set of integers and the set of natural numbers. We have changed Komori's indices to accord with conventions adopted. Komori's CNalgebras are categorically equivalent to Chang's MV-algebras. The operators \neg and \rightarrow are defined on S_{n}^{ω} by:

$$
\begin{gathered}
\neg(x, y)=(1-x,-y) \\
(x, y) \rightarrow(z, u)= \begin{cases}(1,0) & \text { if } z>x \\
(1, \min (0, u-y)) & \text { if } z=x \\
(1-x+z, u-y) & \text { otherwise }\end{cases}
\end{gathered}
$$

A formula φ is a tautology of S_{n}, i.e., $\varphi \in \operatorname{Taut}\left(S_{n}\right)$ or $\xi_{S_{n}} \varphi$, if for all interpretations v in $S_{n}, v(\varphi)=1$, and φ is a tautology of S_{n}^{ω}, i.e., $\varphi \in \operatorname{Taut}\left(S_{n}^{\omega}\right)$ or $\xi_{S_{n}^{\omega}} \varphi$, if for all interpretations v in $S_{n}^{\omega}, v(\varphi)=(1,0)$. That a formula φ is a theorem of the logic \mathbf{L} is denoted by $\varphi \in \operatorname{Th}(\ell)$ or $\vdash_{£} \varphi$.

McNaughton [7] establishes a connection between a class of real valued functions on $[0,1]^{n}$ and formulas of $\mathbf{\lfloor}_{\mathrm{N}_{0}}$ which will be used in the proofs that follow.

Definition 2.2 Let φ be a formula and f be an n-ary real function. φ represents f (or f is represented by φ) if and only if
(i) φ has exactly n propositional variables,
(ii) the field of f is $[0,1]$, and
(iii) $\forall x_{1}, \ldots, x_{n}$ and for every valuation v such that $v\left(p_{i}\right)=x_{i}$, for $1 \leq i \leq n$,

$$
f\left(x_{1}, \ldots, x_{k}\right)=v(\varphi)
$$

Theorem 2.3 (McNaughton)
The formula φ represents the real function f if and only if
(i) f is continuous over $[0,1]^{n}$ and Range $(f) \subseteq[0,1]$,
(ii) the domain, $[0,1]^{n}$, is partitioned into a finite number, j, of subdomains $D_{i}, 1 \leq i \leq j$, where the partition is exhaustive and the interiors of the subdomains are mutually exclusive, and
(iii) there are j polynomials π_{1}, \ldots, π_{j} each of the form

$$
\pi_{i}=b_{i}+m_{1, i} x_{1}+\cdots+m_{n, i} x_{n}
$$

with $b_{i}, m_{i^{\prime}, i}$ integers such that if $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in D_{i}$ then

$$
f\left(x_{1}, \ldots, x_{n}\right)=\pi_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

3 The lattice of genera of formulas of $\mathbf{L}_{\aleph_{0}}$ In [11] Rose introduces the notion of the genus of a formula and proves Lemma 3.7 below preliminary to proving that the ordinal degree of completeness of $\mathbf{E}_{\aleph_{0}}$ is ω. In this section Rose's lemma is generalized. It is perhaps useful to think of the genus of a formula as a measure of its power as an axiom, since by Theorem 3.8 below, the logic obtained by adding the formula φ to the axioms of $\mathbf{E}_{\aleph_{0}}$, where φ is of genus G_{φ}, allows the derivation of a formula ψ of genus G_{ψ} if and only if $G_{\varphi} \leq G_{\psi}$. The lower the genus of φ in the lattice ordering, the more power φ has as an axiom. The definition of the genus of a formula is:

Definition 3.1 (Rose) Suppose that the formula $\varphi\left(p_{1}, \ldots, p_{n}\right)$ is not a theorem of $\mathbf{L}_{\mathrm{K}_{0}}$ but is valid in the Łukasiewicz calculi with $b_{1}+1, \ldots, b_{i}+1, c_{1}+$ $1, \ldots, c_{j}+1$ values but in no others. If for each $b_{k}, 1 \leq k \leq i$, there is a real number $\epsilon>0$ such that if v is a valuation then if $\left|v\left(p_{h}\right)-a_{h} / b_{k}\right|<\epsilon, 1 \leq h \leq n$, for a_{h} an integer $0 \leq a_{h} \leq b_{k}$, then $v\left(\varphi\left(p_{1}, \ldots, p_{n}\right)\right)=1$, but no such ϵ exists for any of the c's, then φ is of genus $\left\langle b_{1}+1, \ldots, b_{i}+1 ; c_{1}+1, \ldots, c_{j}+1\right\rangle$.

Let G_{φ} denote the genus of φ. If $G_{\varphi}=\left\langle b_{1}+1, \ldots, b_{i}+1 ; c_{1}+1, \ldots, c_{j}+1\right\rangle$, let B_{φ} denote $\left\{b_{1}+1, \ldots, b_{i}+1\right\}, C_{\varphi}$ denote $\left\{c_{1}+1, \ldots, c_{j}+1\right\}$, and $\cup G_{\varphi}$ denote $B_{\varphi} \cup C_{\varphi}$. For any $\varphi, B_{\varphi} \cap C_{\varphi}=\varnothing$. Since for all $n, 2 \leq n \leq \aleph_{0}$, every theorem of \mathbf{L}_{n} is a theorem of \mathbf{L}_{2}, a formula φ has a genus if and only if φ is a theorem of the classical two-valued system and not a theorem of the \aleph_{0}-valued Łukasiewicz system. Thus the theorems of \mathbf{L}_{2} can be partitioned according to genus, i.e., $[\varphi]=[\psi]$ just in case $G_{\varphi}=G_{\psi}$. The structure of this partition is the key to determining the axiomatization of the extensions of $\mathbf{L}_{\aleph_{0}}$. The operations of meet and join in the lattice of genera are defined as follows:

$$
\begin{aligned}
& G_{\varphi} \vee G_{\psi}=\left\langle B_{\varphi} \cup B_{\psi} ; C_{\varphi} \cup C_{\psi}-B_{\varphi} \cup B_{\psi}\right\rangle \\
& G_{\varphi} \wedge G_{\psi}=\left\langle B_{\varphi} \cap B_{\psi} ;\left(\left(B_{\varphi} \cup C_{\varphi}\right) \cap\left(B_{\psi} \cup C_{\psi}\right)\right)-B_{\varphi} \cap B_{\psi}\right\rangle .
\end{aligned}
$$

The genera of the theorems of \mathbf{L}_{2}, i.e., $\left\{G_{\varphi} \mid \varphi \in \operatorname{Th}\left(\ell_{2}\right\}\right.$, form a distributive lattice which we denote by G. G is bounded below, but not above. The minimal element of G is $\langle; 2\rangle$. The partial order on the lattice of genera, G, is such that for $G_{\varphi}, G_{\psi} \in G, G_{\varphi} \leq G_{\psi}$ if and only if $G_{\varphi} \wedge G_{\psi}=G_{\varphi}$. That is, $G_{\varphi} \leq$ G_{ψ} just in case if b occurs before the ; in G_{φ} then b occurs before the ; in G_{ψ}, and $\cup G_{\varphi} \subseteq \cup G_{\psi}$.

The definition of genus can be improved. The addition of a maximal element to the lattice of genera will simplify some arguments below. Therefore, let $G_{\varphi}=\omega$ if and only if φ is a theorem of $\mathbf{L}_{\mathrm{r}_{0}}$, and thus add the maximal element ω to the lattice of genera G. Also, as a result of the subset relations that hold between the sets of theorems of the various normal extensions of $\mathbf{L}_{\mathbf{x}_{0}}$, the genus sometimes contains more elements than is necessary to convey the status of the formula. For example, $\operatorname{Th}\left(\mathbf{L}_{7}\right) \subset \operatorname{Th}\left(\mathbf{L}_{4}\right)$ since 4-1 divides $7-1$ (a result provided by Lindenbaum), so one might just as well say $G_{\varphi}=\langle; 7\rangle$ as that $G_{\varphi}=$ $\langle; 4,7\rangle$ since no more information is conveyed by the latter expression. However $G_{\varphi}=\langle 4 ; 7\rangle$ is not redundant and $G_{\varphi}=\langle 7 ; 4\rangle$ is contradictory. We decide, however, not to eliminate the redundancy because of the complexity that it introduces in the definitions of meet and join and thus into the arguments given below.

The following lemmas are used in the proof of Theorem 3.8.
Lemma 3.2 $\quad G_{\varphi} \wedge G_{\psi}=G_{\varphi \wedge \psi}$.
Proof: Suppose that $c+1$ and $b+1$ are in $G_{\varphi} \wedge G_{\psi}$. Then $b+1$ is in both B_{φ} and B_{ψ} and thus in $G_{\varphi \wedge \psi}$ before the ;. $c+1$ is in both G_{φ} and G_{ψ} and thus in $G_{\varphi \wedge \psi}$. So $G_{\varphi} \wedge G_{\psi} \leq G_{\varphi \wedge \psi}$.

Suppose that $c+1$ and $b+1$ are in $G_{\varphi \wedge \psi}$ before and after the ; respectively. Then $b+1$ is in both B_{φ} and B_{ψ} and thus in $G_{\varphi} \wedge G_{\psi}$ before the ;. And $c+1$ is in both G_{φ} and G_{ψ} and thus in $G_{\varphi} \wedge G_{\psi}$. So $G_{\varphi \wedge \psi} \leq G_{\varphi} \wedge G_{\psi}$.

So $G_{\varphi} \wedge G_{\psi}=G_{\varphi \wedge \psi}$.
Lemma 3.3 $G_{\varphi} \vee G_{\psi} \leq G_{\varphi \vee \psi}$.
Proof: Suppose that $c+1$ and $b+1$ are in $G_{\varphi} \vee G_{\psi}$ before and after the ; respectively. Then $b+1$ is in at least one of B_{φ} and B_{ψ} before the ; and thus in $G_{\varphi \vee \psi}$ before the ;. $c+1$ is in at least one of G_{φ} and G_{ψ} and thus in $G_{\varphi \vee \psi}$. So $G_{\varphi} \vee G_{\psi} \leq G_{\varphi \vee \psi}$.

Lemma 3.4 Let $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots,\right\}$ be a set of formulas. There is a finite subset $\Phi_{\text {fin }}$ of Φ such that $\wedge_{\varphi \in \Phi} G_{\varphi}=\wedge_{\varphi \in \Phi_{\text {fin }}} G_{\varphi}$.

Proof: For each genus G_{φ} there is only a finite number of distinct G_{ψ} such that $G_{\psi} \leq G_{\varphi}$ and $G_{\psi} \neq G_{\varphi}$.

Lemma 3.5 In $S_{\aleph_{0}}$ if whenever the formula φ takes the value 1 the formula ψ does so, then $G_{\varphi \wedge \psi}=G_{\varphi}$.

Proof: Since whenever the formula φ takes the value 1 the formula ψ does so, $G_{\varphi} \leq G_{\psi}$ and so $G_{\varphi}=G_{\varphi} \wedge G_{\psi}$. But $G_{\varphi} \wedge G_{\psi}=G_{\varphi \wedge \psi}$. So $G_{\varphi \wedge \psi}=G_{\varphi}$.

Lemma 3.6 $G_{\varphi} \leq G_{\varphi(\psi / p)}$, i.e., any substitution instance of a formula has a genus \geq the genus of the formula.

Proof: An induction on the complexity of formulas shows that for any formula $\psi\left(p_{1}, \ldots, p_{n}\right)$ if $v\left(p_{i}\right)=a_{j} / c$ for $1 \leq i \leq n$ and $0 \leq j \leq c$ then $v(\psi)=a / c$ for some integer $a, 0 \leq a \leq c$.

Suppose $c+1 \in G_{\varphi}$. Then for $v\left(p_{i}\right)=a_{j} / c$ with $1 \leq i \leq n$ and a_{j} an integer $0 \leq a_{j} \leq c, v(\psi)=a / c$ for some $0 \leq a \leq c$ and thus $v\left(\varphi\left(\psi / p_{i}\right)\right)=1$.

Suppose $b+1 \in G_{\varphi}$ before the ;. Let ϵ be the number which is associated with b for G_{φ} in the definition of genus. By McNaughton's theorem f is a continuous function on $[0,1]^{n}$ where f is the function associated with the formula ψ. So there is a positive number δ such that if for all p_{i} and all $a_{h},\left|v\left(p_{i}\right)-a_{h_{1}} / b\right|<\delta$ then for all p_{i} and all $a_{h},\left|v\left(\psi\left(p_{1}, \ldots, p_{n}\right)\right)-f\left(a_{h_{1}} / b, \ldots, a_{h_{n}} / b\right)\right|<\epsilon$. Let ϵ^{\prime} be the lesser of δ and ϵ, then $\left|v\left(p_{i}\right)-a_{h_{i}} / b\right|<\epsilon^{\prime}$ implies that $v(\varphi(\psi / p))=1$, i.e., $b+1 \in G_{\varphi}(\psi / p)$ before the ;.

Lemma 3.7 If we adjoin a formula φ of genus $\left\langle b_{1}, \ldots, b_{i} ; c_{1}, \ldots, c_{j}\right\rangle$ to the axioms of the formalization of $\mathbf{L}_{\mathrm{N}_{0}}$ then every formula of this genus becomes provable in the formulation.

Proof: See Rose [11], pp. 181-4.
Let $\mathbf{L}_{\aleph_{0}}+\varphi$ denote the extension of $\mathbf{L}_{\aleph_{0}}$ obtained by adding the formula φ to the axioms of $\mathbf{L}_{\aleph_{0}}$. The following theorem shows that $G_{\varphi}=G_{\psi}$ if and only if $\vdash_{\mathbf{E}_{x_{0}}+\varphi} \psi$ and $\vdash_{\mathbf{E}_{\mathrm{x}_{0}}+\psi} \varphi$. The theorem thus identifies the partial order of the lattice G with extensions of $\mathbf{L}_{\mathrm{x}_{0}}$.

Theorem 3.8 Let $\mathbf{L}_{\mathrm{N}_{0}+\varphi}$ be the logic obtained by adding the formula $\varphi\left(p_{1}, \ldots, p_{n}\right)$ to the axioms of $\mathbf{L}_{\aleph_{0}}$ where φ is of genus G_{φ} and $\psi\left(q_{1}, \ldots, q_{m}\right)$ is of genus G_{ψ}. Then $G_{\varphi} \leq G_{\psi}$ if and only if ψ is a theorem of $\mathbf{L}_{\mathbf{x}_{0}+\varphi}$.

Proof: (\Rightarrow) Suppose $G_{\varphi} \leq G_{\psi}$. By Lemma 3.7 every formula of genus G_{φ} is a theorem of $\mathbf{L}_{\mathrm{K}_{0}}+\varphi$.

By Lemma $3.2 G_{\varphi \wedge \psi}=G_{\varphi}$ and by 3.13 of [12] $\vdash_{\mathbf{E}_{\mathrm{x}_{\mathrm{o}}}}(\varphi \wedge \psi) \supset \psi$ so $\vdash_{\mathbf{E}_{\mathrm{x}_{0}+\varphi}}$ $(\varphi \wedge \psi) \supset \psi$. By Lemma $3.7 \vdash_{\mathbf{E}_{\kappa_{0}}+\varphi}(\varphi \wedge \psi)$ and by modus ponens $\vdash_{\mathbf{E}_{\kappa_{0}}+\varphi} \psi$.
(\Leftarrow) Suppose $\vdash_{\mathbf{E}_{\mathbf{x}_{0}}+\varphi} \psi$, that is, there is a deduction in $\mathbf{E}_{\kappa_{0}}+\varphi$ of ψ. An induction on the steps of the deduction will show that $G_{\varphi} \leq G_{\psi}$. Let B_{1}, \ldots, B_{n}, be the steps of a deduction of ψ in $\mathbf{E}_{\aleph_{0}}+\varphi$ with $B_{n}=\psi$. Suppose $b+1$ is in G_{φ} before the ; and $c+1$ is in G_{φ} after the ;.

Base case. Each of the axioms of $\mathbf{L}_{\aleph_{0}}, \varphi$ and by Lemma 3.6, substitution instances thereof take the value 1 in a neighborhood around a_{i} / b for $0 \leq a_{i} \leq$ $b, 1 \leq i \leq n$ and each takes the value 1 at a_{i} / c for $0 \leq a_{i} \leq c, 1 \leq i \leq n$.

Inductive hypothesis. Suppose that each of the B_{i} for $i<j$ takes the value 1 in a neighborhood around a_{i} / b for $0 \leq a_{i} \leq b, 1 \leq i \leq n$ and each takes the value 1 at a_{i} / c for $0 \leq a_{i} \leq c, 1 \leq i \leq n$.

Inductive step. B_{j} is either an axiom or φ itself or follows from B_{h} and $B_{i}=B_{h} \supset B_{j}$ by modus ponens or B_{j} is a substitution instance of an axiom, φ, or a previous B_{h}. The case where B_{j} is either an axiom or φ itself or a substitution instance of a previous step is treated just as in the base case.

Consider modus ponens. By the inductive hypothesis there are numbers ϵ_{1} and ϵ_{2} such that if for all $x_{j},\left|v\left(x_{j}\right)-a / b_{k}\right|<\epsilon_{1}, 1 \leq j \leq n$ then $v\left(B_{h}\right)=1$ and if for all $x_{j},\left|v\left(x_{j}\right)-a / b_{k}\right|<\epsilon_{2}, 1 \leq j \leq n$ then $v\left(B_{i}\right)=1$. Let ϵ be the lesser of
ϵ_{1} and ϵ_{2}. Since if $v\left(B_{h}\right)=1$ and $v\left(B_{h} \supset B_{j}\right)=1$ then $v\left(B_{j}\right)=1$ for any argument, if for all $x_{j},\left|v\left(x_{j}\right)-a / b_{k}\right|<\epsilon, 1 \leq j \leq n$ then $B_{j}=1$ as well.

By induction, each step in the deduction, and thus ψ, takes the value 1 in a neighborhood around a_{i} / b for $0 \leq a_{i} \leq b$, so $b+1$ is in G_{φ} before the ;. A similar argument shows that $c+1$ is in G_{ψ} after the ;.

4 Connections between Rose and Komori In this section we provide, for every axiomatic extension of $\mathbf{L}_{\mathrm{N}_{0}}$, an algebra that is characteristic for theoremhood. Conversely, we show that for an appropriate algebra a single axiom can be added to those for $\mathbf{L}_{\aleph_{0}}$ to give an axiomatization sound and complete for the algebra. The connection between genus and the two types of algebras S_{n} and S_{n}^{ω} makes this possible.

We will show that $\operatorname{Th}\left(\mathbf{L}_{n}^{\omega}\right)=\operatorname{Taut}\left(S_{n}^{\omega}\right)$. Since the algebra S_{n}^{ω} is an extension of the algebra S_{n}, $\operatorname{Taut}\left(S_{n}^{\omega}\right) \subset \operatorname{Taut}\left(S_{n}\right)$. Also $\bigcap_{j \in J} \operatorname{Taut}\left(S_{j}^{\omega}\right) \subseteq \operatorname{Taut}\left(S_{m}^{\omega}\right)$ if and only if there is a $j \in J$ such that $m-1$ divides $j-1$. Furthermore $\operatorname{Taut}\left(S_{i}\right) \subseteq$ $\operatorname{Taut}\left(S_{2}\right)$, and $\operatorname{Taut}\left(S_{j}^{\omega}\right) \subseteq \operatorname{Taut}\left(S_{2}^{\omega}\right) \subseteq \operatorname{Taut}\left(S_{2}\right)$. A generalization of Lindenbaum's theorem follows from Theorem 3.8, namely, if I and J are sets of positive integers.

$$
\bigcap_{i \in I} \operatorname{Taut}\left(S_{i}\right) \cap \bigcap_{j \in J} \operatorname{Taut}\left(S_{j}^{\omega}\right) \subseteq \operatorname{Taut}\left(S_{m}\right)
$$

if and only if there is an $n \in I \cup J$ such that $m-1$ divides $n-1$.
Let $\mathbf{\lfloor}$ be an extension of $\mathbf{\lfloor}_{\aleph_{0}}$, then by Komori [4] there exist finite sets of integers I and J such that

$$
\operatorname{Th}(L)=\bigcap_{i \in I} \operatorname{Taut}\left(S_{i}\right) \cap \bigcap_{j \in J} \operatorname{Taut}\left(S_{j}^{\omega}\right)
$$

Let us call $\Pi_{i \in I} S_{i} \times \Pi_{j \in J} S_{j}^{\omega}$ the Komori representation of L. We now provide lemmas required for the soundness and completeness result.

The intuitive notion behind the next lemma is that evaluation in $S_{\aleph_{0}}$, the standard model for $\mathbf{L}_{\mathrm{K}_{0}}$, "preserves closeness."
Lemma 4.1 If $\varphi\left(p_{1}, \ldots, p_{n}\right)$ contains k ग's and a valuation v in $S_{\mathrm{N}_{0}}$ assigns to each p_{i} a value which differs from some j_{i} / l by less than ϵ then $v(\varphi)$ differs from some j / l by less than $2^{k} \cdot \epsilon$.
Proof: By induction on the number of \supset 's in φ.
Base case: $k=0 . \varphi=p$ or $\sim p$ so $v(\varphi)$ differs from some j / l by less than ϵ.
Inductive hypothesis: The lemma holds when $k<m$.
Inductive step: Suppose that $\varphi=\psi \supset \theta$ contains $m \supset$'s. Then by the inductive hypothesis for some integers j_{ψ} and j_{θ}

$$
\left|v(\psi)-j_{\psi} / l\right|<2^{m-1} \cdot \epsilon
$$

and

$$
\left|v(\theta)-j_{\theta} / l\right|<2^{m-1} \cdot \epsilon
$$

If $v(\psi) \leq v(\theta)$ then $v(\varphi)=1$. For the case $v(\psi) \geq v(\theta), \mid(1-v(\psi)+$ $\left.v(\theta))-\left(1-j_{\psi} / l+j_{\theta}\right) / l\right) \mid<2^{m} \cdot \epsilon$.

Lemma 4.2 If $G_{\varphi}=\langle B ; C\rangle$ then $k+1 \in B$ if and only if $\xi_{S_{k+1}^{\omega}} \varphi$.
Proof: (\Rightarrow) Suppose $G_{\varphi}=\langle B ; C\rangle$ and $k+1 \in B$. So $\exists \epsilon$ such that if $\forall p_{i} \mid p_{i}-$ $j / k \mid<\epsilon$, then $v(\varphi)=1$ in $S_{\mathrm{N}_{0}}$.

Let v be a valuation in S_{k+1}^{ω}, and let $n=\max \{|y|:(x, y)$ is used in the valuation of φ \}.

Define $h: S_{k+1}^{\omega} \mapsto S_{\mathrm{x}_{0}}$ such that $h(x, y)=x+\epsilon \frac{y}{2 n}$. Note that $x=j / k$ for some j. We require that $\epsilon<1 / 2 k$ in order to insure the one-oneness of h.
h is a homomorphism since:

$$
h(\neg(x, y))=h(1-x,-y)=1-x-\epsilon \frac{y}{2 n}=\neg h(x, y) .
$$

Consider $h((x, y) \rightarrow(z, w))$.
Case 1: $x<z . h((x, y) \rightarrow(z, w))=h(1,0)=1=h(x, y) \rightarrow h(z, w)$.
Case 2: $x=z$.

$$
\begin{aligned}
h((x, y) \rightarrow(z, w)) & =h(1, \min (0, w-y)) \\
& =1+\min (0, w-y) / 2 n \cdot \epsilon \\
& =h\left(x+\epsilon \frac{y}{2 n}\right) \rightarrow h\left(z+\epsilon \frac{w}{2 n}\right) \\
& =h(x, y) \rightarrow h(z, w) .
\end{aligned}
$$

Case 3: $x>z$.

$$
\begin{aligned}
h((x, y) \rightarrow(z, w)) & =h(1-x+z, w-y) \\
& =1-x+z-((w-y) / 2 n) \cdot \epsilon \\
& =h\left(x+\epsilon \frac{y}{2 n}\right) \rightarrow h\left(z+\epsilon \frac{w}{2 n}\right) \\
& =h(x, y) \rightarrow h(z, w) .
\end{aligned}
$$

h is one-one, so h is a monomorphism and thus h gives a valuation in $S_{\mathrm{X}_{0}}$ and since $k+1 \in B, h(v(\varphi))=1$. Because h is a monomorphism and $h(x, y)=1$ then $(x, y)=(1,0)$. So if $k+1 \in B$ then $F_{S_{k+1}^{\omega}}^{\omega} \varphi$.
(\Leftrightarrow) Suppose $\vDash_{S_{k+1}^{\omega}} \varphi$ and $k+1 \notin B$.
Let n be the number of \supset 's in φ. Since $k+1 \notin B$, there is a $p \in v(\varphi)$ and $j, 0 \leq j \leq k$ such that $\forall \epsilon>0, \exists x, 0<|j / k-x|<\epsilon$ such that if $v(p)=x$ then $v(\varphi) \neq 1$.

Since by McNaughton's theorem evaluations are continuous piecewise linear functions it follows that there is an ϵ such that when $v(p)=x$ either $\forall x j / k-$ $\epsilon<x<j / k$ or $\forall x, j / k<x<j / k+\epsilon, v(\varphi(\ldots, p, \ldots)) \neq 1$.

Without loss of generality suppose $\forall x, j / k<x<j / k+\epsilon, v(\varphi(\ldots, p, \ldots)) \neq 1$ when $v(p)=x$. Let $x=j / k+1 / k^{\prime}$ where $1 / k^{\prime}<\epsilon$, and $\left(2^{n+2}\right) / k^{\prime}<1 / k$, and k divides k^{\prime}.

Let $h: S_{k^{\prime}+1} \mapsto S_{k+1}^{\omega}$ be defined by

$$
h\left(i / k^{\prime}\right)= \begin{cases}(j / k, 0) & \text { if } i / k^{\prime}=j / k \\ (j / k, \pm m) & \text { if } i / k^{\prime}=j / k \pm m / k^{\prime}\end{cases}
$$

h is homomorphism since:

$$
h(\neg x)=h\left(1-i / k^{\prime}\right)=(1-j / k, \pm m)=\neg h(x)
$$

Consider $h(x \rightarrow y)$.
Case 1: $x \leq y . h(x \rightarrow y)=h(1)=(1,0)=h(x) \rightarrow h(y)$.
Case 2: $x>y . h(x \rightarrow y)=h(1-x+y)=\left(1-j_{1} / k+j_{2} / k, \pm m_{1} \pm m_{2}\right)=$ $h(x) \rightarrow h(y)$.

So h is a monomorphism and $v(\varphi(\ldots, p, \ldots)) \neq 1$ when $v(p)=x$. So $h(v(\varphi))$ is a valuation of φ in S_{k+1}^{ω} and $h(v(\varphi)) \neq 1$ when $v(p)=x$ which contradicts the assumption that $\vDash_{S_{k+1}^{\omega}} \varphi$, so $k+1 \in B$.
Lemma 4.3 If $G_{\varphi}=\langle B ; C\rangle$ then $k+1 \in B \cup C$ if and only if $\xi_{S_{k+1}} \varphi$.
Proof: By the definition of genus.
The following theorem gives a complete characterization of all normal extensions of $\mathbf{L}_{\mathrm{K}_{0}}$.
Theorem 4.4 (Soundness and weak completeness) Let $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots,\right\}$ be a set of formulas and let $G_{\Phi}=\bigwedge_{\varphi \in \Phi} G_{\varphi}$. Suppose $G_{\Phi}=\langle B ; C\rangle$, and $\mathbf{L}_{\aleph_{0}+\Phi}$ is the logic obtained by adding $\{\varphi \mid \varphi \in \Phi\}$ to the axioms of $\mathbf{L}_{\aleph_{0}}$. Then

$$
\operatorname{Th}\left(\mathbf{L}_{\aleph_{0}+\Phi}\right)=\bigcap_{i \in C} \operatorname{Taut}\left(S_{i}\right) \cap \bigcap_{i \in B} \operatorname{Taut}\left(S_{i}^{\omega}\right)
$$

that is, $\Pi_{i \in C} S_{i} \times \Pi_{i \in B} S_{i}^{\omega}$ is characteristic for theoremhood for $\mathbf{L}_{\aleph_{0}+\Phi}$.
Proof: Suppose $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots,\right\}$ is a set of formulas and $G_{\Phi}=\wedge_{\varphi \in \Phi} G_{\varphi}$. Suppose $G_{\Phi}=\langle B ; C\rangle$, $\operatorname{Taut}(L)=\bigcap_{i \in C} \operatorname{Taut}\left(\mathbf{L}_{i}\right) \cap \bigcap_{i \in B} \operatorname{Th}\left(\mathbf{L}_{i}^{\omega}\right)$ and $\mathbf{L}_{\mathrm{X}_{0}+\Phi}$ is the logic obtained by adding the set Φ of formulas to the axioms of $\mathbf{L}_{\mathrm{x}_{0}}$.
$\vdash_{\mathbf{E}_{\mathrm{K}_{0}+\Phi}} \psi$ if and only if $G_{\Phi} \leq G_{\psi}$ by Theorem 3.8. And by Lemmas 4.2 and 4.3, $G_{\Phi} \leq G_{\psi}$ if and only if $\psi \in \bigcap_{i \in C} \operatorname{Taut}\left(S_{i}\right) \cap \bigcap_{i \in B} \operatorname{Taut}\left(S_{i}^{\omega}\right)$.

Corollary 4.5 For every extension of $\mathbf{Ł}_{\aleph_{0}}$, L, there is a formula φ such that $\operatorname{Th}(L)=\operatorname{Th}\left(\mathbf{L}_{\mathrm{x}_{0}+\varphi}\right)$, i.e., φ is an axiom that distinguishes L from other normal extensions of $\mathbf{L}_{\mathbf{r}_{0}}$.
Proof: Let $\Phi=\left\{\varphi_{1}, \varphi_{2}, \ldots,\right\}$ be a set of formulas and let $G_{\Phi}=\wedge_{\varphi \in \Phi} G_{\Phi}$. There is some formula φ such that $G_{\Phi}=G_{\varphi}$, so $\mathbf{L}_{\aleph_{0}+\Phi}=\mathbf{L}_{\aleph_{0}+\varphi}$.
Corollary 4.6 $\quad \mathbf{L}_{\mathrm{N}_{0}+\psi}$ is an extension of $\mathbf{L}_{\mathrm{N}_{0}+\varphi}$ if and only if $G_{\psi} \leq G_{\varphi}$.
In light of the above theorem we can associate a genus with an extension of $\mathbf{L}_{\mathrm{x}_{0}}$, and in light of the last corollary we can see that the extensions of $\mathbf{L}_{\mathrm{x}_{0}}$ are partially ordered by the lattice of genera.

The notions of the cardinal degree and the ordinal degree of completeness of an axiom set were introduced by Tarski. See Tarski [14] page 100. The car-
dinal degree of completeness of a logic characterized by the set of axioms Φ is the number of logics which contain Φ. We say that a set of axioms is absolutely consistent if there is some formula which is not a consequence of the axioms.

Definition 4.7 The ordinal degree of completeness of a set Φ of axioms is the smallest ordinal $\alpha \neq 0$ such that there is no increasing sequence of type α of absolutely consistent nonequivalent sets of axioms which begins with Φ.

According to Łukasiewicz and Tarski [5], Lindenbaum proved that the ordinal degree of completeness of \mathbf{L}_{3} is 3. Tarski then generalized this result to show that the ordinal degree of completeness of \mathbf{L}_{n} is 3 if $n-1$ is prime. That is, if $n-1$ is prime adding any formula which is a nontheorem of \mathbf{L}_{n} but is a theorem of \mathbf{L}_{2} to the axioms of \mathbf{L}_{n} yields \mathbf{L}_{2}, and adding any formula which is a nontheorem of \mathbf{L}_{2} to the axioms of \mathbf{L}_{n} yields inconsistency. Then in May 1930 "the problem of the degree of completeness was solved for systems \mathbf{L}_{n} with an arbitrary natural n; this was the joint result of members of a proseminar conducted by Łukasiewicz and Tarski in the University of Warsaw." (See the footnote on p. 49 of [14].) Rose [10] provides a proof of this result, namely that for any $n \geq 2$ the ordinal degree of completeness of \mathbf{L}_{n} is $d(n-1)+1$ where $d(n)$ is the number of distinct divisors of n including 1 and n. Rose went on in [11] to show that the ordinal degree of completeness of $\mathbf{E}_{\aleph_{0}}$ is ω. These results follow from Theorem 4.4. Both the cardinal and the ordinal degree of completeness of any extension of $\mathbf{E}_{\aleph_{0}}$ are determined by the genus of the added axiom.

Every proper extension of $\mathbf{L}_{\mathbf{x}_{0}}$ has a finite cardinal degree of completeness determined by the number of elements of the lattice G which are less than or equal to G_{φ}. The ordinal degree of completeness for a proper extension of $\mathbf{L}_{\aleph_{0}}$ is determined by the longest path in the lattice from the genus of the extension to the genus $\langle; 2\rangle$. For every integer n there is an extension with ordinal degree of completeness greater than n. Thus:
Corollary 4.8 The ordinal degree of completeness of $\mathbf{\bigsqcup}_{\mathbf{N}_{0}}$ is ω.
The following result, published in Tokarz [15], now follows as a corollary to Theorem 4.4.

Definition 4.9 Let $C=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a sequence of natural numbers. Let $N_{c}\left(a_{i}\right)$, for $1 \leq i \leq n$, denote the number of subsequences D of C such that:
$a_{i} \in D$ and for every $b \in D, a_{i} \geq b$,
if $j \neq k$ and $a_{j}, a_{k} \in D$ then $a_{j}-1$ is not a divisor of $a_{k}-1$,
Let $c(n)=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ be the sequence such that:
$a_{1}=n$,
$a_{1}>\cdots>a_{k}>1$,
for every $i, 1 \leq i \leq k, a_{i}-1$ is a divisor of $n-1$.
Corollary 4.10 For finite n, the cardinal degree of completeness of \mathbf{L}_{n} is

$$
\left(\sum_{a_{t} \in C(n)} N_{c(n)}\left(a_{i}\right)\right)+1
$$

Scroggs [13] shows that the modal logic S 5 is pretabular, that is, S 5 has no finite characteristic matrix but every proper normal extension does. Dunn and

Meyer [3] proves that Dummett's $L C$ is pretabular and Maksimova [6] shows that there are exactly three pretabular extensions of intuitionist propositional logic (one of which is $L C$). Another corollary to Theorem 4.4 is that there is only one pretabular extension of $\mathbf{L}_{\aleph_{0}}$, namely $\mathbf{L}_{\mathrm{N}_{0}+\varphi}$ where $G_{\varphi}=\langle 2$; \rangle, that is, the logic for which Chang's C, equivalently, for which Komori's S_{2}^{ω} is characteristic.

Acknowledgment This paper is extracted from the author's Indiana University dissertation, J. M. Dunn and W. H. Wheeler codirectors.

REFERENCES

[1] Chang, C. C., "Algebraic analysis of many-valued logics," Transactions of the American Mathematical Society, vol. 88 (1958), pp. 467-490.
[2] Chang, C. C., "A new proof of the completeness of the Łukasiewicz axioms," Transactions of the American Mathematical Society, vol. 93 (1959), pp. 74-80.
[3] Dunn, J. M. and R. K. Meyer, "Algebraic completeness results for Dummett's LC and its extensions," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp. 225-30.
[4] Komori, Y., "Super-Łukasiewicz propositional logics," Nagoya Mathematics Journal, vol. 84 (1981), pp. 119-133.
[5] Łukasiewicz, J. and A. Tarski, "Untersuchungen über den Aussagenkalkül," Comptes Rendues des séances de la Société des Sciences et des Lettres de Varsovie, vol. 23 (1930), cl. iii, pp. 30-50.
[6] Maksimova, L. L., "Pretabular superintuitionist logic," Algebra and Logic, vol. 11 (1972), pp. 308-314.
[7] McNaughton, R., "A theorem about infinite-valued sentential logic," The Journal of Symbolic Logic, vol. 16 (1951), pp. 1-13.
[8] Mangani, P., "Su certe algebre connesse con logiche a piú valori (On certain algebras related to many-valued logics)," Bollettino dell'Unione Matematica Italiana (Series 4), vol. 8 (1973), pp. 68-78.
[9] Mundici, D., "MV-Algebras are categorically equivalent to bounded commutative BCK-Algebras," Mathematica Japonica, vol. 31 (1986), pp. 889-894.
[10] Rose, A., "The degree of completeness of the M-valued Łukasiewicz propositional calculus," The Journal of the London Mathematics Society, vol. 27 (1952), pp. 92-102.
[11] Rose, A., "The degree of completeness of the \aleph_{0}-valued Łukasiewicz propositional calculus," The Journal of the London Mathematics Society, vol. 28 (1953), pp. 176-84.
[12] Rose, A. and J. B. Rosser, "Fragments of many-valued statement calculi," Transactions of the American Mathematical Society, vol. 87 (1958), pp. 1-53.
[13] Scroggs, S. J., "Extensions of the Lewis System S5," The Journal of Symbolic Logic, vol. 16 (1951), pp. 112-120.
[14] Tarski, A., Logic, Semantics, Metamathematics, second edition, Hackett, Indianapolis, 1983.
[15] Tokarz, M., "Degrees of completeness of Łukasiewicz logics," pp. 127-134 in Selected Papers on Łukasiewicz Sentential Calculi, edited by R. Wójcicki and G. Malinowski, Polish Academy of Sciences, Wroclaw, 1977.
[16] Urquhart, A., "Many-valued Logic," pp. 71-116 in Handbook of Philosophical Logic, Vol. 3, edited by D. Gabbay and F. Guenthner, Reidel, Dordrecht, 1986.

Division of Mathematics and Natural Science
University of the Ozarks
415 College Avenue
Clarksville, Arkansas 72830

