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Extensions of the K0-Vαlued

-Lukasiewicz Propositional Logic

M. G. BEAVERS

Abstract MV-algebras were introduced by Chang in 1958 preliminary to his
providing an algebraic completeness proof for the K0-vaΓued Lukasiewicz
propositional logic, LXo. In this paper a method is given for determining,
for an arbitrary normal extension of LKo, an MV-algebra characteristic for
the extension. The characteristic algebras are finite direct products of two sets
of linearly ordered MV-algebras identified by Komori. Conversely, it is
shown that, given an algebra which is isomorphic to the direct product of ele-
ments from these two sets of linearly ordered MV-algebras, a single axiom
can be determined which, when added to the axioms for LXo, yields an axi-
omatization sound and weakly complete for the given algebra. As a conse-
quence of the lattice ordering of these products of MV-algebras the cardinal
and ordinal degrees of completeness of any normal extension of LKo can be
determined.

/ Introduction In [4] Komori proves that any proper extension of LN o has
a characteristic matrix isomorphic to a finite direct product of elements of two
fundamental types of MV-algebras, thus providing a type of characterization for
any axiomatic extension of LK o. We will provide a somewhat stronger result in
Theorem 4.4 below as the principal result of this paper. Our result improves on
Komori's by giving a method for determining which MV-algebras occur in the
finite products. Using the notion of the genus of a formula, given in Rose [11],
we show that a formula is satisfied in the Komori characterization if and only
if it is of a corresponding genus. By connecting Komori's characterization with
Rose's notion of genus it is possible to link characteristic matrices with exten-
sions of LK o. This result amounts to a soundness and weak completeness theo-
rem for the characterizations provided by Komori.

2 Lukasiewicz matrices The ^-valued Lukasiewicz propositional calculi (for
n either an integer greater than 1 or Ko) were defined with the aid of logical
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matrices by Lukasiewicz in the 1920s. The matrix given by Lukasiewicz for
the K0-valued system was the algebra

[Sκo = <<2[0,i]>U},-^>]

of type <2,1>, where Q[o,\) designates the set of rational numbers in the inter-
val [0,1], that is, the matrix is composed of the rational numbers in the unit
interval [0,1], with the set of designated elements being D — [ 1}, having a binary
operator -> and a unary operator -ι. Lukasiewicz specified that a -+ b is to be
evaluated by min(l,l — a + b) and -»α is to be evaluated by 1 — a.

The matrices for the finite systems are gotten by taking subsets of <2[o,i]
closed under the operators. The standard examples of these are algebras of the
form

[S Λ + 1 = <{0, l/π,2/π,. . . , lMlh->,"•>]

for n some integer greater than 1. Let 5K o denote Q[o,i], for « a positive integer
let Sn+Ϊ denote {0,1/w, 2/n, . . . , 1} and let Sx = {1}.

SXo can be axiomatized with the rules modus ponens and substitution with
the following axioms:

Al. pD (qDp).
A2. (pDq)D ((q Dr)D(pD r)).
A 3 . ((pDq)Dq)D((qDp)Dp).
A4. (~qD~p)D (pDq).

The first published proof of the weak completeness of axioms 1-4 for S$o is
found in Rose and Rosser [12] . Chang [2] gives an algebraic proof of complete-
ness using MV-algebras. The Lindenbaum algebra of a logic L is the algebra of
equivalence classes of formulas of the logic determined by provable equivalence.
Given a soundness and completeness result for a logic L with respect to a matrix
S, we say that S is characteristic for L. We say that the logic Li is an extension
of the logic L2 if L\ and L2 have the same sentences and every theorem of L2 is
a theorem of Lx. An extension is normal when closed under modus ponens and
substitution.

Sχ0 is characteristic for LKo, so LKo has an infinite characteristic matrix, but
there is no finite characteristic matrix for LX o. For a proof of this fact see
Urquhart [16].

Chang developed MV-algebras in an attempt to parallel the treatment of clas-
sical two-valued propositional logic with Boolean algebras, i.e., as the algebras
"that would correspond in a natural fashion" to the logic LKo. We give here not
Chang's axioms but rather a simpler set provided in Mangani [8] and shown to
be equivalent to Chang's axioms in Mundici [9].

Definition 2.1 The algebra S = (S, +, °, - , 0,1> is an MV-algebra if S is a
nonempty set, S is of type <2,2,l,0,0> with 0 and 1 distinct such that:

PI . (x + j>) + z = x + (y + z)
P2. x + 0 = x
P3. x + y = y + x
P4. x + 1 = 1
P5. x= =x
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P6. 0- = 1
P7. x + x~ = 1
P8. (JC~ + y)~ + y = (x + y~)~ + x
P 9 . χoy = (χ~ -μ j ; - ) - .

Theorem 1.18 of Chang [1] shows that MV-algebras are a variety. Chang
goes on to show that the Lindenbaum algebra of an extension of LKo is an
MV-algebra, and furthermore every MV-algebra satisfies the translation of
the axioms of LX o. "Hence we conclude that the two sets of axioms (those of
MV-algebras and those of the K0-valued Lukasiewicz propositonal logic) are
equivalent under an appropriate relationship between C and N (that is, be-
tween D and ~) and +, <>, and - . " (See [1], p. 473.) Chang then gives an
MV-algebra, which he denotes by C, composed of the following elements:
[0, ε, 2ε, 3ε, . . . , and . . . , 1 — 3ε, 1 — 2ε, 1 — ε, 1.] The algebra is linearly
ordered, the order being exemplified by the above sequence or more formally:

either x = n ε and y = 1 — m ε

x < y if and only if < or x = n ε and y = m ε and n < m

or x = 1 - n ε and y = 1 - m ε and m < n.

The table for this MV-algebra can be considered the result of adding a band
of "infinitesimals" adjacent to the values of the two-valued system. Komori
generalizes Chang's C by, in effect, for each n, adding bands of infinitesimals
around each of the elements of the ^-valued algebra Sn. Komori defines the
CN-algebras (S%, -•, -ι, (1,0), (0,0)> for n an integer greater than 1 as follows:

^ 1 = ((^)|xE(^,...,^i],,Ez]

U{(09y)\yeN}\J[(l,-y)\yeN)

where Z and TV are the set of integers and the set of natural numbers. We have
changed Komori's indices to accord with conventions adopted. Komori's CN-
algebras are categorically equivalent to Chang's MV-algebras. The operators -»
and -> are defined on S£ by:

-^(χ,y) = (i -χ,-y)

f (1,0) ifz>x,

(x,y)-+(z,u) =\ ( l , m i n ( 0 , M - j > ) ) ifz = x,

1̂ (1 — x + z,u — y) otherwise.

A formula φ is a tautology of Sn, i.e., φ E Taut(5π) or \z

Sn φ, if for all inter-
pretations v in Sn, v{φ) = 1, and φ is a tautology of S%, i.e., φ E Taut(S^)
or hsω φ, if for all interpretations v in S£, v(φ) = (1,0). That a formula φ is a
theorem of the logic L is denoted by φ E Th(L) or V^φ.

McNaughton [7] establishes a connection between a class of real valued func-
tions on [0,1]" and formulas of LKowhich will be used in the proofs that
follow.
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Definition 2.2 Let φ be a formula and/ be an A2-ary real function, ψ repre-
sents / (or / is represented by φ) if and only if

(i) φ has exactly n propositional variables,
(ii) the field of/ is [0,1], and

(iii) V^!,... ,xn and for every valuation υ such that v(/?,) = xh for 1 < / < n,

f(xϊ9...fxk) = v(φ).

Theorem 2.3 (McNaughton) The formula φ represents the real function f if
and only if

(i) f is continuous over [0,1]" and Range(f) Q [0,1],
(ii) the domain, [0,1]", is partitioned into a finite number, j , of subdomains

Dh\ < / <y, where the partition is exhaustive and the interiors of the sub-
domains are mutually exclusive, and

(iii) there are j polynomials τrl5 . . . , π, each of the form

Try = 6, + muixι + + mΛ ί /xπ

w/YΛ 6, , mi'j integers such that if(x\, . . . ,xn) G A *Ae/i

/ ( * ! , . . . , * „ ) = π, (*i , . . . , * „ ) .

5 The lattice of genera of formulas of Lχ0 In [11] Rose introduces the
notion of the genus of a formula and proves Lemma 3.7 below preliminary
to proving that the ordinal degree of completeness of LKo is ω. In this section
Rose's lemma is generalized. It is perhaps useful to think of the genus of a for-
mula as a measure of its power as an axiom, since by Theorem 3.8 below, the
logic obtained by adding the formula φ to the axioms of LKo, where φ is of genus
Gφ, allows the derivation of a formula ψ of genus GΦ if and only if Gφ< Gφ.
The lower the genus of φ in the lattice ordering, the more power φ has as an
axiom. The definition of the genus of a formula is:

Definition 3.1 (Rose) Suppose that the formula <p(p\, . . . ,pn) is not a the-
orem of LKo but is valid in the Lukasiewicz calculi with bx + 1, . . . , bx, + 1, cx +
1, . . . , Cjf + 1 values but in no others. If for each bk, 1 < £ < /, there is a real
number e > 0 such that if v is a valuation then if | v(ph) — ah/bk\ < e, 1 < h < n9

for ah an integer 0 < ah < bki then v(φ(pι, ... ,pn)) = 1, but no such e exists
for any of the c's, then φ is of genus (bx + 1, . . . , bx + 1 cx + 1, . . . , c3^ + 1>.

Let Gψ denote the genus of φ. If Gφ - {bx + 1, . . . , bι + 1 cγ + 1, . . . , Cj + 1>,
let Bφ denote [bx + 1, . . . , bt + 1}, Cφ denote {cx + 1, . . . , cjr + 1}, and ΌGφ

denote 5^ U C^. For any φ,BφΠCφ= 0 . Since for all n, 2 < n < Ko, every
theorem of LΛ is a theorem of L2, a formula φ has a genus if and only if φ is a
theorem of the classical two-valued system and not a theorem of the K0-valued
Lukasiewicz system. Thus the theorems of L2 can be partitioned according to
genus, i.e., [φ] = [φ] just in case Gφ = Gφ. The structure of this partition is the
key to determining the axiomatization of the extensions of LKo. The operations
of meet and join in the lattice of genera are defined as follows:

GφvGΦ = (Bφ U BΦ; CφΌCφ-BφU BΦ)

GφΛGφ = <Bφ Π BΦ; ((Bφ U Cφ) Π (BΦ U Cφ)) -BφΠ BΦ).
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The genera of the theorems of L2, i.e., [Gφ \ φ G Th(L2), form a distrib-
utive lattice which we denote by G. G is bounded below, but not above. The min-
imal element of G is <;2>. The partial order on the lattice of genera, G, is
such that for Gφ9GΦG G, Gφ < GΦ if and only if GφΛGΦ = Gφ. That is, Gφ <
Gφ just in case if b occurs before the in Gφ then b occurs before the in Gφ,
andUG^c \JGΦ.

The definition of genus can be improved. The addition of a maximal ele-
ment to the lattice of genera will simplify some arguments below. Therefore, let
Gψ = ω if and only if φ is a theorem of LKo, and thus add the maximal element
ω to the lattice of genera G. Also, as a result of the subset relations that hold
between the sets of theorems of the various normal extensions of LNo, the genus
sometimes contains more elements than is necessary to convey the status of the
formula. For example, Th(L7) C Th(L4) since 4 - 1 divides 7 - 1 (a result pro-
vided by Lindenbaum), so one might just as well say Gφ = <;7> as that Gφ =
<;4,7> since no more information is conveyed by the latter expression. However
Gφ = <4;7> is not redundant and Gφ - <7;4> is contradictory. We decide, how-
ever, not to eliminate the redundancy because of the complexity that it introduces
in the definitions of meet and join and thus into the arguments given below.

The following lemmas are used in the proof of Theorem 3.8.

Lemma 3.2 Gφ/\GΦ = GφAφ.

Proof: Suppose that c + 1 and b + 1 are in GφΛGΦ. Then b + 1 is in both Bφ

and Bφ and thus in GφAφ before the . c + 1 is in both Gφ and GΦ and thus in
GφAφ. So GΨΛGΦ< GφAφ.

Suppose that c + 1 and b + 1 are in GφAφ before and after the respectively.
Then b + 1 is in both Bφ and BΦ and thus in Gφ A GΦ before the . And c + 1 is
in both Gφ and GΦ and thus in Gφ/\GΦ. So GφAφ <GφAGφ.

So Gφ Λ GΦ — GφAφ.

Lemma 3.3 Gφv GΦ< Gφyφ.

Proof: Suppose that c + 1 and b + 1 are in Gφ v GΦ before and after the
respectively. Then b 4- 1 is in at least one of Bφ and BΦ before the and thus in
Gφvφ before the . c + 1 is in at least one of Gψ and Gφ and thus in Gφvφ. So
Gφ v GΦ < Gφvφ.

Lemma 3.4 Let Φ = {φx, φ2> ...,} be a set of formulas. There is a finite
subset Φβn ofφ such that AφGΦ Gφ = l\φ^fin Gφ.

Proof: For each genus Gφ there is only a finite number of distinct GΦ such that
Gφ < Gφ and GΦΨGφ.

Lemma 3.5 In SXo // whenever the formula φ takes the value 1 the formula
Φ does so, then GφAφ = Gφ.

Proof: Since whenever the formula φ takes the value 1 the formula ψ does so,
Gφ < GΦ and so Gφ = GφΛ GΦ. But Gφ*Gφ = GφAφ. So GφAφ = Gφ.

Lemma 3.6 Gφ < Gφ{φ/p)ί i.e., any substitution instance of a formula has a
genus > the genus of the formula.
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Proof: An induction on the complexity of formulas shows that for any formula
φ(Pι, . . . ,pn) if v(Pi) = Qj/c for 1 < / < n and 0 <j < c then v(φ) = a/c for
some integer #, 0 < a < c.

Suppose c + l G G Γ Then for v(Pi) = ctj/c with 1 < /< n andajan integer
0 < αy < c, v(φ) = a/c for some 0 < a < c and thus v(φ(φ/pi)) = 1.

Suppose H l G G ^ , before the . Let e be the number which is associated with
b for Gφ in the definition of genus. By McNaughton's theorem/ is a continuous
function on [0,1]" where/ is the function associated with the formula φ. So
there is a positive number δ such that if for all/?/ and all ahi \ v(Pi) — ah/b | < δ
then for all A and all ahί \ v(φ(pu . . . ,pn)) -f(ah/b, . . . , ahn/b)\ < e. Let e'
be the lesser of δ and e, then 11;(/?,-) - ah./b\ < e' implies that v(φ(φ/p)) = 1,
i.e., H l G Gφ(φ/p) before the .

Lemma 3.7 If we adjoin a formula φ of genus (b\, . . . , Z?z; cλ, . . . , cy> to the
axioms of the formalization of LK o then every formula of this genus becomes
provable in the formulation.

Proof: See Rose [11], pp. 181-4.

Let LX o + φ denote the extension of LK o obtained by adding the formula φ
to the axioms of LK o. The following theorem shows that Gφ = Gψ if and only
if f-Lκo+^ Φ and h L χ o + ^ ^ . The theorem thus identifies the partial order of the
lattice0 G with extensions of LK o.

Theorem 3.8 Let LK o +^ be the logic obtained by adding the formula
φ(Pι, ...9pn)tothe axioms of LX o where φ is of genus Gφ and Φ(q\9 ...9qm)
is of genus Gφ. Then Gφ < Gφ if and only if φ is a theorem of LK o +^.

Proof: (=0 Suppose Gφ < Gφ. By Lemma 3.7 every formula of genus Gφ is a
theorem of LK o + φ.

By Lemma 3.2 G^Λ^ = Gφ and by 3.13 of [12] hL κ o (φΛφ)Dφ so \-^o+φ

(<P A φ) D φ. By Lemma 3.7 h L χ o + ^ (^ Λ φ) and by modus ponens h L κ o +^ /•
(<=) Suppose ht x +^ ^, that is, there is a deduction in LN o + <ρ of \̂ . An

induction on the steps of the deduction will show that Gφ<Gφ. Let B\, . . . , Bn,
be the steps of a deduction of φ in LX o + φ with £„ = φ. Suppose b + 1 is in G ,̂
before the and c + 1 is in Gφ after the .

Base case. Each of the axioms of LK o, <p and by Lemma 3.6, substitution
instances thereof take the value 1 in a neighborhood around #//Z? for 0 < #, <
6, 1 < / < n and each takes the value 1 at at/c for 0 < aι < c, 1 < / < n.

Inductive hypothesis. Suppose that each of the 2?/ for / < j takes the value
1 in a neighborhood around aj/b for 0 < α, < 6, 1 < / < /! and each takes the
value 1 at #//c for 0 < α, < c, 1 < / < n.

Inductive step. Bj is either an axiom or φ itself or follows from Bh and
Bι = Bh D Bj by modus ponens or Bj is a substitution instance of an axiom, φ9

or a previous 2? .̂ The case where Bj is either an axiom or φ itself or a substitu-
tion instance of a previous step is treated just as in the base case.

Consider modus ponens. By the inductive hypothesis there are numbers e!
and e2 such that if for all Xj, \ v(xj) — a/bk\ < e\, 1 <y < n then v(Bh) = 1 and
if for all xj9 \ v(xj) - a/bk\ < e2, \<j<n then v(Bj) = 1. Let e be the lesser of
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6! and e2- Since if υ(Bh) - 1 and v(Bh D Bj) = 1 then v(Bj) = 1 for any argu-
ment, if for all xj9 \ v(Xj) - a/bk\ < e, 1 <y < n then Bj = 1 as well.

By induction, each step in the deduction, and thus ψ, takes the value 1 in a
neighborhood around at/b for 0 < axr < b, so b + 1 is in Gφ before the . A sim-
ilar argument shows that c + 1 is in Gψ after the .

4 Connections between Rose and Komorί In this section we provide, for
every axiomatic extension of LNo, an algebra that is characteristic for theorem-
hood. Conversely, we show that for an appropriate algebra a single axiom can
be added to those for LNo to give an axiomatization sound and complete for the
algebra. The connection between genus and the two types of algebras Sn and S%
makes this possible.

We will show that Th(L£) = Taut (S£). Since the algebra S% is an extension
of the algebra SΛ, Taut(S^) C Taut(5Λ). Also f)jej Taut(Sf) c Taut(S%) if and
only if there is ay E / such that m — 1 divides j — 1. Furthermore Taut(S,) SΞ
Taut(52), and Taut (5/) c Taut (S?) c Taut(S2). A generalization of Linden-
baum's theorem follows from Theorem 3.8, namely, if/and /are sets of posi-
tive integers.

Π Taut(S,) Π Π Taut(S/) c Taut(5w)

if and only if there is an n E / U / such that m - 1 divides n - 1.
Let L be an extension of LKo, then by Komori [4] there exist finite sets of

integers / and / such that

Th(Z) = ΠTaut(S/) Π Π Taut(S/).

Let us call ILe/S/ X Hj^jSf the Komori representation of L. We now provide
lemmas required for the soundness and completeness result.

The intuitive notion behind the next lemma is that evaluation in 5Ko, the
standard model for LKo, "preserves closeness."

Lemma 4.1 If φ(p\, . . . ,pn) contains k D's and a valuation v in 5No

assigns to each pi a value which differs from somejj/l by less than e then υ(φ)
differs from some jVI by less than 2k e.

Proof: By induction on the number of D's in φ.

Base case: k = 0. φ =p or ~p so υ(φ) differs from somey//by less than e.
Inductive hypothesis: The lemma holds when k < m.
Inductive step: Suppose that φ = ψ D θ contains m D's. Then by the induc-

tive hypothesis for some integers jφ and j θ

\v(ψ)-j+/l\ <2m~ι 6,

and

\v(θ)-jθ/l\ <2m~χ.e.

If v(φ) < v(θ) then v(φ) = 1. For the case v(ψ) > v(θ), |(1 - υ{ψ) +
v(θ))-(l-jΦ/l + jθ)/l) I < 2m e.
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Lemma 4.2 // Gφ = (B; C> then H 1 G 5 if and only if t=s-+1 φ.

Proof: (=>) Suppose Gφ = <B;C) and k + 1 E B. So 3e such that if V/?, | A -
y'/£| < e, then υ(φ) = 1 in SKo.

Let f be a valuation in S£+i, and let « = max{|j>| : (jt,j>) is used in the val-
uation of φ}.

Define A : S£+i - 5X o such that A(x,j>) = x + e ̂ . Note that x = j/k for
somey. We require that e < \/2k in order to insure the one-oneness of A.

A is a homomorphism since:

h(-τ(x,y)) =h(l-x9-y) = l-x-ei?- = -*h(x9y).

2n

Consider h((x,y) -• (z, w)).

Cα5e 7: x < z. A(UJ) -* U, w)) = A(l,0) = 1 = h(x,y) -+h(z,w).

Case 2: x = z.

h((x9y)-+(z9w)) = h(l,min(O9w-y))
= 1 + min(0, w - y)/2n e

•*(*+ έ)-*(«+ s)
= A(x,j)^A(z,w).

Ctase 3: Λ: > z.

A((x,^)-* (z,w)) = h(l-x + z,w-y)

= 1 -x-hz- ((w-j)/2A2) e

-*(*+«έH(<+«£)
= A(x,j)-^A(z,w).

A is one-one, so A is a monomorphism and thus A gives a valuation in 5i<0

and since £ + 1 E 5, A (f (<ρ)) = 1. Because A is a monomorphism and A (x, y) = 1
then (x, j/) = (1,0). So if k + 1 E B then t=5«+i <p.

(<=) Suppose Ks«+1 >̂ and /: -h 1 ̂  ,β.
Let n be the number of D's in <p. Since /: + 1 φ. B, there is ap E: v(φ) and

y, 0 <y < A" such that Ve > 0, 3x, 0 < |y/£ - x| < e such that if ι>(/?) = x then

Since by McNaughton's theorem evaluations are continuous piece wise lin-
ear functions it follows that there is an e such that when v(p) = x either Vxj/k —
e <x< j/k or vxj/k<x< j/k + e, υ(φ(...9p, . . . ) ) Φ 1.

Without loss of generality suppose VxJ/k< x<j/k H-e, v(φ(... ,p, . . . )) =£ 1
when u(/>) = x. Let JC =y/A: + \/k' where I/A7 < e, and (2n+2)/k' < l/k, and
k divides k'.
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Let h : Sk'+Ϊ " Sk+ι be defined by

( (jVk,0) if i/k'=j/k
h(i/k') = \

t (j/k, ±m) if i/k' =j/k ± m/kf.

h is homomorphism since:

Λ(-uc) = h(\ - i/k') = (1 -j/k, ±m) = ->/*(*).

Consider h(x-+ y).

Case 1: x<y. h(x^y) = Λ(l) = (1,0) = h(x)-*h(y).

Case 2: x > y. h(x-+y) = A(l - x + y) = (1 -Ji/k+j2/k9 ±mx ± m2) =
h(x)-+h(y).

So Λ is a monomorphism and v(φ(...,p, . . . ) ) Φ 1 when (;(/?) = x. So
h(υ(φ)) is a valuation of <ρ in S£+ 1 and h(v(φ)) Φ 1 when ι;(/?) = x which con-
tradicts the assumption that \^s£+1 <p, so k + 1 E B.

Lemma 4.3 IfGφ = (B\C) then k+leBUCif and only if \=Sf(+ί φ.

Proof: By the definition of genus.

The following theorem gives a complete characterization of all normal exten-
sions of LKo.

Theorem 4.4 (Soundness and weak completeness) Let Φ = [<pχ, φ2i . . . , ) be
a set of formulas and let G φ = Λ ^ G Φ G>. Suppose G φ = {B\C),and L N o + φ is
the logic obtained by adding [φ\φ E Φ] to the axioms ofl,χ0. Then

Th(L*0+Φ) = Π Taut(Si) Π Π Taut(Sn,

that is, HiecSi X Π I G B ^ Γ /5> characteristic for theoremhood for LK o + φ.

Proof: Suppose Φ = {^i,^2> Λ is a set of formulas and GΦ = Λ ^ G Φ Gφ.
Suppose GΦ = (B;C)9 Taut(L) = Π/ecTaut(L, ) Π ΠieBTh(Ln and L N o + φ is
the logic obtained by adding the set Φ of formulas to the axioms of L^o.

HLKO+Φ Φ if and only if G φ < Gψ by Theorem 3.8. And by Lemmas 4.2 and
4.3, GΦ° < Gφ if and only if ψ G Π/ec Taut(5, ) Π ΠteB Taut(5") .

Corollary 4.5 For eyery extension ofl>^0, L, there is a formula φ such that
Th(L) = Th(LχQ+φ), i.e., φ is an axiom that distinguishes L from other normal
extensions o/LK(?.

Proof: Let Φ = [<p\,<P2, ,} be a set of formulas and let G φ = Λ ^ G Φ ^ Φ
There is some formula φ such that G φ = Gφ9 so L K o + φ = LX o + v ? .

Corollary 4.6 ^*0+ψ is an extension ofhχ0+φ if and only if Gφ < Gφ.

In light of the above theorem we can associate a genus with an extension of
LX o, and in light of the last corollary we can see that the extensions of LN o are
partially ordered by the lattice of genera.

The notions of the cardinal degree and the ordinal degree of completeness
of an axiom set were introduced by Tar ski. See Tar ski [14] page 100. The car-
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dinal degree of completeness of a logic characterized by the set of axioms Φ is
the number of logics which contain Φ. We say that a set of axioms is absolutely
consistent if there is some formula which is not a consequence of the axioms.

Definition 4.7 The ordinal degree of completeness of a set Φ of axioms is the
smallest ordinal a Φ 0 such that there is no increasing sequence of type a of abso-
lutely consistent nonequivalent sets of axioms which begins with Φ.

According to Lukasiewicz and Tarski [5], Lindenbaum proved that the ordi-
nal degree of completeness of L3 is 3. Tarski then generalized this result to show
that the ordinal degree of completeness of Ln is 3 if n - 1 is prime. That is, if
n - 1 is prime adding any formula which is a nontheorem of Lπ but is a theo-
rem of L2 to the axioms of LΛ yields L2, and adding any formula which is a
nontheorem of L2 to the axioms of LΛ yields inconsistency. Then in May 1930
"the problem of the degree of completeness was solved for systems ίn with an
arbitrary natural n\ this was the joint result of members of a proseminar con-
ducted by Lukasiewicz and Tarski in the University of Warsaw." (See the foot-
note on p. 49 of [14].) Rose [10] provides a proof of this result, namely that for
any n > 2 the ordinal degree of completeness of Lπ is d(n — 1) + 1 where d(n)
is the number of distinct divisors of n including 1 and n. Rose went on in [11]
to show that the ordinal degree of completeness of LXo is ω. These results fol-
low from Theorem 4.4. Both the cardinal and the ordinal degree of complete-
ness of any extension of LKo are determined by the genus of the added axiom.

Every proper extension of LKo has a finite cardinal degree of completeness
determined by the number of elements of the lattice G which are less than or
equal to Gφ. The ordinal degree of completeness for a proper extension of LKo

is determined by the longest path in the lattice from the genus of the extension
to the genus <;2>. For every integer n there is an extension with ordinal degree
of completeness greater than n. Thus:

Corollary 4.8 The ordinal degree of completeness o/LKo is ω.

The following result, published in Tokarz [15], now follows as a corollary
to Theorem 4.4.

Definition 4.9 Let C = {ax, . . . , an) be a sequence of natural numbers. Let
Nc(ai), for 1 < / < Λ, denote the number of subsequences D of C such that:

a, E D and for every b GD, at > b,

if j Φ k and aj9ak G D then aj - 1 is not a divisor of ak - 1,

Let c(n) = < # ! , . . . , ak) be the sequence such that:

ax = n,
ax > ••• >ak> 1,
for every /, 1 < / < k, aι• — 1 is a divisor of n — 1.

Corollary 4.10 For finite n, the cardinal degree of completeness of~Ln is

( Σ N c ( n ) ( β / ) )+l.

Scroggs [13] shows that the modal logic S5 is pretabular, that is, S5 has no
finite characteristic matrix but every proper normal extension does. Dunn and
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Meyer [3] proves that Dummett's LC is pretabular and Maksimova [6] shows that
there are exactly three pretabular extensions of intuitionist propositional logic
(one of which is LC). Another corollary to Theorem 4.4 is that there is only one
pretabular extension of LK o, namely LX o + v 5 where Gφ = <2;>, that is, the logic
for which Chang's C, equivalently, for which Komori's 5^ is characteristic.

Acknowledgment This paper is extracted from the author's Indiana University disser-
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