The Strength of the Δ -system Lemma

PAUL HOWARD and JEFFREY SOLSKI

Abstract The delta system lemma is not provable in set theory without the axiom of choice nor does it imply the axiom of choice.

1 Introduction A Δ -system G is a collection of sets such that there is a set r with the property that $(\forall A \in G)(\forall B \in G)(A \neq B \Rightarrow A \cap B = r)$. r is called the root of G. The Δ -system lemma is the statement:

\Delta SL For every uncountable collection Υ of finite sets there is an uncountable subcollection \mathfrak{F} of Υ which forms a Δ -system.

 ΔSL is provable in Zermelo Fraenkel set theory (ZF) with the axiom of choice (AC) as shown by Kunen [3], [4]. We will investigate the strength of ΔSL in ZF (without the axiom of choice). In this theory there are two possible definitions of X is uncountable: $|X| \neq \aleph_0$ or $\aleph_0 < |X|$. These definitions are equivalent if AC is assumed. In Section 2 below we will use the first definition exclusively. In Section 3 we will investigate the consequences of using the second definition.

We will also refine ΔSL in the following way: $\Delta SL(n)$ will denote, for each positive integer n, the Δ -system lemma for families of n-element sets. We note that $\Delta SL(1)$ is trivially true. Our main goal will be to prove that for any integer $n \geq 2$, $\Delta SL(n)$ is equivalent to ΔSL and also to the conjunction of the two statements:

CU The union of a countable collection of countable sets is countable. and

PC Every uncountable collection of countable sets has an uncountable sub-collection with a choice function.

2 Using the first definition of uncountable We begin with:

Lemma 2.1 $ZF \vdash (\forall n \in \omega - \{0\})(\Delta SL(n+1) \Rightarrow \Delta SL(n)).$

Received June 24, 1991; revised January 4, 1993

Proof: For any X, put $\overline{X} = \{(X,0)\} \cup (X \times \{1\})$. Assume $\Delta SL(n+1)$, and let \mathbb{T} be an uncountable collection of n element sets. Then $\mathbb{T}' = \{X' : X \in \mathbb{T}\}$ is an uncountable collection of n+1 element sets and if \mathbb{T} is any uncountable subcollection of \mathbb{T}' which is a Δ -system, then $\mathbb{G} = \{X \in \mathbb{T} : \overline{X} \in \mathbb{T}\}$ is an uncountable Δ -system contained in \mathbb{T} . Thus $\Delta SL(n)$ holds.

Theorem 2.2 For any $n \in \omega$, $n \ge 2$, $\Delta SL(n)$ implies CU.

Proof: By Lemma 2.1, it suffices to show that $\Delta SL(2)$ implies CU. Assume $\Delta SL(2)$ and let \mathcal{F} be a countable collection of countable sets. We may assume that the elements of \mathcal{F} are pairwise disjoint. (If not let $\mathcal{F}' = \{A \times \{A\} : A \in \mathcal{F}\}$ then the countability of $\bigcup \mathcal{F}$ follows from the countability of $\bigcup \mathcal{F}'$.) Assume $\bigcup \mathcal{F}$ is not countable and let

$$S = \{\{(a,0), (A,1)\} : A \in T \land a \in A\}.$$

G is uncountable since $\bigcup \mathcal{F}$ is uncountable. Applying $\Delta SL(2)$ to G gives an uncountable subset \mathcal{K} of G which is a Δ -system. Suppose that the root of \mathcal{K} is r. If $r \neq \emptyset$ then for some $A \in \mathcal{F}$, $(A,1) \in r$ or $(\exists a \in A)((a,0) \in r)$. But this would mean $\mathcal{K} \subseteq \{\{(a,0),(A,1)\}: a \in A\}$ which implies \mathcal{K} is countable since A is. Therefore $r = \emptyset$. This means that for each $A \in \mathcal{F}$, there is at most one $a \in A$ such that $\{(a,0),(A,1)\}$ is in \mathcal{K} and again \mathcal{K} is countable since \mathcal{F} is.

A similar argument gives

Theorem 2.3 For any $n \in \omega$, $n \ge 2 \Delta SL(n)$ implies PC.

Proof: As in 2.2 it suffices to prove that $\Delta SL(2)$ implies **PC**. Assume $\Delta SL(2)$ and assume that \mathcal{T} is an uncountable family of pairwise disjoint sets. Let

$$\mathcal{G} = \{ \{ (a,0), (A,1) \} : A \in \mathcal{F} \land a \in A \}.$$

 $|\mathcal{T}| \nleq \aleph_0 \Rightarrow |\mathcal{G}| \nleq \aleph_0$ so \mathcal{G} has an uncountable subset \mathcal{K} which is a Δ -system. As in the proof of 2.2, the root r of \mathcal{K} is empty. Therefore for each $A \in \mathcal{T}$ there is at most one $a \in \mathcal{T}$ such that $\{(a,0),(A,1)\}$ is in \mathcal{K} . Therefore

$$\big\{(A,a):\{(a,0),(A,1)\}\in\mathcal{K}\big\}$$

is a choice function for an uncountable subset of 3C of T.

Our final result of this section is

Theorem 2.4 $CU \wedge PC$ implies $(\forall n \in \omega) (n \ge 1 \Rightarrow \Delta SL(n))$.

Proof: Assume $CU \land PC$. The proof of $\Delta SL(n)$ for every $n \ge 1$ is by induction on n. As noted above, the case n = 1 is trivial.

Assume n > 1, that the theorem is true for all m < n and that \mathcal{T} is an uncountable collection of n element sets. We define:

$$a^1 = \left\{b \in \bigcup \mathbb{T} : (\exists A \in \mathbb{T}) (a \in A \land b \in A)\right\}$$

for each $a \in \bigcup \mathcal{F}$.

If a^1 is uncountable for some $a \in \bigcup \mathcal{F}$ then, by the countable union theorem, $\{A \in \mathcal{F} : a \in A\}$ is uncountable and therefore,

$$\mathcal{G} = \{A - \{a\} : A \in \mathcal{T} \land a \in A\}$$

is an uncountable collection of n-1 element sets. By $\Delta SL(n-1)$, G has an uncountable subcollection G which forms a Δ -system. Then the collection $G \cup \{a\}: C \in G$ is an uncountable subcollection of G which forms a Δ -system.

We therefore may assume a^1 is countable for every $a \in \bigcup \mathbb{T}$. Define (by induction) for each $k \in \omega$, k > 1

$$a^k = \bigcup_{b \in a^{k-1}} b^1.$$

Using the countable union theorem and mathematical induction, we see that for each $k \ge 1$ and for each $a \in \bigcup \mathcal{F}$, a^k is countable. It follows (from the countable union theorem) that [a] is countable where (letting $a^0 = \{a\}$)

$$[a] = \bigcup_{k=0}^{\infty} a^k.$$

Therefore $p(a) = \{A \in \mathcal{T} : A \subseteq [a]\}$ is countable since p(a) is a subcollection of the collection of all *n*-element subsets of [a].

We also claim that $\mathbf{F} = \{p(a) : a \in \mathcal{F}\}\$ is a partition of \mathcal{F} and further that

$$p(a) \neq p(b) \Rightarrow (\forall A \in p(a))(\forall B \in p(b))(A \cap B = \emptyset).$$

We leave the proof of this claim to the reader.

It follows that the collection **F** is uncountable since \mathcal{F} is. By PC, **F** has an uncountable subcollection **E** with a choice function f. The set $\{f(p(a)): p(a) \in \mathbf{E}\}$ is therefore an uncountable subcollection of \mathcal{F} which forms a Δ -system with root \emptyset .

Combining the theorems above gives us:

Corollary 2.5 For each $n \in \omega$, $n \ge 2$, the following are equivalent:

- (1) $\Delta SL(n)$
- (2) $CU \wedge PC$
- (3) ΔSL .

Proof: All that remains to be shown is that $(\forall n \in \omega)(\Delta SL(n)) \Rightarrow \Delta SL$ since for each $n \in \omega$, $n \ge 2$, $\Delta SL(n)$ implies $CU \land PC$ which implies $(\forall n \in \omega)(\Delta SL(n))$. But this follows easily from the countable union theorem, which implies that for every uncountable collection \mathcal{T} of finite sets there is an $n \in \omega$ and an uncountable subcollection all of whose elements have cardinality n.

3 Comparing the two definitions of uncountable Up to this point the meaning of X is uncountable has been $|X| \neq \aleph_0$. Sets which are uncountable in this sense are clearly Dedekind infinite sets and the assertion that our two definitions of uncountable are equivalent is equivalent to the assertion W_{\aleph_0} that every infinite set is Dedekind infinite (this is the notation of Jech [2].) The assertion W_{\aleph_0} has been studied extensively. See for example Howard and Yorke [1], [2], Spišiak and Vojtáš [6], and Truss [7].

In this section we will use $\Delta SL(\not\preceq \aleph_0)$ and $\Delta SL(\not\preceq \aleph_0, n)$ for the statements ΔSL and $\Delta SL(n)$ from the previous section and we will use $\Delta SL(>\aleph_0)$ and $\Delta SL(>\aleph_0, n)$ for the corresponding statements using the second definition of uncountable.

Theorem 3.1 For all $n \in \omega$, $n \ge 2$, $\Delta SL(>\aleph_0, n) \Rightarrow W_{\aleph_0}$.

Proof: Assume $\Delta SL(>\aleph_0,n)$ for some $n\geq 2$. Then by an easy argument similar to the one in the proof of 2.1, $\Delta SL(>\aleph_0,2)$ holds. Now we argue that $\Delta SL(>\aleph_0,2)$ implies that every Dedekind finite set is finite. Assume that A is a Dedekind finite set which is not finite. We may also assume that $A\cap\omega=\varnothing$. Let $\Upsilon=\{\{k,a\}:k\in\omega\land a\in A\}$. Then clearly $|\Upsilon|\geq\aleph_0$. If $|\Upsilon|=\aleph_0$ then $|A|\leq\aleph_0$ contradicting our assumptions so we have $|\Upsilon|>\aleph_0$. Applying $\Delta SL(>\aleph_0,2)$ to Υ gives a subcollection G of G such that $|G|>\aleph_0$ and G is a G-system. If G is the root of G then either |G|=0 or |G|=1. If |G|=0 then

$$|A| \ge |\{a \in A : (\exists x \in \mathcal{G})(a \in x)\}| = |\mathcal{G}| > \aleph_0.$$

On the other hand if $r = \{t\}$ then there are two possibilities, either $t \in A$ or $t \in \omega$. If $t \in A$ then $|\mathcal{G}| \le |\{\{k,t\} : k \in \omega\}| = \aleph_0$ which is impossible. If $t \in \omega$ then $|A| \ge |\{\{t,a\} : a \in A\}| \ge |\mathcal{G}| > \aleph_0$ a contradiction.

Corollary 3.2 For any $n \in \omega$, $n \ge 2$, the following are equivalent:

- (1) $\Delta SL(>\aleph_0,n)$
- (2) $CU \wedge PC \wedge W_{\aleph_0}$
- (3) $\Delta SL(>\aleph_0)$.

Proof: Under the assumption W_{\aleph_0} , $\Delta SL(\neq \aleph_0, k)$ and $\Delta SL(>\aleph_0, k)$ are equivalent for every $k \in \omega$, $k \geq 2$, as are $\Delta SL(\neq \aleph_0)$ and $\Delta SL(>\aleph_0)$. Since $\Delta SL(>\aleph_0, n)$ implies W_{\aleph_0} , the corollary follows from 2.5.

We note that as a consequence of the corollary, $\Delta SL(>\aleph_0)$ implies $\Delta SL(\nleq\aleph_0)$.

Finally, we show that $\Delta SL(\not\preceq\aleph_0)\Rightarrow\Delta SL(>\aleph_0)$ is not a theorem of ZF. We will do this by showing that $\Delta SL(\not\preceq\aleph_0)$ is true and $\Delta SL(>\aleph_0)$ is false in the ordered Mostowski model ([2], p. 49). This will give $\forall_{ZFU}\Delta SL(\not\succeq\aleph_0)\Rightarrow\Delta SL(>\aleph_0)$ where ZFU is ZF weakened to permit the existence of atoms. We will then appeal to the transfer results of Pincus [5] to obtain our desired result $\forall_{ZF}\Delta SL(\not\succeq\aleph_0)\Rightarrow\Delta SL(>\aleph_0)$.

We begin with a brief description of the construction of the ordered Mostowski model. Let M' be a model of ZFU + AC with a countable set A of atoms and a linear ordering < of A with order type that of the rational numbers. Let G be the group of all order preserving permutations of A and for each finite subset E of A, let fix(E) = { $\phi \in G$: ($\forall a \in E$)($\phi(a) = a$)}. Let Γ be the filter of subgroups of G generated by {fix(E): $E \subseteq A \land E$ finite}. The ordered Mostowski model M is the permutation model determined by Γ , that is

$$M = \{x \in M' : (\forall y \in \{x\} \cup \operatorname{trcl}(x))(\exists H \in \Gamma)(\forall \phi \in H)(\phi(y) = y)\}.$$

In this formula, trcl(x) denotes the transitive closure of x. If $x \in M$ and E is a finite subset of A, we say E is a support of x if $(\forall \phi \in fix(E))(\phi(x) = x)$. We will make use of the following facts about M:

- (4) Every $x \in M$ has a least support, supp(x), which satisfies $(\forall \phi \in G)(\phi(x) = x \Leftrightarrow \phi \in \text{fix}(\text{supp}(x))$.
- (5) W_{\aleph_0} is false in M because in M, $|A| \not\leq \aleph_0$ and $|A| \not\geq \aleph_0$.
- (6) If $x \in M$ is finite, then $supp(x) = \bigcup_{t \in x} supp(t)$.

Theorem 3.3 $\Delta SL(>\aleph_0)$ is false in M.

Proof: This follows from 3.1 and (5).

Theorem 3.4 $\Delta SL(\nleq \aleph_0)$ is true in M.

Proof: By 2.4, it suffices to prove $\Delta SL(\nleq \aleph_0,2)$. Suppose $\mathfrak{T} \in M$ is a collection of 2 element sets such that, in M, $|\mathfrak{T}| \nleq \aleph_0$.

We first handle the case where $(\forall x \in \mathcal{F})(\operatorname{supp}(x) \subseteq \operatorname{supp}(\mathcal{F}))$. In this case \mathcal{F} is well-orderable in M since $\operatorname{supp}(\mathcal{F})$ is a support for any well-ordering of \mathcal{F} . This together with $(|\mathcal{F}| \not\preceq \aleph_0)^M$ implies that $|\mathcal{F}| \geq \aleph_1$ in M. Therefore $|\mathcal{F}| \geq \aleph_1$ in M'. Hence, in M' (since M' satisfies AC) \mathcal{F} has a subcollection \mathcal{G} such that \mathcal{G} forms a Δ -system and $|\mathcal{G}| = \aleph_1$. But $\operatorname{supp}(\mathcal{F})$ is a support for \mathcal{G} and for each element of \mathcal{G} , therefore $\operatorname{supp}(\mathcal{F})$ is a support for a bijection between \mathcal{G} and \mathcal{R}_1 . It follows that $\mathcal{G} \in M$, $|\mathcal{G}| = \aleph_1$ in M and \mathcal{G} is a Δ -system in M.

On the other hand if there is some $x \in \mathcal{T}$ such that $\operatorname{supp}(x) \nsubseteq \operatorname{supp}(\mathcal{T})$, suppose that $x = \{t_1, t_2\}$ and that $\operatorname{supp}(\mathcal{T}) \cup \operatorname{supp}(x) = \{a_1, a_2, \dots, a_n\}$ where $a_1 < \dots < a_n$. Fix a j such that $a_j \in \operatorname{supp}(x) - \operatorname{supp}(\mathcal{T})$. We will assume that 1 < j < n. The proof can easily be modified to handle the cases j = 1 and j = n. Let $E = (\operatorname{supp}(\mathcal{T}) \cup \operatorname{supp}(x)) - \{a_i\}$.

By (6) there are three possibilities:

```
case 1. a_j \in \text{supp}(t_1) - \text{supp}(t_2).
case 2. a_j \in \text{supp}(t_2) - \text{supp}(t_1).
case 3. a_j \in \text{supp}(t_1) \cap \text{supp}(t_2).
```

In case 1 we construct a subcollection G of T such that

- (i) \mathcal{G} has support $\subseteq E$
- (ii) $|\mathfrak{G}| = |\{a : a_{j-1} < a < a_{j+1}\}| \text{ in } M.$
- (iii) G is a Δ -system with root $\{t_2\}$.

This will suffice since it follows from (ii) and (5) that $|\mathcal{G}| \not\leq \aleph_0$ in M. \mathcal{G} is defined by

$$\mathfrak{S} = \{ \phi(x) : \phi \in \mathrm{fix}(E) \}.$$

We first note that $\mathcal{G} \subseteq \mathcal{F}$ since for any $\phi \in \operatorname{fix}(E)$, $\phi(\mathcal{F}) = \mathcal{F}$ and therefore $\phi(x) \in \mathcal{F}$. Part (i) is clear. For (ii) we claim that the set $f = \{(\phi(x), \phi(a_j)) : \phi \in \operatorname{fix}(E)\}$ is a one-to-one function from \mathcal{G} onto $\{a : a_{j-1} < a < a_{j+1}\}$ with support E. It is clear that f has domain \mathcal{G} and that f is onto $\{a : a_{j-1} < a < a_{j+1}\}$. The relation f is one-to-one, for suppose that $\phi, \psi \in \operatorname{fix}(E)$ and $\phi(a_j) = \psi(a_j)$ then $\psi^{-1}\phi(a_j) = a_j$ so that $\psi^{-1}\phi \in \operatorname{fix}(E \cup \{a_j\})$. It follows that $\psi^{-1}\phi(x) = x$, hence $\phi(x) = \psi(x)$. Similarly f is a function since for $\phi, \psi \in \operatorname{fix}(E)$, $\phi(x) = \psi(x) \Rightarrow \psi^{-1}\phi(x) = x$ which by (4) implies $\psi^{-1}\phi(a_j) = a_j$. Hence $\phi(a_j) = \psi(a_j)$.

(iii) follows since supp $(t_2) \subseteq E$ therefore for each $\phi \in fix(E)$, ϕ fixes t_2 .

Case 2 is similar to case 1. In case 3 we construct a subcollection G of F satisfying (i), (ii), and

(iii') G is a Δ -system with root \emptyset .

As in case 1 we define G by (7). The proofs of (i) and (ii) are identical to the case 1 proofs. For (iii') we first note that for $\phi \in \text{fix}(E)$ with $\phi(x) \neq x$ we can conclude by (4) that $\phi(a_i) \neq a_i$ and therefore by (4) that

(8)
$$\phi(t_1) \neq t_1 \land \phi(t_2) \neq t_2.$$

It follows from (4) that $\phi(\sup(z)) = \sup(\phi(z))$ for all $z \in M$ and therefore

(9)
$$\phi(t_1) \neq t_2 \land \phi(t_2) \neq t_1.$$

Combining (8) and (9) gives us $(\forall \phi \in \text{fix}(E))(\phi(x) \neq x \Rightarrow \phi(x) \cap x = \emptyset)$. It follows that the elements of G are pairwise disjoint. This completes the proof of 3.4.

The proof that the independence results can be transferred to ZF will require the following lemma.

Lemma 3.5 For any ordinal α , if α is a collection of sets such that $|\alpha| \leq \aleph_{\alpha+1}$ and $(\forall x \in \alpha)(|x| \leq \aleph_{\alpha})$ then $|\bigcup \alpha| \neq \aleph_{\alpha+2}$.

Proof: Assume the hypotheses and that $|\bigcup \alpha| \ge \aleph_{\alpha+2}$. Let $Z \subseteq \bigcup \alpha$ have cardinality $\aleph_{\alpha+2}$, then $\alpha' = \{x \cap Z : x \in \alpha\}$ satisfies $|\alpha'| \le \aleph_{\alpha+1}$ and $(\forall x \in \alpha')(|x| \le \aleph_{\alpha})$ and $|\bigcup \alpha'| = \aleph_{\alpha+2}$. Let $\neg \alpha$ be a well-ordering of $\neg \alpha$. For each $x \in \alpha'$, $\neg \alpha \upharpoonright x$ is an ordering of type $\neg \alpha \upharpoonright x$. From these well-orderings together with a well-ordering of α' of type $\neg \alpha \upharpoonright x$ is easy to construct a one-to-one function from $\neg \alpha \upharpoonright x$ into $\aleph_{\alpha+1} \times \aleph_{\alpha+1}$. But $|\aleph_{\alpha+1} \times \aleph_{\alpha+1}| = \aleph_{\alpha+1}$ (see [4], p. 293). This contradiction completes the proof of the lemma.

Now we note that

(10)
$$(\forall Z)(|Z| \not\geq \aleph_3 \rightarrow (\forall \Upsilon \in \mathcal{PO}(Z))[((|\Upsilon| \not\leq \aleph_0) \land (\forall t \in \Upsilon)(|t| = 2))$$

 $\rightarrow (\exists G \in \mathcal{PO}(Z))(G \subseteq \Upsilon \land (|G| \not\leq \aleph_0) \land G \text{ is a } \Delta\text{-system})])$

(which is $\Delta SL(\not\preceq\aleph_0)$ restricted to families Υ such that $|\bigcup \Upsilon| \not\succeq \aleph_3$) is injectively boundable in the sense of [5] since $|Z| \not\succeq \aleph_3$ and $|Z|_- \le \aleph_2$ are equivalent (see [5].) Since $\neg \Delta SL(>\aleph_0)$ is boundable (in the sense of [5]), we can use the transfer results of [5] to obtain a model of ZF in which (10) is true and $\Delta SL(>\aleph_0)$ is false. Therefore to complete our argument it will be sufficient to prove the following lemma.

Lemma 3.6
$$ZF \vdash (10) \rightarrow \Delta SL (\nleq \aleph_0).$$

fore by (10), G has an uncountable subcollection which forms a Δ -system. This completes the proof of our independence result which we state as:

Theorem 3.7 $ZF \not\vdash \Delta SL (\not\preceq \aleph_0) \Rightarrow \Delta SL (> \aleph_0).$

Acknowledgment The authors would like to thank the referee for several suggestions which greatly improved the exposition.

REFERENCES

- [1] Howard, P. and M. Yorke, "Definitions of finite," *Fundamenta Mathematicae*, vol. 133 (1989), pp. 169–177.
- [2] Jech, T., *The Axiom of Choice*, Studies in Logic and the Foundations of Mathematics, vol. 75, North-Holland, Amsterdam, 1973.
- [3] Kunen, K., "Combinatorics," pp. 371-401 in *Handbook of Mathematical Logic*, edited by J. Barwise, North-Holland, Amsterdam, 1977.
- [4] Kunen, K., Set Theory: An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
- [5] Pincus, D., "Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods," *The Journal of Symbolic Logic*, vol. 37 (1972), pp. 721-743.
- [6] Spišiak, L. and P. Vojtáš, "Dependencies between definitions of finiteness," *Czechoslovak Mathematical Journal*, vol. 38 (1988), pp. 389-397.
- [7] Truss, J., "Classes of Dedekind finite cardinals," Fundamenta Mathematicae, vol. 84 (1974), pp. 188-208.

Department of Mathematics Eastern Michigan University Ypsilanti, Michigan 48197