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An Arithmetical Completeness Theorem

for Pre-permutations

FRIEDEMANN TUTTAS

Abstract We prove an extension of an arithmetical completeness theorem
for the system Rω with respect to pre-permutational arithmetic interpreta-
tions to all modal sentences. Hitherto, this type of completeness theorem has
only been given for modal sentences with no nestings of witness comparisons.

In their joint paper [1], Guaspari and Solovay provide a modal analysis of
Rosser sentences. Their results are presented, discussed, and somewhat comple-
mented in great detail in Chapter 6 of Smoryήski's recently published book [2].
Both for the sake of shortness and convenience, we assume full familiarity with
this exposition and will refer to it throughout this paper.

Among other results, Guaspari and Solovay prove an Arithmetical Complete-
ness Theorem (ACT) for the modal system Rω which is briefly described as fol-
lows ([2], p. 259-262).

The language of Rω is the usual one for propositional logic but equipped
with witness comparisons < and <.

The axioms of Rω are all sentences (A1-A7) together with the necessitations
of (A1-A6).

(Al) All tautologies
(A2) ΠAΛΏ{A-*B)->ΏB

(A3) ΏA-+ΏUA
(A4) Ώ{ΏA->A)->ΠA
(AS) A^ΠA, for all Σ-formulas ([2], p. 260)
(A6) Order axioms for < and < ([2], p. 261)
(A7) ΠA-+A.

(The necessitation of a sentence A is ΏA.)
The only rule of inference is modus ponens.
An arithmetic interpretation is an assignment * of arithmetic sentences/?* to

modal atoms p that extends as follows:
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f = (0 = 0), /* = ( δ = ϊ )

(AoB)*=A*oB*9 force {Λ,V,-,<,<}

= Th(rA*n).

Here Th(y) is a standard provability predicate for PRA (primitive recursive arith-
metic), i.e., a Σ{-formula with only v as free variable such that

PRA h Vί;(PrPRA(ι;) <-• Th(t/)).

The witness comparison formulas are defined by

3V0φ <3Vιφ

lvoφ < 2Vι

We can now state Guaspari and Solovay's ACT:

Theorem For every modal sentence A,

Rωh,4iffV* (A* is true).

In some sense one might regard this as unsatisfactory. One is interested in
the usual provability predicate Pr P R A ( f ) (Pr(ι ) in shortened form) rather than
any predicate Th(ι ) provably equivalent to Pr(ι ). However, if we choose the
interpretation of D, <, and < according to:

(1) ( D ^ o Π 5 ) * = P r ( Γ v 4 * Ί ) o P r ( Γ i ? * Ί ) , for o e {<,<},

then it turns out that the above ACT for Rω does not hold. Put, for example,
τ = (tAt^t) a n d σ = (Dr < D ( T Λ T ) ) . Then r* = (0 = OΛO = 0->0 = 0)is
an axiom of PRA ([2], p. 19), and the Gόdel number of (r Λ T)* = r* AT* is
greater than that of r*. Therefore, σ* is true. On the other hand, consider the
Kripke model K = [a0] and declare -ισ to be forced at α 0 (this is possible).
Hence by completeness of Rω ([2], p. 271), Rω \t σ. (We may also declare σ to
be forced at a0, whence R \f ~>σ. If we fix a special standard provability predi-
cate Th(ι ) and denote again the corresponding arithmetic interpretation by *,
then σ* or -ισ* must be true. So the above ACT does not even hold for a par-
ticular standard provability predicate.)

We can get around this difficulty by modifying the interpretation of < and <
in (1). Again we interpret D by Pr( ), but allow different orderings of the proofs
to enter the interpretations of the witness comparisons.

Definition
(i) Dx = [y\ [x/2y] is odd), i.e., the finite set with canonical index x.

(ii) A recursive function H is a pre-permutation (of the natural numbers)
if the following hold:
a. PRA ^VOSV^VO

b. PRA hvt^ai oίi o

c. PRA hvi oVMt o * vι ^Dmv0) Π DH{υι) = 0 ) .
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(iii) Let H be a pre-permutation and + an assignment of arithmetical sen-
tences p+ to atoms p. The pre-permutational arithmetic interpretation
(ppi) + based on Z/and + is the extension of + by the following clauses:

(-υ4)+ = -iA+, (ΠA)+ = P r ( Γ ^ + π )

(A oB)+ = A+ oB+, foroE {Λ,V,->}

(ΠA D5)+ = P r ( Γ i 4 + π ) ^ P r ( Γ £ + π ) , for G {<,<}.

Here, e.g., at ̂ t; <H 3v\pv is 3v(ρt/Λ Vw <H v^φw) and w <// v is de-
fined to be aw(w e £)//(«) Λ vz < w i; ί £>//(*>) (see [2], p. 287).

Now, in [2] (p. 288) it is shown that an ACT for any ppi can be obtained es-
sentially by rewriting the proof of Guaspari and Solovay's ACT above. But, alas,
in doing so we can deal only with modal sentences having no nestings of witness
comparisons. To be more precise, first inductively define, for modal A and B,

=max{c(A),c(B)}9 for<>E {Λ,V,->}

c(ΠAoΠB) = 1 +max{c(A)9c(B)}9 for<>e {<,<}.

We then have ([2], Theorem 6.2.11):

Theorem For all modal sentences A with c(A) < 1:

(2) Rωhy4iffV+(y4+istrue).

It is the aim of this note to prove (2) without any restriction on A.

Theorem For all modal sentences A:

f V+(,4+istrue).

Proof: To some extent, the proof runs along the lines of the proof of Guaspari
and Solovay's ACT. Therefore, if not otherwise stated, we adopt the notation
of [2], p. 280 f. It suffices to show:

If A is a modal sentence and K an A -sound Kripke model for R~ in which
A is true, then there is a ppi + such that A+ is true.

Suppose K = ({1,... ,Λ},i?,l,lh) is ̂ 4-sound and 1 \\-A. Then define S as in
[2], p. 280, introduce a new root 0 below K and define for atoms p:

for peS:0H-p iff l\\-p

for p£ S: 0lh/7.

This extends to an ̂ 4-sound Kripke model of R" in which, for all B G S:

0\\-Bifΐl\\-B.
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Then define Solovay's recursive function F by

F(0) = 0

ί least y [F(x)Ry & Prov(x + 1, ΓL Φ yn)], if such exists
F(x + 1) = <

[F(x), otherwise.

(L denotes the limit of F. For the basic properties of L, see [2], Chapter 3, Sec-
tions 1 and 2.)

Now define the interpretation + as outlined in [2], p.281, however, with the
following modifications:

= Pr(rB+~]) o / / P r ( Γ C + π ) , for G {<,<}.

Here H is as yet undefined and supposed to be recursive. We do not provide
a formal definition of //, but rather we will proceed informally. Nevertheless, a
complete formalization within PRA is not problematic and can be obtained as
a standard application of the Recursion Theorem.

We proceed in stages and define simultaneously H together with the auxil-
iary functions k and /. After each stage m, k will tell us that //is defined for all
x<k(m), whereas / keeps track of how many proofs of formulas belonging to
a set specified below are already listed by //.

Stage m = 0: Put A:(0) = 0, H(0) = 2°, 1(0,j9x) = 0, ally,*.
Stage m>0: His defined for all x < k(m - 1).

i. If m is no proof or if Prov(m,ΓB+~]) for some ΠB φ S, then put

k(m) = k(m - 1) + 1, H(k(m)) = 2m, and l(mj\x) = l(m - lj,x).

ii. P r o v ( m , r £ + n ) for some D£ G S.

Let Ym = {C+\F(m)\\- DC & D C G S } , and let E°m,... ,Efr-1 be the
equivalence classes "mod <" of Ym ordered according to < (see [2], p. 282). We
define the partial recursive function

Γx-th proof of y, if y codes a provable formula
P(x,y) = \

L undefined, otherwise,

and put cm = max{c(C) \ C+ G Ym\. Introduce, fory > 0,

We can assume that all these sets are nonempty. (For otherwise drop the empty
sets and list only the remaining ones.)

Assume for a moment that DC varies over 5. Then define

l(m — l ,c w _ 1 , Γ C + ~ l ), otherwise,

l , Γ C + n ) , if C+GYm&c(C)

l(mJ-l,rC+~1), otherwise.
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In all other cases, i.e., if x does not code a sentence C+ for some DC E 5, just
put l(m,j,x) = 0.

This completes the definition of / at stage m.
Next introduce

M(mJ,i) =
code of

if all these sentences have proofs

undefined, otherwise.

Armed with this notation we are now prepared to define H at stage m:

k(m) = k(m-l) + (cm+ l)sm

[ M(m, /,/), if M(m, j,i)i, all / < sm
(3) H(k(m-l) + l+jsm + i)= \ \ ' J ' } ' m

(̂  undefined, otherwise

(I denoting definedness). This ends the definition of H thereby ending that
of +, too.

Let us remark at this point that the main difficulty in the construction of H
is to guarantee that H is total. For this purpose we have split up the sets Eι

m ac-
cording to the complexity of their elements as described above. This is the key
idea that will enable us to prove the recursiveness of H. Up to now, however,
we can say only that H is a partial recursive function, the only arguments at
which it might be undefined being those displayed in (3). For the following we
fix a recursive predicate S(m,j) stating that m is a proof of a sentence C+ for
some DC E S andy < cm.

Lemma Let 0 < j < cm. We have, for 0 < x < n and B E S such that

(5j) x¥B=> PRA hL = x-+ -*B+

(6j) PRA h S(mJ) -+ V/ < sm H(k(fn - ϊ) + ϊ + (cm -J)sm + ι)i.

Proof of the lemma: By induction ony. Again we argue informally. Fory = 0,
(40) and (50) are well known assertions of a lemma of Solovay's ([3], §4; also
[2], Lemma 3.1.10 and Lemma 3.2.3). To show (60), observe that the limit L of
Fexists and equals some x < n. So assume L = x and let m be such that S(m,0).
If F(m) = ΛΓ, then by (40), for all / < sm, H(k(m - 1) + 1 + cmsm + i)l. If
F(m)Rx, then, for any modal sentence B,

F(m)\hnB=>x\\-ΠB.

Hence, according to (40), if B+ E Ym and c(B) = 0, then B+ is provable. Thus
His again defined at all arguments of form k(m — 1) + 1 + cmsm + / (/ < sm).
This is (60).

Suppose now that the lemma has already been proved fory < n < cm. Let
B be DC < ΏD where c(C) < n and c(D) < n, and suppose x Ih DC < D2λ
Then xIh DC, and by induction hypothesis, PRA \-L = x-> Pr( r C + n ) . If Λ: If/

then PRA hL = Jc -> ->Pr( Γ £ > + π ) and clearly PRA h L = x -+ (DC <
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D£>)+. Now assume x Ih ΠD; then PRA h L = x -+ Pr( ΓD+~]). Let m be min-
imum such that Prov(ra, Γ G + Π ) for some GGSandF(m) Ih DC. Two things
can happen. Suppose first F(m) Ih D/λ Then there are tf,Z? < s w , a < 6, such
that C+ E Ea

m and D+eE^. Also, C + E ^ Λ " 1 and D+ E £ r ^ Λ ~ 1 . By defini-
tion of H, for n' > AZ,

- 1) + 1 + (c w - n')sm + α)4 iff H(k(m - 1) + 1 + (cm - n')sm

Hence,

u E Z?^ ( w ) Λ Prov(w, rZ>+ n) => 3z < w3j (^ E Z W ω Λ P r o v ( ^ , Γ C + π ) ) .

Since this assertion obviously holds if F(m) ¥ ΠD, we can conclude

P R A h L = J c - > ( D C < ΠD)+.

This is (4n) for B = (DC < D£)). Along the same lines (4n) and (5Λ) can be
obtained for this B as well as for B = (DC < ΠD). Now, by induction hypoth-
esis, (4Π_!> and (5Λ_i). We just proved (4Λ) and (5Λ) for B = (DC<> ΠD),
where ° E {<,<}. The proof of Solovay's Lemma 3.2.3 in [2] then easily fur-
nishes (4n) and (5n) for all B E S with nestings of witness comparisons at most
n. In the same manner we have proved (60) above, we can now derive (6Λ). This
completes the proof of the lemma.

We are almost done. As outlined in [2] (p. 283), an easy application of the
lemma yields that A+ is true. Thus all what remains to show is that + is a ppi,
and this amounts to a proof that His a pre-permutation. i f is recursive by the
lemma and obviously satisfies clause (iib) of the definition above. A quick look
at the definition of / will convince the reader that (iic) is fulfilled as well. To show
(iia), suppose Prov(m,rB+n) is true forsome ΠB E 5. We claim 0 Ih ΠB. For
otherwise the lemma yields PRA h L = 0 -> -iPr( ΓB+n) and thus PRA h L Φ
0, which is absurd. Therefore B+ E Yo £ γm9 and m gets listed by if at stage m
or earlier. In all other cases we have m E DH^k^m)). This shows that His a pre-
permutation. The theorem is now proved.
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