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Nominal Tense Logic

PATRICK BLACKBURN

Abstract This paper considers the logical consequences of making Priorean
tense logic referential by sorting its atomic symbols. A second sort of atomic
symbol, the nominal, is introduced and these are constrained to be true at ex-
actly one point in any model. The resulting gain in expressive power is exam-
ined, and a number of logics are axiomatized and shown to be decidable. The
relevance of the extension to the semantics of natural language is briefly
noted.

This paper investigates a simple method of incorporating temporal reference
into Priorean tense logic. A new sort of atomic symbol—the nominal—is intro-
duced to languages of tense logic. These new symbols, distinguishable from the
ordinary propositional variables, combine with other symbols in the usual way
to form wffs. There are no other syntactic changes. The enriched languages are
interpreted on frames in the usual way, except that we stipulate that nominals
must take the value 'true' at precisely one point in any frame. Nominals are thus
'instantaneous propositions', and the instant at which a nominal is true is the in-
stant it names. We can think of nominals as a mechanism which enables the views
of Reichenbach [22] and Prior [20] on tense in natural language to be incorpo-
rated in single framework. Although this idea is briefly elaborated on in the con-
cluding remarks, the main aim of the present paper is to discuss the logical
properties of Nominal Tense Logic. It turns out that this simple sorting mech-
anism has a considerable effect on tensed languages: many classes of frames not
standardly definable—for example the partial orders, the strict total orders, and
the integers—become definable and give rise to richer tense logics.

This paper is structured as follows. After presenting the basic concepts, we
turn to model theory and examine the increased expressive capabilities. Next we
turn to axiomatics and axiomatize both the minimal nominal tense logic and the
minimal nominal modal logic. In the following section we prove completeness
results for some rather more 'time-like' classes of frames; this is done using Seger-
berg's [25] cluster manipulation techniques. We also define an algebraic seman-
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tics for our languages and prove an algebraic adequacy theorem in the sense of
Thomason [27]. Next we consider the question of decidability. We note that be-
cause of the new expressive powers of our languages, many logics of interest rou-
tinely lack the finite frame property. However, a well known theorem of
Segerberg's does not hold in nominal tense logic: it is possible for a logic to pos-
sess the finite model property while lacking the finite frame property. We show
how to exploit this using a filtration argument and thus establish decidability re-
sults for a number of logics.

Some historical remarks are in order. The ideas developed here can be traced
back to the work of Prior and Bull from the late 1960s. Prior discusses (cf. Ap-
pendix B of [20]) the difficulties of incorporating nominal-like entities into tense
logic and in [21] he analyses the semantics of 'now' with their help. Somewhat
later Bull [5] axiomatized a tense logic with an additional S5 modality in which
nominals appear as variables over times which can be bound by quantifiers. It
is precisely in this last respect that this earlier work differs from the work pre-
sented here: Prior and Bull were mostly concerned with more powerful languages
in which explicit quantification over nominals could be performed, whereas in
this paper they are simply a second sort of atomic symbol. More recently, how-
ever, a number of Bulgarian logicians have considered various intensional logics
enriched with nominals. They consider nominals in both the setting of propo-
sitional dynamic logic [10],[18],[19], and modal logic [9],[11]. As these authors
also treat nominals as a second sort of atomic symbol, comparisons can be made
with the present paper, and this is done below.

1 Preliminaries By a language of Nominal Tense Logic (NTL) is meant a
selection of two disjoint, countably infinite collections of symbols: NOM =
[ij9k9...}, the nominals of t h e language, a n d VAR = {p9q9r9...)9 thtproposi-
tional variables of the language. We define ATOM to be NOM U VAR and call
its elements atoms. The wffs of the language are made in the usual way from
these atoms using Λ, V, ->, <->, ->, F, P, H9 and G. In short, a language of NTL
looks just like an ordinary language of tense logic, save for the atomic level: there
we have two sorts of atom, nominals and variables. We talk of purely nominal,
purely Priorean, and mixed wffs; these are wffs containing only nominals, only
variables, or a mixture of the two, respectively. For example, i-> -\Fi is purely
nominal, FFp-*Fp purely Priorean, andF(iΛp) ΛF(I Aq) -• F(iΛp Aq) mixed.
We often call a language of standard tense logic—that is, a language without
nominals—a Priorean language. We use n as a metavariable across nominals and
φ9 φ, σ, and so on, as metavariables across arbitrary wffs. We use the usual syn-
tactic machinery of tense logic: most importantly, deg(φ) (the degree of φ) is the
number of logical connectives in φ9 and td(φ) (the temporal depth of φ) is the
maximal level of embedding of tense operators in φ. The mirror image of a wff
φ is formed by simultaneously replacing every F by P and G by H, and vice versa.

The semantics of these languages is given in terms of frames and models. As
usual, by a frame T is meant a pair <Γ,<> consisting of a nonempty carrier set
T and a binary relation < on T. The elements of T are thought of as points of
time and are usually called either points or times, and < is called the precedence
relation. We assume the usual tense logical definitions of such concepts as gen-
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erated subframes and/7-morphisms between frames; these concepts are defined
in van Benthem [1] for example. We will be particularly interested in 'time-like'
classes of frames, thus we shall pay special attention to: the strict partial orders
(SPOs), which consist of those frames in which the precedence relation is both
transitive and irreflexive; the strict total orders (STOs), which are those SPOs
which are also trichotomous; the partial orders (POs), which consist of those
frames in which the precedence relation is transitive, reflexive, and antisymmet-
ric; and the total orders (TOs), which are trichotomous POs, that is, chains.

By a model M is meant a pair <T, V) where T is a frame, and F a valuation
on T. We say that T is the frame underlying M, and often call the points of the
underlying frame the points of the model. Most of our terminology concerning
models is standard: indeed it is only in the definition of what it is to be a valu-
ation that NTL differs from standard tense logic. As usual, a valuation on T is
a mapping from the atoms of our language to Pow(T), but we place a restric-
tion on the subsets of Γthat nominals may be assigned. Nominals must always
be assigned singleton subsets of a frame. A mapping from the atoms to Pow(t)
that does not obey this constraint is not a valuation. As usual, propositional vari-
ables can denote arbitrary subsets of T. With this one change made, everything
proceeds as in standard tense logic. In particular, we define the truth of a wff
φ at a point t of a model M, M 1= φ[t] in the usual fashion. We say that a wff
φ is valid in a model M (written M 1= φ) iff for all points t E M, M (= φ[t] and
we say that φ is valid on a frame T (written T h φ) iff for all valuations Fon T,
<T,F>hφ.

We will frequently talk of paths in what follows. By a path through a frame
<Γ,<> is meant any finite sequence of elements of T such that for every pair
tm, tm+ι of the sequence, either tm < tm+ι, or tm+ϊ < tm. That is, a path through
a frame is a sequence of moves both forward and backward in time. Sometimes
to emphasize the bidirectionality of the concept we refer to paths as zig-zag paths.
By the length of a path is meant the sequence length. A frame is connected iff
there is a path between any two of its points.

Many analogs of results for purely Priorean languages hold for languages
of NTL; for example, isomorphic frames are equivalent. Another standard re-
sult which is sometimes useful is the following. Let T = <Γ,<> be a frame and
teT. By Sn(Ύ,t), the n-hull around t, is meant the set of all points of T that
are related in n steps to t. The Horizon Lemma states that for any frame T and
any two valuations V, V on T such that V(a) Π Sn(Ύ,t) = V\a) Π Sn(Ύ9t) for
all atoms a, <T, F> (= φ[t] iff <T, F'> H φ[t], for all φ such that td(φ) < n.

More importantly, filtration theory [25] adapts straightforwardly to lan-
guages of NTL.

Definition 1.1 (Filtrations) Let M = <T, F> be a model and Σ a set of wffs
closed under subformulas. Define an equivalence relation ~ on Γby t ~ t' iff
for all σ G Σ and t,t' <ΞT,M¥ σ[t] iff M f= σ[f]. Let E(t) denote the equiv-
alence class of t. Define F = [E(t):tG T}. Now suppose that </ is a binary re-
lation on F satisfying:
1. s< t=>E(s) <fE(t)
2. E(s) <fE(t)=> ((FσeΣ&Mtσ[t])=>MtFσ[s])
3. E(s) <fE(t)=> ((PσeΣ&Mt=σ[s])=>MhPσU]).
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and further suppose that Vf\ ATOM -> Pow(F) is a function satisfying:
1. E(t)G Vf(p) iff te V(p), for all/?E VAR
2. E(t) E Vf(i) iff t E F(/), for all / G Σ Π NOM
3. Vf(i) is a singleton subset of F, for all / E NOM\Σ.

Then M / = «F,</>, l̂ > is called a filtration of M through Σ.

It follows by the standard arguments (see [25]) that filtrations exist. More-
over, as usual, given a transitive frame it is always possible to form a filtration
that is transitive by means of the following definition:

E(s) <f E(t) iff ((Fσ E Σ & M N σ vFσ[t]) => M tFσ[s]), and

((Pσ E Σ & M ¥σv Pσ[s]) => M \=Pσ[t]).

Following [25] we call such filtrations Prior filtrations.
However, although many filtrations thus exist, we have not yet checked that

filtrations are models; that is, we have not yet checked that Vf in the above def-
inition assigns singletons to nominals. This we will now do.

Lemma 1.2 (Filtrations are models) Let Mbea model, Σ a set of wffs closed
under subformulas, and M^ a filtration of M through Σ. Then M^ is a model.

Proof: We need merely check that Vf is a valuation. For the propositional vari-
ables the definition is unproblematic, as propositional variables may denote ar-
bitrary subsets. So next consider the nominals. Suppose i E Σ, and V(i) =
{t}. Clearly by the 'if direction of the second clause for Vf there is at least one
point of Fin V/(i)9 namely E(t). Equally clearly, by 'only if direction of the
same clause, there is no other; otherwise we would have that V(i) contained
more than one element, and as Fis a valuation this is impossible. Thus Vf han-
dles all the nominals in Σ correctly, and by definition Vf 'freely assigns' single-
tons to any nominals not in Σ, hence Vf is a valuation and M^ a model.

With this observation the way is cleared for an NTL version of a standard
result. By induction on deg(φ) we establish:

Theorem 1.3 (Filtration theorem) Let M = «Γ,<>, V) be a model, Σ a set
of wffs closed under subformulas, and Mf = «/%</>, Vf) a filtration of M
through Σ. Then:

for all σ E Σ, and all t E T

Filtrations play an important role in the work that follows. Indeed they al-
ready tell us that the validities of NTL form a recursive set. The argument is stan-
dard: given a wff σ that is not valid, let Σ be the set of all its subformulas.
Suppose card(Σ) = n. Then filtrating any model that falsifies σ through Σ yields
a model of cardinality at most 2n that also falsifies σ. In short we have an up-
per bound on the size of model needed to falsify wffs, thus searching through
all finite models up to the size limit is an algorithm for deciding validity.

However, there are also many differences between NTL and Priorean Tense
Logic (indeed this paper is essentially an exploration of these differences). First,
note that uniform substitution is not a sound rule of inference: from the fact that
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T N φ we cannot infer that T N φs, where φs results from φ by uniformly substi-
tuting formulas for atoms. To give the simplest possible counterexample, T (= /
iff T is a frame of cardinality one, but no such frame (and in fact no frame at
all) validates p, the result of uniformly substituting p for i. The loss of substi-
tution as a sound rule of inference is a direct outcome of the constraint we have
put on what functions count as valuations. To put it another way, the basic idea
we are investigating in this paper is what happens when the atomic information
slots are 'syntactically marked' as bearers of a certain type of information. In
NTL we have two such slots: propositional variable slots (which bear arbitrary
information) and nominal slots (which bear single point of time information).
Unrestricted substitution destroys this marking. Instead we should consider only
those substitutions that respect our sortal restrictions. Thus we define: a wffφ
is obtained from a wffφ by NTL substitution iffφ is the result of uniformly sub-
stituting arbitrary NTL wffs θ for propositional variables in φ, and uniformly sub-
stituting nominalsfor nominals in φ. Clearly this is a sound rule of inference.

But the differences run deeper. For example, although we are free to use the
filtration technique, the method of unravelling (cf. Sahlqvist [24], pp. 124-127)
fails to transfer to languages of NTL. In Priorean tense logic, unravelling turns
a (Priorean) model based on a frame of arbitrary structure into an equivalent
(Priorean) model based on a tree. Among other things this shows that the purely
Priorean validities on the class of all frames are precisely the same as the purely
Priorean validities on the class of intransitive frames: purely Priorean languages
cannot 'see' intransitivity. However, NTL can. Consider the following wff:

FFi -> -iFι.

As a simple check shows, this is valid on precisely the intransitive frames. Thus
unravelling destroys structure that nominals can see. This is the first example we
have seen of a difference in expressive power that exists between the two sorts;
we will see many more in the work that follows.

We later briefly discuss languages of nominal modal logic (NML). The def-
inition of their syntax and semantics is the expected one: again we have two sorts
of atom, namely, nominals and variables, and again nominals denote singleton
subsets of frames. By a modal path through a frame <Γ,<> is meant a finite
sequence of elements of Γsuch that for all pairs tm and tm+{ of the sequence,
tm < tm+\. Note that modal paths are unidirectional.

2 Model theory We say an NTL formula φ defines a class of frames T iff:
T 1= φ iff T G T. For example, we have just noted that FFi -• ->Fi defines the
intransitive frames. Note that if φ defines T and φ defines T', then φ A φ defines
T Π T'. For further discussion of definability in standard tense and modal logic,
see van Benthem [1] or [2].

None of the following classes of frames are definable in a purely Priorean
language: the irreflexive, asymmetric, antisymmetric, trichotomous, (right) di-
rected, or (right) discrete frames. Furthermore, neither the SPOs, STOs, POs,
or TOs are definable in a purely Priorean language. However, it is straightfor-
ward to verify that each of the first six classes of frames is defined by the purely
nominal wff given:
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uFϊ VΛT-Π (x < x)

-IJK: < y)

i -> GCffiί -> /) vxy((x < j> Λ X < y) -• x = j>)

Pi v / v Fi Vxy(x <yvx = yvx<y)

FPi Vxylz(x<ZΛy<z)

/-> (FT ->FHH-ιi) Vxy(x<y^>3z(x<ZΛ -y*w(x<y < z))).

(Corresponding to right directedness and discreteness are left directedness and
discreteness, defined in the obvious way by mirror images. We regard T as short-
hand for /v -iι.)

Next note that FFi-+Fi defines transitivity and i-+Fi defines reflexivity. Thus
by making of these two wffs, together with wffs drawn from the previous list,
we can define the SPOs, STOs, POs, and TOs by means of purely nominal wffs.
For example, let φ s τ o be

(i -• -iFi) A (Pi v i v Fi) A (FFi -> Fi).

This purely nominal wff defines the STOs.
With mixed wffs we can do more: we can define both the integers and the

natural numbers up to isomorphism. Define φz to be:

φ s τ o Λ (H(Hp-+p) -• (PHp -> Hp)) A (G(Gp->p) -+ (FGp -> Gp)).

We then have that T N φz iff T = Z. To see this note that van Benthem shows
(cf. [1], p. 163) that the two purely Priorean conjuncts of φz define Z on the
class of connected strict partial orders. But φ s τ o restricts us to this class.

Next define φN to be:

φsτo A (H(Hp-+p) -+ Hp) A(G(Gp^>p)-> (FGp -> Gp)).

Again by appeal to a result of van Benthem's, we have T h φN iff T = N.
It is unavoidable that both φz and φN are mixed sentences. We will shortly

see that only first order classes of frames are definable using purely nominal sen-
tences, thus it follows that no purely nominal sentence can uniquely define these
structures. Further, van Benthem's results concerning the definability of these
structures in Priorean languages are 'best possible' results for purely Priorean lan-
guages, as the preservation of purely Priorean validity under the formation of
/7-morphic images and disjoint unions prevents the definition of either Z or N
using just propositional variables. The mixture of nominals and propositional
variables is thus necessary.

All initial segments of N are also definable. (They are not in a purely Pri-
orean language.) Define φL" to be

Ψ S T O Λ G W 1 Λ (Fn~ιT v PFn~xT)9

where n G N such that n > 1. Then T 1= φL" iff T is an STO of length exactly n.
Next, in NTL we can demand that every point has exactly n successors. First,

using either propositional variables or nominals, we can insist that every point
has at most n successors, as the following encoding of the Pigeonhole Principle
shows:
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Λ Faa^ V F(aaΛaβ).

(Here the aa are distinct atoms: either nominals or variables or a mixture can be
used.) However, using only variables we cannot insist that every point has at least
n successors. With nominals, on the other hand, we need merely write down:

F T Λ ( Λ FL-+F Λ -•'«)

where the ia are distinct nominals.
What can we say of a more general nature? For purely Priorean languages

there are four classic validity preservation results: validity is preserved under the
formation of generated subframes, disjoint unions, and/7-morphic images; and
antipreserved under the formation of ultrafilter extensions (for the definitions
of these concepts we once again refer the reader to [1]). As languages with nom-
inals are more expressive than Priorean languages, we might expect that one or
more of these preservation results will fail. This is precisely what happens: for
NTL only the generated subframe and ultrafilter extension results still hold.

Let us first briefly examine the two preservation results we retain. The anti-
preservation of validity under ultrafilter extensions remains because ue(V)(i)
will contain only the principal ultrafilter generated by V(i), for every nominal
/ and every valuation V; thus ue(V) assigns singletons to nominals and is a val-
uation. With this noted, the usual proof of the antipreservation result proceeds
unchanged. In the generated subframe case, we need to be careful in formulat-
ing what we mean by a generated submodel of <T, V) — not every pair <S, FI5>,
where S is a generated subframe of T, and Vls, the restriction of Fto S, is a
model, as VIs may assign 0 to nominals—but we need merely confine our at-
tention to pairs where this does not happen. The usual induction then gives a gen-
erated submodel theorem for languages with nominals; and as an immediate
corollary we have that validity is transmitted from any frame to its generated sub-
frames.

The two results that fail are more interesting. For Priorean languages we
have that given an indexed collection of frames {Ύm: m E M), if for all m G
M Ύm H φ, then I±J Ύm \= φ. An immediate consequence of this result is that Pri-
orean languages cannot define the universal relation vxy(x < y). Another ob-
vious consequence is that connectedness is not definable in a Priorean language;
indeed something stronger holds: no purely Priorean definable class of frames
consists solely of connected frames.

For languages containing nominals the preservation result no longer holds.
An immediate counterexample is given by the class of trichotomous frames, de-
fined by Pi v / v Fi. Another is provided by the class of (right or left) directed
frames. Yet another is given by the universal relation; this condition is definable
using nominals, by Fi.

Now, although the disjoint union preservation result fails for languages with
nominals, a little reflection shows that it 'only just' fails. Suppose we have two
frames T! and T2 on each of which φ is valid. To keep things simple suppose
φ contains occurrences of only one nominal, say /. We know that we cannot
conclude that Ύ{ lil T2 1= φ9 but why not? The reason is that in any valuation on
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Ύι l±J T2, on one of the components, say T1 ? / will be false everywhere. This is
a situation that the validity of φ on the component frames simply gives us no in-
formation about: in any valuation on either frame, / is true somewhere.

But suppose we knew something more: namely, that not only was φ valid on
each frame, but φ[±/i] was also. Then, intuitively, we would have the infor-
mation needed to guarantee validity on the disjoint union: the validity of the new
formula blocks the possibility that / being false everywhere in a component will
cause trouble. This is indeed the case: indeed, not only is the condition sufficient,
it is also necessary as long as the disjoint union is not trivial—that is, as long as
at least two frames are stuck together.

To state the result in full generality, we need merely extend the above intu-
itions to the case where φ contains many different nominals. Essentially all we
need to do is account for all the different ways the nominals can be 'dealt out'—
like cards from a pack—to the 'players'—the components of the disjoint union.
(A particular deal, of course, is just a valuation.) That is, we must take into ac-
count all possible uniform substitutions of _L for nominals in φ. Let S±(φ) be
the (finite) set consisting of precisely all the possible sentences obtainable by uni-
formly substituting ± for nominals occurring in φ, including the null substitu-
tion. For example, S±(IΛFJ) = [IAFJ, / Λ F I , 1 Λ F ; , I Λ F I ) . Let φ1-
denote the conjunction of these sentences. Then we have:

Theorem 2.1 Let [Ύm :mGM} be a family of frames such that card(M) > 2.
Then:

&Ύm\=φiffVmeMΎm\=φ±

for all wffs φ.

Proof: A straightforward argument using the generated submodel result. Use
the fact that nominals assigned points outside a generated subframe S behave
like l o n S .

Although p-morphisms preserve validity for Priorean languages, they do not
do so for languages with nominals. There are many obvious counterexamples.
Note that the unique function from Z to the singleton reflexive frame <{0},
{<0,0>}> is a/7-morphism; but both /-» -ΛFI and /-> -^FFi are valid on Z and in-
valid on the singleton reflexive loop. A/7-morphism is constructed in [1] (cf. pp.
160-161) where the source frame is discrete, and the target frame indiscrete, thus
demonstrating that discreteness is not Priorean definable. But we know that dis-
creteness is definable with nominals, hence van Benthem's construction provides
yet another counterexample.

For models, however, the/7-morphic link is the correct one. That is, if/ is
a/7-morphism from M5 = <S, Vs) to M, = <T, Vt), then we still have that

M s h φ[*] iff M,hφ[/(*)],

for all s G S and all wffs φ, as the usual induction on deg(φ) shows. Note why
we cannot derive from this the usual validity preservation result. Suppose/ is
a /?-morphism from S to T, and suppose <T, V) ψ φ[t]. However, f~ι[V(i)]
may not be a singleton subset of S, thus we cannot always transfer the falsify-
ing valuation to S.
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Let us turn to the correspondence between languages of NTL and classical
languages. Following [2] we define £0 to be a first order language with identity
that contains precisely one nonlogical symbol, a binary relation symbol *<\ Note
that any frame is a structure for this language. Now, only £0 expressible classes
of frame are definable by purely nominal sentences. To see this note that to deal
with nominals we need merely augment the standard translation (cf. [1], p. 151)
of tensed languages into classical languages by adding the clause that the stan-
dard translation of any nominal /, ST(i), is to be the <£0-

wff */ = t. (Here jt, is
the £o variable designated as corresponding to the nominal /, and t the £ 0 vari-
able representing the point of evaluation.) Now saying that a purely nominal for-
mula φ is valid on a frame T is equivalent to saying that VtVx^ xinST(φ) is
true in any first order model based on the structure T, where the xiι9... ,xin

correspond to all the nominals in φ. But WVJC,-, xinST(φ) is a first order
sentence, in fact an £0 sentence. With purely Priorean languages we need sec-
ond order quantification when we talk about validity—propositional variables
correspond to predicates, thus quantification over predicates is required to cap-
ture the effect of varying valuations. With nominals matters are simpler. This
translation immediately yields a number of results: that nominal validity is re-
cursively enumerable (r.e.), compactness and Lόwenheim-Skolem theorems, and
so on. Next consider frame consequence. This is defined as follows: φ is a frame
consequence of a set of wffs Σ (written Σ (=/ φ) iff whenever Σ is valid on a
frame T, so is φ. As is well known (cf. Thomason [28]), this relation is not r.e.
for purely Priorean languages. However, it is r.e. for purely nominal sets of sen-
tences, as for such sentences as Σ h/ φ iff ST(Σ) f= ST(φ). That is, for nominals
frame consequence 1=/ reduces to the r.e. relation of first order consequence, h

We now know that only £0 conditions are definable using purely nominal
wffs. We also know that some of these conditions—such as irreflexivity—are not
definable in any purely Priorean language. Now, Priorean languages, because
they can define higher order conditions, can define conditions no purely nomi-
nal language can; but can they define any first order conditions that purely nom-
inal languages cannot? So far we have seen no counterexamples; could it be that
as far as £0 conditions are concerned, purely nominal languages are stronger
than purely Priorean ones? The answer is no, but some work is required to see
this. The counterexample that follows and the idea underlying the proof are due
to van Benthem.

The counterexample is 'transitivity plus atomicity'. An atomic frame is one
in which every point x precedes an 'atom' y that is its own only successor:

yΛ \fz{y <z->z=y));

and the class of all frames that are both transitive and atomic is definable in
purely Priorean languages by the conjunction of FFp -+ Fp (4) with GFp -> FGp
(McKinsey's axiom). However, no purely nominal wff can define this condition.
The essence of the argument that follows is this: any such formula φ which pu-
tatively defines this condition can be falsified on N (the natural numbers in their
usual order) as N contains no atoms. Because of a certain 'stability property'
which we will demonstrate, it is possible by means of filtration to turn this fal-
sifying model into a transitive and atomic falsifying model, showing that no such
wff can define the desired class.
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First the 'stability lemma'. Its intuitive content is this: given any purely nom-
inal wff φ and a valuation on N, by moving sufficiently far to the right along
N we reach a point where the truth values of φ and all its subformulas stabilize
to some fixed values. This occurs because eventually we reach a point where all
nominals in φ denote points in the past. The only tricky part in establishing this
is driving through the clause for formulas of the form Pφ, as such formulas can
look back at points before things settled down; this motivates the use of the tem-
poral depth measure in the following lemma:

Lemma 2.2 Let Σ be a set of sentences closed under subformulas such that
the only atoms in Σ are a finite collection of nominals. Let Vbe a valuation on
N, and let I — 1 be the largest natural number that V assigns to some nominal
in Σ. That is, I - 1 = max\Ji<=Σ V(i). Then for all wffs σ E Σ, for alln> 1 +
td(σ)9<N9V))=σ[n]iff<N9V)\=σ[l+td(σ)].

Proof: Induction on td(σ). Suppose td(σ) = 0. Then as σ is a purely nominal
sentence, it is either a nominal or a boolean combination of nominals, all of
which are in Σ. As all nominals in Σ are false from / onward, the result is clear
by induction on deg(σ).

Assume the result holds for all σ' E Σ such that td(σ') < m9 where m > 0.
Suppose td(σ) = m. We want to show that for all n > I + m, <N, V) N σ[n] iff
< N , F > h σ [ / + w ] .

Suppose σ has the form Pφ. Clearly <N, V) N σ[l + m] implies <N, V) 1=
σ[n]. So suppose that <N, V) Ψ σ[l + m]. Then for all h < I + m <N, V) Ψ
σ[h], which means in particular that <N, V) ψ σ[l + (m - 1)]. As td(φ) =
m - 1, by the inductive hypothesis we have that for all n > I + m, <N, V) ψ
σ[n] which means that φ is false everywhere on N. Thus trivially for all n >
I + m9 <N, V) ψ σ[n] as required. Alternatively, if we assume that σ has the
form Fφ9 a similarly styled argument also gives the required result.

The only other possibility is that σ is a boolean combination of elements
σ[,..., σ'k of Σ such that td(σj) < m or td(o)) = m and σj has the form Pφ or
Fφ. But our argument so far tells us that for all such σj (1 <y < k), <N, V) N
σj[n] iff <N, V) h σ [l + td(σ})]9 for all n > I + td(σj)9 and as σ is a boolean
combination of such forms an easy inductive argument shows that <N, V) 1=
σ[l+m] iff <N, V) Nσ[/i], for all « > / + m .

Theorem 2.3 If a purely nominal wffφ is falsifiable on N, then φ isfalsifi-
able in a (finite) transitive and atomic model.

Proof: Let φ be a purely nominal wff such that for some valuation V and point
k E N, <N, V) Ψ φ[k]. Let Σ~ be the smallest set of sentences containing φ
that is closed under subformulas, and let / - 1 be the largest natural number that
V assigns to any nominal in Σ~. Let td(φ) = c. As for all σ E Σ~ td(σ) < c we
know by the previous lemma that for all n > I + c the truth values of sentences
in Σ are stable in <N, F'>.

Lety be any nominal not occurring in Σ~, and Fbe the valuation that is just
like V save possibly that V(j) = {(/ + c) — 1}. As Kand V agree on the val-
ues of all atoms in Σ~, we have that for all σ E Σ~, for all n > I + c, <N, V) 1=
σ[n] iff <N, V)\=σ[l + c], and moreover <N, V) also falsifies φ at k. Let Σ =
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Σ~ U {FjJ}. Note that Σ is a finite set of sentences closed under subformulas.
Clearly for all σ E Σ, for all n > I + c, <N, V) 1= σ[fl] iff <N, V) f= σ[/ + c].

Take a Prior filtration of <N, V) through Σ to form Mf. Mf falsifies φ at
E(k) by the Filtration Theorem; M ̂ is transitive because we took a Priorean fil-
tration; and M ̂ is finite because Σ was finite. If we can show that M^is atomic,
we are through.

We know that in the model <N, F>, the truth values of all wffs σ E Σ are sta-
ble from 1+ c onward, but this means that all n > / + c are in the same equiva-
lence class. Call the element of M-̂ of which they are all a member E(l + c). We
now show that E(l + c) is an atom that all other elements of M^precede.

In any filtration whatsoever, if t < t' in the original model then E(t) <fE(tr)
in the filtration. Hence any other element E(t) E M ̂ must precede E(l + c).
Moreover it follows from the definition of <f coupled with the stability of the
truth values of the wffs in Σ that E(l + c) </£(/ + c). Thus the only thing that
could prevent E(l + c) from being the desired atom would be if E(l + c) pre-
ceded some distinct E(t) E M ̂ . We now show that this is impossible.

Suppose E(t) Φ E(l + c) and E(l + c) <f E(t). We need merely note that
no h E TV such that h < (/ + c) - 1 can be in E(t). For if h < (/ + c) - 1 then
<N, V) \=Fj[h], and if h = / - 1 then <N, V) bj[h]9 and as both Fj andy are
in Σ we have by the Filtration Theorem that Mf 1= Fj[E(t)] or M ̂  \=j[E(t)],
which by the definition of </ would mean that M ̂  1= Fj[E(l + c)]. But another
appeal to the Filtration Theorem shows that this in turn would mean that
<N, V) ¥Fj[l + c], which is impossible as V(j) = {(/ H- c) - 1}. In short, any
such E(t) would be empty, so E(l + c) precedes no point save itself, thus it is
the required atom, and we are through.

Thus transitivity plus atomicity is a first order condition definable in a purely
Priorean language that is not purely nominal definable: as far as expressing £ 0

conditions is concerned the two sorts overlap in expressive power.

3 The minimal logic The minimal nominal tense logic can be axiomatized
by the addition of either of two schemas to Kt, the usual axiomatization of the
minimal Priorean tense logic. The schemas are called the NOM and SWEEP
schemas, and to present them we need some notation. Let an existential tense be
any unbroken sequence of Ps and Fs. The sequence may contain both Ps and
Fs, and we regard the null sequence as an existential tense. Thus FPFP and PPP
are existential tenses; PGP is not because it contains an occurrence of the uni-
versal operator G. We use E, E\ and so on as metavariables across existential
tenses. Universal tense means any unbroken, possibly mixed, sequence of Gs and
i/s, including the null sequence; A, A' and so on are used as metavariables over
universal tenses. In the following two schemas, n is a metavariable across nom-
inals, and φ and ψ are metavariables across arbitrary wffs.

E(n Λφ)Λ E\n Λψ)^> E(n ΛφΛψ) (NOM).

E(n Λφ)-+A(n^>φ) (SWEEP).

Let us instantiate the NOM schema in / and consider what it says:

E(iΛφ)ΛE'(iΛψ)
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Think of the points of a model as boxes holding items of information. Suppose
we are standing at a point / in some model M and we know that both E(i A φ)
and E'(iAψ) are true. This means we know that if we follow a certain zig-zag
path from t (the one coded up by E), we can get to a box marked / and contain-
ing the information φ; and that if we follow another possibly different path from
t (the one coded up by E')9 we get to another box, also marked /, and contain-
ing the information ψ. But there is only one box marked i. Hence this single box
contains both the information φ and the information i/% and the paths coded for
by E and E' lead to the same point. This is precisely what the consequent of
NOM gives us. In a nutshell, the NOM schema consists of all the path equations
that must be satisfied in any model.

Let Knt be the axiomatization obtained by adjoining to Kt either of these
schemas. We wish to show that Knt captures the minimal logic for NTL. The
soundness of either schema is immediate (it is essentially the above 'box and path'
argument). Moreover as we will now see, completeness follows straightforwardly
by a Henkin argument. In what follows we assume the usual definitions of such
concepts as consistency and maximal consistent sets of sentences (MCS), and all
the usual tense logical lemmas and definitions used in Henkin proofs; consult
Burgess [6] for example. Note that Lindenbaum's Lemma holds. We assume that
the set of wffs of our language has been ordered; by Σ°° we mean the Linden-
baum expansion of a consistent set of sentences Σ with respect to this ordering.

To build our models we use generated subframes of the canonical Henkin
frame H*«'. (The canonical Henkin frame for Knt is the frame HKnt = <i/,<Λ>,
where Hconsists of all and only the Knt MCSs; and for all hyh' G H, h <h h'
iff for all wffs φ,φe h' implies Fφ G A.) But why use generated subframes of
HKntΊ Why not build the usual 'canonical modeΓ using the whole of H**' and
the 'natural valuation'? In fact we cannot do this: the 'natural mapping' Ffrom
the atoms of our language to H defined by V(a) = {h G H: a G h} is not a val-
uation, as each nominal occurs in more than one point of H. (To see this note
that for any nominal i both {/Λ/?} and {/Λ -1/7} are consistent sets of sentences.
Thus {/Λ/?}°° and {/Λ -ιp}°° are distinct points in the Henkin frame that con-
tains ί.) By restricting ourselves to generated subframes of HKnt, however, we
will be able to build a valuation from the natural mapping. So, given a consis-
tent set of sentences Σ, take the subframe of HKnt generated by Σ°°. The key
lemma is:

Lemma 3.1 (Unique Occurrence Lemma) Let H Σ = (HΣ

9<h) be the sub-
frame ofHKnt generated by Σ°°. Then for all h,h' G HΣ, and every nominal /,
ifi G h and i G hr then h = h'.

Proof: Suppose there are two distinct points Λ,hf G HΣ that contain the same
nominal /. As they are distinct MCS, there is some wff φ that distinguishes
them, so suppose iAφGh and /Λ - I 0 G h'. Now as H Σ is generated from Σ°°,
there is a path from Σ°° to Λ, and a path from Σ°° to h'. By appeal to tense
logical lemmas, we can thus show that there are existential tenses E and E'
such that both E(i A φ) and E'(i A ->0) G Σ°°. But by NOM this means that
E(i AΦA -iφ) G Σ°°, and thus, by tense logic, we have E(φ A -yφ) G Σ°°. But
this is impossible as Σ°° is consistent.
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Now it can happen that not all nominals of our language appear in some
h G HΣ. For example, for any choice of / the (consistent) set of sentences Σ =
{-\Ei: E is an existential tense) 'forces / out' of the subframe generated by Σ°°.
But this is easy to fix. Simply adjoin a new point h+ to H Σ that is unrelated
to any other point, and define a new mapping V^ that is identical to Vn, save
only that where Vn assigns 0 to some nominal /, V^ assigns {h +} to the same
nominal. Clearly V» is a valuation. The usual induction then shows that
<HΣ, V£) 1= Σ[Σ°°], and we have our completeness result.

This method of taking a generated subframe of the Henkin frame, and add-
ing an extra point if necessary, underlies the extended completeness results of the
following section. We call the models formed in this way Ήenkin models' and
refer to the procedure sketched above as 'generating a Henkin model'.

It is clear that this method of proof also yields a completeness result for lan-
guages of nominal modal logic. The modal analogs of existential and universal
tenses are unbroken (possibly null) sequences of Os and of Ds, respectively.
With the E and A metavariables read in this fashion, we have that either K +
NOM or K + SWEEP axiomatizes the minimal nominal modal logic, where K
is the usual axiomatization of minimal normal modal logic. We refer to either
axiomatization as Knm.

However, let us re-examine the proof of the Unique Occurrence Lemma; re-
flection shows that we can do better. In the above proof we made use of three
distinct points (Λ, Λ', and Σ°°) and two different paths. But we could have just
used a 'two point argument': given h and h' as described above there must be a
path from one to the other—we need not bring the generating point Σ°° explic-
itly into the proof at all. Bu once this is observed it becomes clear that we do not
need all the instances of either NOM or SWEEP to guarantee completeness; the
instances of the following two weakened forms will suffice:

n A E(n A φ) -• φ

>φ) (SWEEPW).

To see this, we sketch a proof of a Unique Occurrence Lemma from the new
axiomatic bases. We treat the case for SWEEPw. Let our assumptions and no-
tation be as before. Suppose two points h and hf in H Σ contain the same nom-
inal i. As H Σ is generated from a single point Σ°°, it is connected, and thus there
is a path between h and Λ'. Let A(n~*hΊ be the universal tense that corresponds
to the path as seen from A. (That is, starting at h we traverse the path until we
reach h\ writing down a G for every move forward in time, and H for every
move backward.) All instances of SWEEPW occur in h, so in particular we have
that

But as i G Λ, then for all φ G h we have that A <*->*'>(/ -> φ) e h. But then by the
usual tense logical lemmas we have that i->φG h', and as / G h' we have that
φ G λ'. As h and h' are MCS, this means that h = Λ'. Thus we have an improved
completeness result.

However, note that this improvement does not hold for modal languages.
Intuitively, we have to use a 'three point argument' in modal languages as in such
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languages we can never look back. The 'two point argument' is the prerogative
of tense logic. It is straightforward to turn this intuition into a proof that nei-
ther K + NOMH, nor K + SWEEP w suffices to axiomatize the minimal nominal
modal logic. We will proceed by finding a semantical property that distinguishes
the derivable from the nonderivable wffs. The first step is to define:

Definition 3.2 Let T be a frame and / and t' be distinct elements of T. We
say / and t' are a separated pair iff there is no modal path from ίto t\ and no
modal path from t' to t. A frame is said to separated iff it contains at least one
separated pair.

(Note that we talked of modal paths, not zig-zag paths, in the above defi-
nition.) We now change the interpretation of modal languages with nominals.
Let <£ be any language of nominal modal logic. In the separated interpretation
for <£, we define separated valuations on separated frames; in each separated val-
uation every nominal denotes exactly two distinct points, t and t', where t and
V are a separated pair. Everything else is as usual: variables denote arbitrary sub-
sets of such frames and the nonatomic sentences are evaluated as usual. We say
that an <£-wff φ is s-valid iff it is valid in any separated interpretation on any sep-
arated frame. Clearly both K + NOMW and K + SWEEP,, are sound with re-
spect to this interpretation; everything provable from either basis is s-valid.
However, it is easy to falsify instances of both NOM and SWEEP. Let T be the
frame <{-l,0,l},{<0,-l>,<0,l>)>. Clearly - 1 and 1 are a separated pair. Let V
be any valuation that assigns {-1,1} to /, and {1} to/?. Then both an instance
of NOM, namely, 0(i Λp) A 0 (/Λ -•/?) -> 0 (/ Λ/? Λ -•/?), and an instance of
SWEEP, namely, 0(/Λ/?) -> D (/-•/?), are false at 0 and thus cannot be derived
from the weakened basis.

In passing, there are some simple observations we can make about the im-
pact the addition of nominals has on the Henkin frame of the minimal normal
modal logic. Suppose we are working with a standard language of modal logic;
that is, we have variables and no nominals. Let K be the usual minimal modal
logic axiomatization and let H* be its canonical frame. The following facts
about H * are well known: H * is left directed, point generated, and indeed
strongly generated. By this last is meant that there exists an h G Hκ such that
for all h' E Hκ, h <hh'\ from h we can get to any other point in one step.
These properties follow from the fact that K admits the Law of Disjunction
(LOD): h^Dφi v . . . v Ώφn implies \-φm, for some m such that 1 < m < n. For
a discussion of why these properties follow from LOD, see Hughes and Cress-
well [14].

The minimal nominal modal logic, however, does not admit LOD. Note
that HKnm cannot be left directed as no MCS h can precede both {/ Λ φ}°° and
{/Λ -ιφ}°°; hence LOD cannot hold. This example also shows that HKnm cannot
be strongly generated. In fact, it cannot even be generated: for arbitrary existen-
tial modalities 0* and 0 m , 0 " ( / Λ φ) A 0 m (/Λ -«φ) is inconsistent, and thus no
MCS h can precede both {/Λ φ}°° and {/Λ ->φ}°°, no matter how many steps in-
tervene. The only obvious thing we can say about the structure of HKnm derives
from the following observation: one special case of LOD is unaffected by the ad-
dition of nominals: h χ w φ iff h/^Dφ, and thus HKnm is left unbounded.

As mentioned in the introduction, a group of Bulgarian logicians have con-
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sidered modal languages enriched by nominals. Let us consider the axiomatiza-
tion of the minimal modal logic for languages with nominals due to Gargov,
Passy, and Tinchev [9]. They first define necessity and possibility forms:

Definition 3.3 Let £ be a language of NML, $ be a new entity distinct from
any <£ wff or symbol, and θ be a wff of <£. Then the necessity forms of <£ are
the elements of the smallest set D-form such that:

$ G D-form

L G D-form implies θ -> L G D-form

L G D-form implies DL G D-form;

and the possibility forms of £ are the elements of the smallest set 0-form such
that:

$ G 0-form

L G 0-form implies θ A L G 0-form

L G 0-form implies 0L G 0-form.

If φ is any wff of £, and L and Mare D-forms and 0-forms, respectively, then
by L{ψ) and M(ψ) are meant the <£-wffs obtained by replacing the (unique) oc-
currence of $ in L and M, respectively, by ψ.

They then axiomatize the minimal logic for languages of weak NML by add-
ing to the usual axioms of the minimal modal logic K all instances of the follow-
ing schema:

M(nΛφ)^>L(n-+φ) (AxN)

where L and Mare metavariables over D-forms and 0-forms, respectively. They
prove completeness by a three point argument on generated subframes of the
HKnm. The form of this schema is superficially reminiscent of that of SWEEP,
but the M and the L do not range over universal and existential modalities but
over the more complex D- and 0-forms. Thus for fixed / and φ9 the consequents
of AxN include all entries in the following matrix:

(ι->0) D(/->φ) DD(/->φ)

The antecedents of AxN, again for fixed / and φ9 consist of all entries in a sim-
ilar matrix obtained from that above by replacing D by 0 and -> by Λ. Note that
for fixed i and φ the SWEEP schema contains only conditionals formed from
the first row of each of these two matrices. The simpler SWEEPW schema that
suffices for tense logic essentially consists, for fixed / and φ, of only the single
wff /Λ φ as antecedent; and as consequents just the wffs in the first row of the
above matrix.
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We conclude this section by noting some theorems of the minimal tense logic.
Firstly, nominals interact strongly with universal tenses; Hi and Gi can only be
true under 'end conditions', hence both the following 'end effects' IΛGΪΛFΦ ->
φ and Gi ΛFψ->Gψ are theorems. Note that if we replace / by p in the above
the resulting wffs are not Priorean valid. Next, suppose t is a point and that there
is a path that leads away from / but eventually returns there. Then a 'reverse jour-
ney' exists: we could traverse the path in the reverse direction and still get back
to /. In NTL we can talk about such reverse journeys; we cannot in standard lan-
guages as we cannot uniquely mark the starting point. To display the relevant
theorem, we first need to define the transposition £ l Γ o f a n existential tense E.
By this is meant the existential tense formed by reversing the sequence of tenses
in E and forming the mirror image. For example, (PPFPF)T = PFPFF. If an
existential tense E codes a path between points t and t' as seen by an observer
at t, then Eτ codes the same path as viewed by an observer at t\ The theorem
asserting the existence of reverse journeys is: iΛEi-+EτL Again note that if we
replace i by p we do not get a Priorean validity. Finally note that if we can break
off a journey in the middle, pick up a piece of data, and then continue round,
we can do the same thing backward: / ΛEγ (ψ A E2i) -> E^iΦ Λ E?i).

4 Extensions ofKnt In this section we obtain completeness results for some
classes of frames of temporal interest. The major technical point of this section
is that once two simple results have been noted—the Irreflexivity Lemma and the
Antisymmetry Lemma—Segerberg's [25] cluster manipulation techniques can be
straightforwardly applied. We illustrate this by considering the logics of four
classes of frames of temporal interest: the SPOs, STOs, POs, and TOs. The
proofs presented here make use only of standard modal techniques: no use is
made of additional rules of inference. We briefly discuss the use of such rules and
raise a general question concerning their eliminability. We then turn to algebraic
semantics and show that a Thomason-style [27] adequacy theorem can be proved
for NTL.

Languages of NTL inherit a number of completeness results straightfor-
wardly from Priorean tense logic. For example, adding to Knt as axioms all in-
stances of FFφ ->Fφ (4), φ->Fφ(T), PΎ A FT (£>), or the Lin schema, which
consists of the conjunction of

FφAFψ->F(φAF\l/)vF(\!/AFφ)vF(φAψ) (RLin),

with its mirror image LLin, yields Henkin frames that are transitive, reflexive,
both right and left unbounded, and linear, respectively; hence, generating Henkin
models (adding isolated points if necessary) as described in the previous section
gives an immediate crop of completeness results.

This is useful, but unsurprising. Moreover these completeness theorems deal
only with classes of frames already definable in Priorean languages. How do we
axiomatize the newly definable classes, and can the defining formulas be used
as axioms? They can, but not in quite so straightforward a fashion as for the ex-
amples listed above. Although any instance of n -+ -ιFn(I) defines irreflexivity,
the inclusion of all instances of this schema as axioms does not guarantee an ir-
reflexive Henkin frame; and although any instance of n -* G(Fn -> n) (Anti) de-
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fines antisymmetry, the inclusion of all instances of this schema as axioms does
not guarantee an antisymmetric Henkin frame. The problem is that not all MCSs
in the Henkin frame contain nominals, and we cannot guarantee that points with-
out nominals have the desired property. Crucially, however, points in these
Henkin frames that do contain nominals are well behaved. Let us consider what
happens in the case of irreflexive extensions of Knt:

Lemma 4.1 (Irreflexivity Lemma) Let A be any axiomatization extending Knt

that contains all instances of the I schema, and let H be the Henkin frame
for A. Then for any point h in H containing a nominal, h^h where < is the usual
Henkin ordering.

Proof: Suppose h is a point in this Henkin frame that contains a nominal,
say /. Suppose for the sake of a contradiction that h < h. By definition this means
that for all wffs φ,φEh implies Fφ G h. In particular, as / G h this means that
Fi G Λ. But / -> -iFi is an axiom, so / -• -»F/ G h. As i G h this means -»F/ G h.
As h is an MCS, we have a contradiction.

This result tells us that 'defects' of the Henkin model (here, reflexive points,
or more generally clusters) are localized to points not containing nominals. This
means that if we can find a way of repairing the Henkin model that acts only on
the defective points then we do not have to worry about destroying the unique
occurrence property enjoyed by the Henkin model. Segerberg's bulldozing tech-
nique works in this manner. Let us see how we can apply bulldozing to prove
a completeness result for the SPOs. Let 14 be Knt augmented by all instances
of /, the irreflexivity schema, and 4, the transitivity schema. As we shall see, 14
axiomatizes the nominal tense logic of the SPOs.

First some (standard) terminology. A cluster C of a frame <Γ,<> means any
nonempty subset C of Γsuch that (C x C) Π < is an equivalence relation, and
for no proper superset C" of Cis ( C x C") Π< an equivalence relation. A clus-
ter improper if it contains at least two points, and simple otherwise. Clusters are
the defects of transitive Henkin frames and the essence of Segerberg's bulldoz-
ing technique is to remove all the clusters C, replacing each cluster with the lex-
icographical product S © C where S is some unbounded STO. This procedure
produces a new SPOed model B, and as the Henkin model is a/7-morphic im-
age of this model they are equivalent. For further details the reader is referred
to either Segerberg's original paper [25], or Goldblatt's more recent account [12].

Theorem 4.2 14 is strongly complete with respect to the class of SPOed
frames.

Proof: Given an /^-consistent set of sentences Σ form Σ°° and generate a
Henkin model <T, Vt) for Σ, adding an extra (irreflexive) point if necessary, as
described in the last section. Bulldoze T, choosing (say) Z to form the lexico-
graphical product. The new structure B is an NTL model; that is, nominals are
assigned singletons in this structure. This follows from the Irreflexivity Lemma:
we know that every point / of the Henkin model that contains a nominal is ir-
reflexive; hence, no such point is in a cluster and thus no such point was bull-
dozed. Thus B is an SPOed model of which the Henkin model is a/7-morphic
image, and so B verifies Σ as required.
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Let us next consider the STOs. Let LIN5 be 14 extended with all instances of
PnvnvFn (Tri) the trichotomy schema, together with all instances of Lin, the
linearity schema.

Theorem 4.3 LINS is strongly complete with respect to the class of STOs1.

Proof: Given a LIN5 consistent set of sentences Σ, form Σ°°. Let <T, V) be the
substructure of the Henkin model generated by Σ°°. This substructure is already
a model, for the natural mapping V assigns every nominal a singleton. That ev-
ery nominal is assigned at most one point is just the usual unique occurrence ar-
gument. However, it is also the case that there are no 'unassigned nominals'. We
see this as follows. Suppose for the sake of a contradiction that some nominal,
say j is not assigned any tGT. But as all instances of the Tri schema are axioms,
then PjvjvFj G Σ°°. This tells us that either j is in Σ°°, or in some other MCS
Σj such that ΣJ < Σ°° or Σ00 < ΣJ. This follows by standard tense logical reason-
ing from the fact that Σ°° is consistent.

Thus <T, V) is a model. Moreover, because of the presence of the transitiv-
ity and linearity schemas, it is transitive and linear. The only thing that could be
wrong with this model is that it contains clusters, but just as in the previous proof
we can remove these by bulldozing. As before, the Irreflexivity Lemma guaran-
tees that the unique occurrence property is unaffected. We thus have verified our
original set of sentences Σ on an STO and are through.

These two completeness proofs show the essence of what is involved in ap-
plying cluster manipulation techniques to languages with nominals: standard
techniques may be used as long as they do not ruin the unique occurrence prop-
erty. Indeed once this is seen it is clear that the nominal tense logics of Q, Z, N,
and R can be axiomatized simply by adding all instances of NOMW, /, and Tr,
to their Priorean tense logical axiomatizations. All the real work has been done
for us: simply inspecting the proofs given in either [25] or [12] shows that none
of the cluster manipulation techniques employed affect unique occurrence. (The
reader who would prefer to see more details is referred to Blackburn [3].)

A second point is worth making. When working on linear frames we do not
need all the instances of NOMW; most of the path equations are redundant be-
cause of the simple geometry. Define [U]φ to be Hφ A φ A Gφ. Over linear
frames [U] means 'at all times'. Then instead of all instances of NOMW, we
need merely take as axioms all instances of:

Clearly this forces unique occurrence over linear time flows.
Actually, the universal modality [ U] is an extremely natural addition to lan-

guages with nominals. Note that such wffs as [ U] (i'-> φ) in effect shift the point
of evaluation to the point named by /, and test φ there. Indeed when working
over nonlinear time flows over which [ U] is not definable, it is well worth add-
ing it as an additional primitive operator. That is, it is well worth adding to NTL
a new primitive modality [ U] such that

Mϊ=[U]φ[t] iff Mf=ψ[Π, for all points V.

I will not discuss this idea further here except to mention that every author who
has considered nominals has done this. The methods of the present section ex-
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tend to such enriched languages; full details are given in [3]. General results con-
cerning the universal modality may be found in Goranko and Passy [13].

Let us now look at partially ordered frames. Our investigation will be anal-
ogous to that given above for the strictly partially ordered frames. First of all,
we must ensure that the antisymmetry schema n -> G(Fn -• n) guarantees the
proper behavior of those points in the Henkin frame containing nominals. It
does, as the following lemma shows:

Lemma 4.4 (Antisymmetry Lemma) Let A be any axiomatization extending
Knt that contains all instances of the Anti schema n -• G(Fn -*n)9 and let H be
the Henkin frame for this axiomatization. Then for any points h and h' in this
Henkin frame such that h contains a nominal, h<h' and h' <h implies h = h\
where < is the usual Henkin ordering.

Proof: Suppose h contains a nominal, say /, and further suppose that there
is a point h' such that h < h' and h' < h. As all instances of Anti are axioms,
/-• G(Fi-• /) E Λ, thus as / E h we have that G(Fi-»/) E h. As h < h', it fol-
lows that Fi-> i E h'. But as h' < h and / E Λ, we have that Fi E h'. Hence i E h'.
But as A is an extension of Knt> H has the unique occurrence property, thus
h = h'.

We use this as follows. As we are working with partial orders every point is
reflexive, thus every point is in a cluster; what the Antisymmetry Lemma estab-
lishes is that no point containing a nominal is in a proper cluster. Points contain-
ing nominals are simple clusters. Our basic strategy is clear: we will bulldoze T,
but bulldoze only proper clusters. Also, because we want reflexive models, when
we form the lexicographical products S © C used in the bulldozing process, we
choose S to be some infinite TO, such as <Z, <>. Let PO be the axiomatization
obtained by adding as axioms all instances of 4, T (the reflexivity schema) and
Anti to the axioms of Knt. PO is characterized by the class of all POs. Sound-
ness is obvious. As for completeness:

Theorem 4.5 PO is strongly complete with respect to the class of all partial
orders.

Proof: Given a PO-consistent set of sentences Σ, form Σ°° and generate a
Henkin model, adding an extra (reflexive) point if need be. This model is guar-
anteed to be both reflexive and transitive due to the presence of the 4 and T ax-
ioms, but antisymmetry is not assured. Bulldoze the proper clusters as just
described to form B. By the Antisymmetry Lemma we know that no point con-
taining a nominal belonged to a proper cluster, hence the unique occurrence
property was not affected by the bulldozing. Thus B is a POed model for Σ.

Finally, let us consider the TOs. Let LIN be PO augmented by all instances
of Pi v i v Fi (Tri) and Lin. (Actually, as noted above, we do not need all the
instances of NOMW that PO contains; over linear frames all instances of i A
φ-+[U](i-+φ)9 where [ U] φ is defined to be Hφ A φ A Gφ, suffices to force
unique occurrence.) Then by reasoning analogous to that used in the previous
two theorems, we establish:

Theorem 4.6 LIN is strongly complete with respect to the TOs.
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The preceding discussion shows that standard modal techniques can be
straightforwardly adapted to languages with nominals. However, there is another
way to proceed, which is explored in the Bulgarian work: to make use of an
additional rule of inference. Recall from the previous section the definition of
necessity forms L. The rule of inference called COV is defined as follows: for
any necessity form L, from hL(-^i) infer HL( J_), where / does not occur in
the L form. To give a simple instance, let -ιφ be a wff not containing /. Then
from I—\φ -> -i/ we can deduce I—\φ -> ±; or, simplifying, from H->φ we can
infer Vφ.

As is shown in [9] and Gargov and Goranko [11], the use of this rule enables
one to build Henkin models in which every point contains a nominal. The use-
fulness of this should be clear. By the Antisymmetry and Irreflexivity Lemmas,
for example, this means that we are able to build antisymmetric and irreflexive
models in one step.

Such rules have been used before in modal logic, and with similar motiva-
tions. Their first use seems to have been due to Gabbay [7], who introduced them
precisely to enable irreflexive models to be directly built. More recently they have
been used in other modal logics for similar purposes. Gabbay and Hodkinson
[8] use them in Until-Since logic; de Rijke [23] in D-logic; and finally Venema
[29] proves a number of interesting results about their use. None of these last
mentioned papers makes use of nominals, but the way the rules are used to la-
bel nodes with fresh propositional variables is similar.

It seems likely that the use of such rules will become a standard tool in modal
logic; as the above list shows, they are highly adaptable, and when working with
more complex intensional languages can greatly simplify completeness proofs.
But one topic does not seem to have been addressed: when are these rules
necessary! As the results of this section show, when working with Priorean Lan-
guages enriched with nominals, such rules are not actually needed to axiomatize
many natural classes of frames; that is, the above completeness result can be
viewed as COV elimination results. It would be useful to obtain a characteriza-
tion of when such rules are eliminable; in the meantime, the results of this sec-
tion show that in many important cases elimination is possible.

To close this section we shall show how to define an algebraic semantics for
NTL and prove its adequacy in the sense of Thomason [27]. In order to prove
this, we must first be precise about what a nominal tense logic is. We define:

Definition 4.7 A nominal tense logic is a set of wffs that contains all the Knt

axioms and is closed under modus ponens, temporal generalization, and NTL
substitution.

This differs from the standard definition of a tense logic only in not demand-
ing closure under unrestricted substitutions. Note that the theory of any class of
frames is a nominal tense logic.

Let (B = <l?,0,l,-,+,x,/?,/> be a temporal algebra as defined by Thoma-
son. That is, <2?,0,l,-,+,x> is a Boolean algebra, where B is the carrier set,
whose elements are represented by b, b', b'\... 0 is bottom; 1 top; - , +, and x
have the obvious reading andp and/ are unary operators on B such that/(0) =
p(0) = 0;f(b + b') = /(£) +/(&'); p(b + b') =p(b) + p(b'); and/(Z>) x
bf = 0 iff b X p(b') = 0. Any Priorean wff corresponds in the obvious way to
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a polynomial over algebras of this signature, and from the work of Thomason
we know that the class of temporal algebras provides an adequate semantics for
Priorean tense logic.

How can we adapt this semantics to NTL? A plausible (but misguided) at-
tempt is as follows. Define an atomic temporal algebra to be a temporal algebra
whose underlying Boolean algebra is atomic. Interpret wffs of NTL on atomic
temporal algebras by insisting that nominals denote atoms. It is an easy exercise
to see that this interpretation of NTL is sound. Unfortunately we do not get
much further than this: when we come to prove adequacy, we run into a prob-
lem as the Lindenbaum algebra is not atomic.

The way to proceed is as follows. Define a nominal temporal algebra to be
a pair d\[ = <(B,/> where (B is a temporal algebra and / a nonempty subset of B
such that for all i E /, for all b E B and for all compositions e of the/ and p op-
erators (including the null composition), / x e(i x b) x -b = 0, the algebraic
analog of the NOMW schema. Note that any atomic temporal algebra is a nom-
inal temporal algebra: in this case the nonempty subset (B is the set of atoms.
However, there are many other nominal temporal algebras, and (as we shall see)
this includes the Lindenbaum algebras.

Given such an algebra we interpret a language of NTL on it in the obvious
fashion. That is, each wff of NTL corresponds to a polynomial as before, but we
insist that the variables in these polynomials that correspond to nominals range
over all and only the elements of /. In short, we have moved to a two-sorted al-
gebraic semantics—the sorts in question being B and /—and when evaluating our
polynomials we consider only the sortally correct evaluation possibilities. We say
that a nominal temporal algebra (B validates φ((R 1= φ) iff hφ = 1 identically in
(B and we say that φ is algebraically valid iff (B t= φ for all nominal temporal
algebras (B.

Given any algebra cl\( = <(B,/> of the same type as a nominal temporal alge-
bra—that is, (B is an algebra of the same type as a temporal algebra, and /is a
nonempty subset of (B's carrier set B—we can interpret a wff φ on M exactly as
though dV were a nominal temporal algebra. However, following Thomason, we
have that the nominal temporal algebras are precisely the algebras that validate
the Knt theorems:

Lemma 4.8 Let <Λί = <(B,/> be an algebra of the type of nominal temporal
algebras. Then <N validates all theorems of Knt iff M is a nominal temporal al-
gebra.

Proof: Suppose <(B,/> is a model for Knt. As Knt contains minimal Priorean
tense logic, it follows by Thomason's proof that (B must be a temporal algebra.
Only the part peculiar to the nominals thus remains, and this is immediate:
if <(B,/> is a model for Knt it validates all instances of / Λ E(i A φ) -» φ, that
is, Π ( / Λ £ ( / Λ Ψ ) ^ ( / ) ) H JL, which means that in <(B,/>, ixe(ixb) χ-b = 0,
for all / E /, b EB9 and composition sequences e.

Proving that any nominal temporal algebra is a model for Knt merely in-
volves the usual inductive soundness argument.

This shows that the set of all algebraically valid NTL wffs is identical to the
set of wffs valid on all frames. Now we are ready for the adequacy result. We
will be able to build the required algebras using the Lindenbaum construction.
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Theorem 4.9 (Adequacy Theorem) For any nominal tense logic L there is
nominal tense algebra <HL = <(B,/> such that <NLtφiff\rLφ.

Proof: Let <Λί be the Lindenbaum algebra for L. That is, B = {[φ]: φ G WFF]
[φ] = lψ] ifϊ\-Lφ~ψ;O=[±]; 1 = [T]; -[φ] = [-.0]; [0] + [*] = [φv^] ;
[0] x W = [*Λ^];/([φ]) = [Fφ];/?([Φ]) = [Pφ]; and/ = ([ί]:i€JVOAί|.
By the usual reasoning (B = <2?,0,1, - , +, x,/,/?> must be a temporal algebra.
Moreover, as Knt includes among its theorems all instances of NOMW and T,
we have that any instance of NOMW is equivalent to T in Knt9 and hence in L.
This means that for all [ί] G /, [φ] G B and composition sequences e we have in
the Lindenbaum algebra that -([/] x e([i] x [φ])) + [φ] = 1, or [/] x e([i] x
[φ]) x — [Φ] = 0 . Thus the Lindenbaum algebra is a nominal temporal algebra
and hence validates all theorems of Knt. The key point, however, is to show that
the Lindenbaum algebra validates not just the Knt theorems, but all L theorems,
and here is where we use the fact that nominal tense logics are closed under NTL
substitution. Let φ be any wff. When we evaluate the polynomial hφ on the Lin-
denbaum algebra, we obtain a value [S(φ)]. But it follows by induction on
deg(φ) that S(φ) is an NTL substitution instance of φ. So suppose h^φ. As
L is closed under NTL substitutions, h/,S(φ) for all NTL substitution instances
S(φ) of φ. Hence for all such S(φ), [S(φ)] = 1, thus hφ = 1 identically, and
Us Lindenbaum algebra validates every L theorem.

To show that any nontheorem φ of L is falsified in this algebra, suppose
that \tLφ. If for each variable/? and nominal / in φ we evaluate hφ with the cor-
responding polynomial variables interpreted by [p] and [/], respectively, we ob-
tain [φ]. Clearly [φ] Φ 1 as otherwise \-Lφ, which contradicts our assumption
of φ's nontheoremhood.

5 Decidability and the finite model property The logics we have consid-
ered so far are decidable. This is unsurprising: what is interesting is that in spite
of an apparent obstacle filtration methods can be used to prove it.

In Priorean tense logic filtrations provide a reasonably general method for
establishing decidability. A typical proof runs as follows. Given an axiomatiza-
tion KtS which we know to be complete with respect to some class of frames T,
we attempt to show that it is also characterized by the class of all finite frames
in T. When this can be shown, we say that KtS has the finite frame property
with respect to T. The finite frame property is commonly established by using
filtrations. Given that the theorems of KtS form an r.e. set (and in most cases
of interest they will) this usually establishes decidability. For, if the finite frames
in T form an r.e. set (and again, in most cases of interest they will), searching
through all the finite models based on these frames is an effective (if inefficient)
procedure for generating all the nontheorems of KtS, and thus the set of KtS
theorems is recursive.

Matters are not quite so straightforward in NTL, as many obvious axiom-
atizations lack the finite frame property. This is illustrated by the axiomatiza-
tion I4D. This is 14 augmented by the D axiom PΎ A FT. This axiom forces the
Henkin model to be unbounded in both directions, thus it follows from the meth-
ods of the last section that I4D is complete with respect to the class of unbounded
STOs. However, it is also clear that only infinite frames can validate all the I4D
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axioms, thus I4D does not have the finite frame property. The way appears
blocked—but there is a loophole. Although I4D does not have the finite frame
property, it does have the finite model property. That is, it is possible to define
a class of finite models cΛΛ such that VI4Dφ iff M N φ, for all M G cM. The class
of models needed will shortly be described, for now merely note that the loop-
hole we are exploiting does not exist in purely Priorean languages: a well-known
theorem of Segerberg's states that if L is any classical modal logic, then L has
the finite model property iff L has the finite frame property (cf. [26], p. 33). Thus
Segerberg's theorem does not hold in NTL as I4D is a counterexample.

Let us first treat the irreflexive logics of the previous section. Call T = <Γ,<>
an irreβexiυity containing frame iff there is a t G Γsuch that / it t. Call a valu-
ation Fon such a frame irreflexiυity respecting iff for all nominals i, t G V(i)
implies t<jt t. That is, irreflexivity respecting valuations send all nominals to ir-
reflexive points. We call M = <T, V) an Ix model iff T is an irreflexivity contain-
ing frame and V an irreflexivity respecting valuation on T. The class of all Iλ

models is called cM(/i).

Lemma 5.1 14 is sound and complete with respect to the class of all transi-
tive Ix models. That is, VI4φ iffMtφ, for all M G cM(/i) Π <M(Tran).

Proof: (Soundness). The only axiom schemas that require checking are 4 and
/, the others being universally valid. As the models M we are considering are
transitive, any instance of 4 is true in all such M; and as all nominals denote
irreflexive points in M, all instances of / are true in these M. All three rules
of inference preserve validity in a model, and so 14 is sound with respect to

(Completeness). This is shown by the first part of the completeness proof for
14 given in the previous section, that is, the stage preceding bulldozing. Given
any /^-consistent sentence φ, the transitive Henkin model we generate verifies
φ at some point. Moreover the Irreflexivity Lemma shows that every point con-
taining a nominal is irreflexive, and thus this Henkin model is in cΛΛ(/i) Π
<M(Tran).

However we do not need all the models in cΛΛ(/i) Π cN[(Tran) to establish
completeness; simply the finite ones will do.

Theorem 5.2 14 has the finite model property with respect to cM(/i) Π
<M(Tran). That is, YI4φ iffM Vφfor all finite M G cM(/i) Π <M(Tran).

Proof: Soundness follows from the previous lemma. The following filtration ar-
gument establishes completeness. By the previous lemma we know that given an
/^-consistent sentence φ we can find an M G cM(/i) Π <M(Tran) such that M 1=
φ[t], at some point t. Now, if φ contains occurrences of nominals, define Σ~
to be

{φ) U {/ -• -iF/: i occurs in φ]

while if φ contains no occurrences of nominals choose any nominal (say /) and
define Σ~ to be {φ] U {/ -> -*Fi]. Let Σ be the smallest set of wffs containing Σ~
that is closed under subformulas. Form any Prior filtration M^of M through Σ
such that for all nominals./ £ Σ, Vf(j) = Vf(i), for some nominal i G Σ. (By our
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definition of Σ~ there will always be at least one such /.) By the Filtration The-
orem M ̂  N φ[E(t)]. But M-̂ is a model in the required class: clearly it is finite,
because Σ is a finite set of sentences; and it is transitive because we took a Prior
filtration. Moreover M ̂ does contain irreflexive points, and all nominals are as-
signed irreflexive points in this filtration. To see this, note that it follows from
the definition of Prior filtrations that:

3φ(Fφ G Σ & M h φ[t] & M #Fφ[t]) implies E(t) £f E(t).

But for all nominals / E Σ (and there is at least one), we have that F/EΣ. Fur-
ther, as our original model was in cM(/i), M h i[t] means M#Fi[t], and thus
for all such points t, E(t) τtE(t). This means that all points in the filtration M ̂
denoted by nominals are irreflexive, and we have our result.

Thus the familiar 'search through finite structures' argument leads to the de-
sired result:

Corollary 5.3 14 is decidable.

Decidability for other extensions of 14 follows from this basic result. For ex-
ample, I4D is decidable because, as with 14, the (unbuUdozed) Henkin model es-
tablishes that \-I4φ iff M N φ, for all unbounded M G cM(Ji) Π Λ(Tran). As
filtrations inherit unboundedness, the filtration given above establishes the fi-
nite model property for I4D with respect to this class of models and decidabil-
ity follows. Similarly, a result for LINy is obtained by noting that once again the
unbuUdozed Henkin model establishes completeness with respect to the class of
all trichotomous M G cM(/i) Π <J\H(Tran)9 and as filtrations inherit trichotomy
we again have the finite model property and decidability. So we conclude:

Corollary 5.4 I4D and LIN5 are both decidable.

Thus we have a tool that works for some of the nominal tense logics of in-
terest above 14. The method does not work for the logics of N, Z, or R, as these
logics are not sound on the classes of finite model produced by this method.
However, even for Priorean tense logic more powerful techniques are needed in
these cases, notably the use of Rabin-Gabbay techniques (see [6] for a survey of
these). The Rabin-Gabbay method works equally well for languages with nom-
inals, though I will not discuss this here.

I will now describe how to prove analogous results for logics of partially or-
dered frames, that is, for extensions of PO. The concepts we need are essentially
those given above but with talk of 'simple clusters' replacing talk of 'irreflexive
points'. That is, we define notions of simple cluster containing frames and simple
cluster respecting valuations analogous to those given above. An SC\ model is
a model whose frame is simple cluster containing and whose valuation is simple
cluster respecting. We denote the class of all SCΊ models by S.(SC{). Our usual
method of generating Henkin models establishes that \-POΦ iff M t= φ, for all
M G cM(SCΊ) Π cΛΛ(Pre), where <M(Pre) is the class of all preordered models;
the key point to observe here is that the Antisymmetry Lemma guarantees that
every point in the Henkin model denotes a simple cluster. Now we must make
the finite models:
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Theorem 5.5 PO has the finite model property with respect to cM(SCi) Π
<M(Pre). That is, \-POΦ iffM Vφfor all finite M E cM (SCO Π <M(Pre).

Proof: Soundness is immediate. To prove completeness we use a filtration ar-
gument. Given a PO-consistent wff φ containing occurrences of nominals, de-
fine Σ~ to be

[φ] U {/-» G(Fi->i):i occurs in φ],

and if φ is purely Priorean define Σ~ to be [φ] U {/-> G(F/-»/)}, for some se-
lected nominal /. Let Σ be the smallest set of wffs containing Σ~ that is closed
under subformulas.

Given a model M is Λ(SCχ) Π cM(Pre) that verifies φ (and one must exist
by the completeness result just noted) Prior filtrate M through Σ to form Mf.
By the Filtration Theorem this model also verifies φ. Now M /is finite and tran-
sitive, and as filtrations inherit reflexivity we have that M is a finite preorder.

Now we know from our discussion of filtrations that for any nominal / in
Σ, if V-f(i) = [E(t)} then t is in fact the unique element of V(i). Suppose that
there is a point E(t') in the filtration such that E(t) <f E(t') and E(t') <f

E(t). As M N G(F/-> /) [t] (which it does, because in the original model both
/ and /-> G(F/-> /) are true at t), and as G(Fi^i) E Σ, M/l= G(Fi^ i) [E(t)]
by the Filtration Theorem. But as E(t) <fE(tf) and G(Fi->φ) E Σ, this means
that MftFi-+i[E(t')]. But E(tr) <fE(t), and as Mfti[E(t)] and Fi E Σ,
we have that Mf\*Fΐ[E(t')], which by modus ponens yields M t= i[E(t')]. But
this means that E(tf) = E(t), and thus all points in the filtration denoted by
nominals are simple clusters.

Again via a Search through finite structures argument' this result is the key
to the decidability of PO. It also enables us to prove the decidability for various
extensions; here I will merely note that as filtrations respect trichotomy the
method gives us a result for total orders as well. Thus:

Corollary 5.6 PO and LIN are decidable.

It is worth remarking that the simple nature of the above arguments gives
us another reason for being interested in COV elimination results. The proofs
hinge on shifting attention from frames to models: but COV does not preserve
validity in models. (For example from M N / ->p we cannot conclude M (= p.)
Thus the soundness result does not go through for the finite models built by the
above method, and we run the risk of falsifying theorems on them. Thus some
extra work would be required to adapt the above method for systems contain-
ing COV. Finally, the above method is also useful when NTL is extended with
a primitive universal modality D. Full details of such results are given in [3].

6 Concluding remarks The basic system of NTL discussed in this paper is
an interesting tool for the logical analysis of temporal expressions in natural lan-
guage because it overcomes one of the greatest shortcomings of Priorean tense
logic for this application—its inability to refer to times —while retaining its sim-
plicity.
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Natural language tenses are normally referential. For example, an utterance
of the (simple past tense) sentence "Bill coughed" means that at some contextu-
ally determined past time Bill cough is true; and an utterance of the (past per-
fect tense) sentence "Sally had sneezed" picks out some past time and insists that
before that time Sally sneeze is true. The referential force of these sentences can
be modeled using nominals: we can represent the first sentence by P(iAJohn
cough) and the second by P(i/\P(Sally sneeze)). This idea extends to the anal-
ysis of simple texts. For example, we might analyze "It was raining. The sky was
completely gray" as follows:

P(i Alt be raining)

A P(i A The sky be completely gray).

The way nominals are used here to build up representations of intersentential
anaphora is reminiscent of the use of reference markers in temporal DRT (see
Partee [17]). More generally, NTL permits Reichenbachian insights to be incor-
porated into tense logic; see Blackburn [4] for an exploration of these ideas.

Some relatively simple extensions enable this account to be improved; two
such extensions are relatiυization to context and interval-based semantics. By ad-
joining a set of primitive contexts to frames, each assigned a time, one can in-
troduce special atomic symbols now, yesterday, today, and tomorrow which
mimic rather well the locutions 'now', 'yesterday', 'today', and 'tomorrow'. The
underlying semantic ideas are those of Kamp [15] and Kaplan [16], but the con-
textualized semantics is no longer exploited using additional operators but by
these new propositional variables subject to interpretational constraints. These
systems provide a clean model of the basic facts about temporal reference and
its interaction with tense; in particular, the scoping problems that tend to occur
in multiple operator accounts are avoided. Second, one can move to a richer in-
terval-based semantics. Again one introduces nominals, though in the new set-
ting nominals name out a unique interval of time, not necessarily a point. This
permits finer grained analyses of temporal expressions to be given. Once again
the reader is referred to [4] for a discussion of these issues.

But for present purposes the details of these extensions is not particularly iήi-
portant. Rather, what should be noted is the recurrence of the basic device used
in this paper: the use of different sorts of atom in our object languages whose
interpretation is constrained in some fashion. Each sort of atom is the bearer of
a different sort of referential information—we can 'read off information just
by knowing its sort—yet all this information is combined in a regular fashion by
our usual connectives and operators. The idea of constraining the interpretation
of variables in intensional languages is not new; it is the idea underlying general
frames for example. What makes the idea interesting here is that these distinc-
tions are syntactically marked in our object languages. As we have seen with
nominals, this gives rise to sublanguages with differing logical properties; the task
of charting the behavior of such systems seems worthwhile.
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