
369

Notre Dame Journal of Formal Logic
Volume 33, Number 3, Summer 1992

A Sequent- or Tαbleαu-style System for

Lewis's Counterfαctuαl Logic VC

IAN PHILIP GENT

Abstract In a 1983 paper, de Swart gave sequent based proof systems for
two counterfactual logics: Stalnaker's VCS and Lewis's VC. In this paper I
demonstrate that de Swart's system for VC is incorrect by giving a counter-
example. This counterexample does not affect de Swarfs system for VCS.
Then I give a new sequent- or tableau-style proof system for VC together
with soundness and completeness proofs. The system I give is closely mod-
eled on de Swart's.

/ Introduction Lewis [2] presented a counterfactual logic VC. de Swart [1]
presented first a sequent-based proof system for Stalnaker's counterfactual logic
VCS, together with soundness and completeness proofs, and then a proof sys-
tem for VC. Unfortunately, the soundness and completeness proofs for VC were
only sketched. In this paper I show that de Swart's system for VC is incorrect,
in that there is a VC-valid formula which the system reports to be invalid. This
paper concentrates exclusively on VC; de Swart's work on VCS is not affected
by the counterexample to VC.

In the rest of this section, I very briefly introduce Lewis's logic VC. In Sec-
tion 2 I describe de Swart's system for VC and in Section 3 I give a counterex-
ample to this system. In Section 4 I give a new proof system for VC, for which
I give soundness and completeness proofs in Sections 5 and 6 respectively. This
system cannot exactly be described as either a tableau or a Gentzen sequent sys-
tem but is closely related to both. It differs from tableau systems in that nodes
in a derivation tree are labeled with sets of formulas rather than single formu-
las, but it differs from Gentzen sequent systems in that I do not use the sequent
arrow, preferring the semantic notion of signed formulas.

The language of VC contains standard propositional connectives Λ, V, - I ,
D, the propositional constants T and JL, and the extra connectives < and D->.
<$ < (B is read as "& is at least as possible as (B". The connective D-> is used for
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counterfactual implication; Q D-> (B is read as "If <ϊ were the case, then (B
would be the case". The following definition gives the semantics of VC.

Lewis defines D-* and < in terms of each other. In view of this interdefined-
ness, it is necessary to consider only one of the connectives. In this paper < is
used.

Definition 1.1 A model for VC is a quadruple <I, R,<, [ I> which satisfies:

(1) I is a nonempty set of possible worlds.
(2) R is a binary relation on I, representing the mutual accessibility relation

of possible worlds.
(3) < is a three place relation on I, such that for each / E I there is a binary

relation <z on I. Furthermore, each < f must be transitive and connected
on [j \j E I and iRj}. (The latter requirement is that if j'Ry and iRk then
either j <, k or k <, y" or both must be true.)

(4) [ I assigns to each formula d of VC a subset [CEI of I, representing
the set of worlds where S is true. [ I must satisfy the following require-
ments:
(4.1) [βΛ(BI = [fit! Π [(BI
(4.2) [ β v ( B I = [ β l U [(BI
(4.3) I-iβl = 1- [βl
(4.4) [ a D (BI = (I - Iβ l ) U [(BI
(4.5) [TI =1
(4.6) [±I = 0
(4.7) [ β < (BI = [/1 / E I and for ally E [(BI such that iRj there is

some k E [QI such that k <, y}.
(5) (The Centering Assumption) R is reflexive on I; and if iRj and / =£ y

then -ιy <, / (and so by the connectivity of < ; and reflexivity of R, and
in an obvious notation, / <, y).

The connective D-> can be defined in terms of < by

(iD->(B =d/(-L <β)v-ι((βΛi(B) < (βΛ(B))

and its semantics are given by

[βD-> (BI = {/1 i E I and if there is somey E [ β l such that iRj
then there is some k E [Φ Λ (BI such that
there is no / E [ β Λ -I(BI such that /R/ and / < f A:}.

Definition 1.2 A formula (ϊ is YC-valid, written "l=vc ®"> if and only if, in
every model <I, R, <, [ I> for VC, [ β l = I.

2 de Swart's system for VC

Definition 2.1 A signed formula is any formula of the form [&]+ or [fi] ~
where a is a formula of VC. The reader may prefer to read [Q]+ as TQ and
[β]-as Fβ.

Definition 2.2 A sequent is a set of signed formulas.1 Below, I will some-
times write "Σ, [d]+" to mean "Σ U {[G]+}", and similarly with more than one
signed formula.
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Each rule that is defined below consists of one sequent above one or more other
sequents derived from it.

Definition 2.3 A derivation of a finite sequent Σ is a finite schema of sequents
such that

(a) Σ is the highest sequent in the schema.
(b) If a sequent in the schema has any sequents immediately below it, they

are the sequents derived from Σ by applying one of the rules.
(c) If a sequent has no sequents below it, then [_L]+ G Σ or [T]~ G Σ or for

some formula (B, [(B]+ G Σ and [(B]~ G Σ.

Definition 2.4 A derivation of a formula a of VC is a derivation of the se-
quent {[$]"}. The rules are as follows:

T Λ Σ , [ ( B Λ e ] + Σ , [ ( B Λ C ] -

Σ,[(B]+,[C]+ Λ Σ,[(BΓ |Σ,[eΓ

Σ,[(Bve] + Σ,[«ver
V Σ,[(B] + |Σ,[e]+ V Σ,[(BΓ,[eΓ

Σ,[(BDe] + Σ,[(BDβ]-

Σ,[(B]-|Σ,[β]+ Σ,[(B]+,[eΓ

Σ,[i(B] + E,[-.<BΓ

Σ,[(B]- "" Σ,[(B] +

τ < Σ,[(B<C] +

 p < Σ , [ ( B < e ] "

" Σ,[(B < C]+,[(B] + |Σ,[(B < e ] + , [ β ] - - Σ,[(B < β ] " [(B]"

There is one additional rule that is considerably more complicated. Its general
name is F < (m, n). It applies to a set of m formulas of the form [d < 3)] ~
and n formulas of the form [%, < V]+. It is only applicable if m > 1, but n may
beO.

de Swart [1] gives only special cases of this rule, and the reader is left to in-
fer the general case. Fortunately, the counterexample in Section 3 relies only on
the special cases that were explicitly given. The following special cases of the rule
F < (m,n) will be enough for me.

F < (1,0) A sequent Σ,[CE < 3D]~ is derivable if the following sequent is de-
rivable:

[ α r , [ £ ] + .

F < (1,1) A sequent Σ,[fi < SDΓJ'Ui < Vx]
+ is derivable if both of the fol-

lowing sequents are derivable:

[αr , [£>] + , [^ iΓ

[β]",[ clii]+.
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F < (1,2) A sequent Σ,[& ^ 3D]~,[0li ^ V^+Λ^ ^ ^i\+ is derivable if all the
following three sequents are derivable:

[α]-[£>]+, rv>,r, rv 2 r

[βΓ.miJ-UVaΓ

[ β ] - , [ v , ] - [ c u 2 ] +

and at least one of the following two sequents is derivable.

[β]-,[cU2]
+

)[
tV1]

+.

F < (1,3) A sequent Σ,[Q < SDΓJOlj < ^J+IOla < V2]
+,[Ol3 < V3] + is de-

rivable if all the following four sequents are derivable:

[β]-,[»]+[VjΓ.ΓVaΓ, [ V3Γ

[βi-fUi] 4 -,^]-,^]-

[αi-.i Vjj-iαiji+i Vs]"

[«]-,[tVi]-,[tV2]~,[iU3]
 +

and if each of the three sequents is derivable in at least one of the following six
sets of sequents.

[βΓ,[ΊiίlMv.,]-1-! [«]-[ cu 1]+,[ ev 3] + | [a]" , t c n 2 ] + , [^3] +

[β]-[aL,] + , [v 2 ] + | t α r , [ c u 1 ] + , [ e v 3 ] + | [a]-,[cu3]
+,['V2]+

[«]-,[ c u 2 ] + , [^ i ] + | [«]-,[ c u 2 ] + ,[^3] + | [β]-,[ < u 1 ] + ,[v 3 ] +

[βl-.l'Uji+iVii+i [ α r , [ t u 2 ] + , [ v 3 ] + | [e]~,[ i u 3 ] + , [^i] +

[a]-, [ < u 3 ] + ,[v 1 ] + | [α]-,t c u 3 ] +

> [ e v 2 ] + | [ar,nι]+Λv2]
+

tβ]-,[ t u 3 ] + . [Vi] + | [β]-,[ c u 3 ] + ,[ e v 2 ] + | [α]-,[ cu 2]+,[ tv 1]+.

Note that in the rule F < (AW, «), the sequent Σ disappears in the derived sequents.
This occurs because the derived sequents can be seen as referring to different pos-
sible worlds, and so many statements about the original world become irrelevant.

Remark 2.5 Note that, due to the above definition of the six sets of three se-
quents, F < (1,3) can lead to a derivation only if:

for any pair (j, *) with 1 <y < k < 3, either {[β] ~ [%•]+, [Vk]
+}

or ([Q] - [01*]+, IVj]+} is derivable.

This remark will be used in the proof of Theorem 3.2 in the next section.

3 A counterexample to de Swart's system Consider the formula of VC

(1) ( α < C Λ e < 3 D Λ 3 ) < ( - . £ > Λ ( B ) ) D (Ot<(B).

Theorem 3.1 (1) is VC-valid.
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Proof: It is necessary to prove that [(1)]] = I in any model <I, R, <, E I> for
VC. So from the semantics of VC, it is necessary to prove

( i - ( i α < e i n n e < £ > ] n [£>< ( -I£>Λ(B)] | ) )U n α < ( B ] = i .

To do this, it is sufficient to prove that for any z E I, if / E (|[β < β j Π |[β <
£>] Π [£>< (-ISDΛCBJ), then/E I β < (BJ.

Consider a n y / 0 E ( | [ β < e ] | ίΊ JC <£>]] D [£>< (->3DΛ(B)]|). Choose any
ι"i G I such that Ϊ 0 RΪI and /Ί G [[(El (if there is no such ix then i0 G [ft < (BJ
is trivially true). Now either ix G USD I or /Ί G [ -i3D]. In either case, I will prove
that there must be some /' G I such that /OR/', /' ̂ /0 i\ and /' G ff C5EH. Since the
choice of iγ was arbitrary, I will have established i0 G [[fi < (B]|.

If /Ί G 13)1, then, since /0 G [ β < 3)]], there is some /2 G I such that
/'0R/2,/*2 G [ e i and /2 <;0 i\. Then since ι0 G [[<£ < CJ, there is some /' G I
such that z'oR/',/' G [(i]] and /' </0 /2. Since </o is transitive, /' </o ix.

If /i G I-iSD], then/Ί G E~>3DA(B]1. Since/OG [SD< (-I3)Λ(B)]I, there is
some /2 G I such that /'oR/2, /2 G [3DJ and /2 </o /Ί. Then by a similar chain to
that in the last paragraph we can establish that there is some /' GI with the re-
quired conditions.

Theorem 3.2 (1) is not derivable in de SwarVs system.

Proof: A derivation for (1) is a derivation for

(2) ( [ ( β < C Λ e < 3 ) Λ 3 ) < (-I3DΛ(B)) D (β < « ) ] - } .

In searching a derivation, we find one sequent to which only F < (m,n) applies
and which does not contain [δ]" and [S]+ for any δ. This sequent is derived as
follows. (Each sequent is annotated by the rule used to produce it, and "RHS"
indicates that the right hand sequent of the two possible new sequents was
chosen.)

{ [ ( β < e Λ e < a ) Λ 3 ) < (-ISDΛCB))D ( G < C B ) ] - } (2)
{ [ α < e Λ e < £ > Λ 3 ) < (i3)Λ(B)]+,[α<(B]-} F D
{[α<e] + ,[e<£>] + ,[3)< (i3)Λ(B)]+,[α<(B]-} TΛ X2
{[<a<e]+,[e <£>]+,[£>< (-i3)Λ(B)]+,[α<(B]-[G]-) F <
{[β < e] + ,[e < 3D]+,[3) < (-.3DΛ(B)]+,[α < «]-,[«]-,

[β]- [3D]" [(πδΛβ)]") T< (RHS) X3

{[a < e] + , [e < ©]+,[£) < (-IJDΛ®)]+,[α < CB]-
[a]-[e]-[3D]-[(B]-} F Λ ( R H S )

To substantiate Theorem 3.2 it remains only to show, by a case analysis, that no
possible application of an F < (m, n) rule to the last sequent above leads to a
derivation.

F < (1,0) applied to [β < ffl]" This leads to the single sequent {[β]" [ffl]+),
which is not derivable.

F < (1,1) applied to [β < (B]",[β < β ] + . One of the derived sequents is
{[β]", [β] + , [β]"} which is not derivable.
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F < (1,1) applied to [« < (B]~,[C < 3D]+. One of the derived sequents is
{[β]~, [(B]+,[3D]"} which is not derivable.

F < (1,1) applied to [G < (B]", [3D < (-iίD Λ (B)]+. One of the derived sequents
is {[β]", [CB]+, [(-i© Λ (B)]"} which is not derivable.

F < (1,2) applied to [β < (B]", [β < β ] + , [β < 3D]+. One of the derived se-
quents is {[fi] ~ [(B]+, [β] ~, [3D]"} which is not derivable.

F < (1,2) applied to [Gt < (B]",[α < β]+,[3D < (-ι» Λ (B)]+. One of the de-
rived sequents is {[β] ~~, [CB]+, [β] ~, [(->3D Λ (B)] ~} which is not derivable.

F < (1,2) applied to [fit < (B]~, [β < 5D]+,[£> < (̂ SD Λ (B)]+. One of the de-
rived sequents is {[&]~, [G]+, [(-i3D Λ (B)]"} which is not derivable.

F < (1,3) applied to [β < (B] ~, [β < β ] + , [C < 3)]+, [3D < (-i£> Λ (B)]+. To see
that F < (1,3) fails to lead to a derivation, recall Remark 2.5 and apply it to
[C < 3D]+ and [3D < (-i3D Λ (B)]+. Then the relevant sequents are {[&] ~ [G]+,
[(-i3D Λ (B)]+} and {[β]", [3D]+, [3D]+}, neither of which is derivable.

Together Theorems 3.1 and 3.2 establish that de Swart's system for VC is in-
correct.2

4 A sequent based proof system for VC In this section I describe a proof
system for VC similar to de Swart's. In Section 5 I prove the soundness theorem
for this system, and in Section 6 I prove the completeness theorem.

All the definitions of Section 2 apply equally to this system, and all the rules
are the same except for F < (m9n). The definition of F < (m, ή) is given below.

Definition 4.1

F < ( " * , " ) :£,[(*! <£>iΓ, . . . , [ α w < » w ] - [ c U 1 < ^ 1 ] + , . . . , [ ί U Λ < ^ ] +

Σ ! | Σ 2 | ... | Σ W | ( )

where

£/= {[GiΓ,. ...ίβwl-JSD/lΛlV!]-...,[%]"} for l < / < m

and where (*) is the following special condition, which only applies if n > 1.

(*) There is a sequence iγ, i2,..., in which is a permutation of 1,2,..., n and
is such that each of the following sequents is derivable.3

{[α 1 ]-, . . . , [α m ]-,[ c u / j
+ )

{ [ α 1 ] - . . . , [ α w ] - [ ί u / 2 ] + , R 1 ] - )

{[βi]",...,[βm]",[cU/3]
+,[v/ l]-,[v/ 2]-j

{[βi]-,...Jfiw]-,[% J^RJ-,R J-,...,RΛ_1]-}.

In the rest of this paper, references to the proof system for VC refer to this sys-
tem and not de Swart's.



LEWIS'S COUNTERFACTUAL LOGIC VC 375

5 Soundness

Theorem 5.1 (Soundness Theorem) For any formula d of VC, // there is a
derivation for ΰί then hyc β

Proof: If there is a derivation of (ϊ, there is a derivation with [Q] ~ as its up-
permost sequent. So it suffices to show that for any sequent {[(Bi]+, [CB2]

+,
. . Λ®m]+ΛVιΓ> ΛGnΓ) in the derivation of [fi]-

( 3 ) t = V C ( ( B l Λ ( E 2 Λ ••• Λ ( B m ) D ( β ! V ••• v β Λ ) .

This will be done by induction, on the size of the derivation.

Induction base: A derivation of minimal size is one in which the original se-
quent contains [ _L ] +, [ T ] ", or both [<B]+ and [CB]" for some formula B.

In the first case, we need Nyc(-1- Λ (Bi Λ (Άm) D (β t v v CΛ), which
is certainly satisfied by VC. In the second and third cases, we need Nvc(®i Λ

(B 2Λ ••• A(Άm) D (T v β i v ••• v β Λ ) and NVC((BΛ(BIΛ ••• Λ(B W ) D ( ( B V

d v v <3n) respectively, both of which are satisfied by VC.

Induction step: For each rule, we have to show that if (3) holds for all the
sequents the rule leads to, then (3) holds for the original sequent. I will give an
example of doing this for one of the propositional rules, which are straightfor-
ward, and then I shall do this for the rules T<, F<, and F < (m,n). This will
complete the proof of the soundness theorem.

Induction Step for the rule ΎD: The induction hypothesis is that, in any model
<I,R,<,E J>,

(4) Kffl^ . . . Λ ( B m ) D ( e l V .-. veΛvSD)I = 1

and

(5) [ ( « ! Λ Λ <Άm A 8) D (β ! v v e π )I = I.

We have to show that

tt((B!Λ . . . A(BwA(3DD8))D(eiV .-. vC Λ )] = I.

Consider any / E l . It is sufficient to consider the case where

(6) I E [ (BJ, ie E(B 2 I, . . . ,/G ί<Rml

(7) ie II 3D DSD

and to show

(8) ie IQiv . . . v β j .

Now (7) means that either / £ [3D] or / e [ δ ] . If / £ [3DJ then, from (4) and
(6), we have (8) as required. If / E [ δ j then, from (5) and (6), we have (8) as
required.

Induction Step for the Rule T<: The induction hypothesis is that, in any model
<I,R,<,[ ]>,

(9) [ ( « ! Λ Λ (Bm Λ (01 < V) A at) D (Gi v v en)H = I
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and

(10) [((BiΛ ••• Λ <Bm Λ (Tl ^ V)) D (βiV . . . vβnvVn = I.

We need to show that

KffliΛ . . . Λ ( B m Λ ( c U ^ V ) ) D ( e 1 v -.. v β Λ ) ] = 1 .

Consider any / E l . It is sufficient to consider only the case where

(11) i e ϊ(Bi] | ,/e Ϊ ( B 2 ] | , . . . , I E E(BmIl

(12) /E 1*11^ VI

and to show

(13) /E [ β ^ •.. v C J .

Suppose i <£ IVJ. Then from (10), (11), and (12), we get (13) as required.
Suppose / G [ V I . From (12) and the semantics of VC, we have

(14) There is some A Έ 1*1111 such that iRk and k </ /.

But by the Centering Assumption, if k </ / then k = /, so from (14) / E 1*111.
Using (9), (11), and (12), we get (13) as required.

Induction step for F<: The induction hypothesis is

(15) IK®! Λ Λ (Άm) D (ex v v en v (tt < (B) v β)]| = I.

We need to show that

[((Bi Λ Λ (Bw) D ( d v v βn v (β < (B))]| = I.

Consider any / E l . It is sufficient to consider only the case where

(16) iΈ Ϊ C B J . i E ΪCB2]| i e KB^J

(17) /£ n e j ^ ' ί [ e 2 s , . . . , / ί n e j

and to show

(18) / E |[α<(BJ].

Suppose / ί [fill. Then by (15), (16), (17), we have (18) as required.
Suppose / E [ f t ] . Now, by the Centering Assumption, if j E I and iRj then

/ </y. So in particular, if j G ([(BI and iRj then / </./. This gives us (18) as re-
quired.

Induction step for F < ( m , « ) , m > l , π > 0 : The induction hypothesis is that,
for any model <I, R, <, |[ ]]>,

(19) 130,0 (fiiv ••• v a m v % ? l V . . . v ^ ) ! = I f o r 1 < j < m

and, assuming without loss of generality that yΊ = 1, y*2 = 2,. . . ,jn = «,

(20.1) [ T ί ^ f l i v ••• v y = 1

(20.2) 1*112 D β i v ••• v ^ v V J = 1
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(20.3) [OlaDβiV- vβ^v^v^I =1

(2O.n) E ^ D β i V •• v a w v V 1 v ί 9 2 v vVπ_iI = I

We need to show, given (19) and (20),

E (Hi! < v o Λ . . . Λ (<uπ < vn)) D ((a, < © 0 v . . v (am < aDm))]| = i.

Consider any / E l . It is sufficient to consider only those / E I such that

(21) /G E 0 L 1 ^ V 1 ] | , . . . , / G I T l π ^ V J

(22) ι £ E α 2 < S D 2 ] ] , . . . , / ί Eα w <2D w ]]

and to show that

Since, if V/Ί G I /R/Ί D ι'i £ I3Di]|, it follows trivially that / G |[βi < © i ] , we
may assume that

(23) 3/j £ I such that /R/j and /Ί £ |[£>ill.

It now is sufficient to show, given (19), (20), (21), (22), and (23), that

(24) 3/0 £ I such that jR/0, /0 ̂ , h and ι0 £ [ β i l .

Proof (Induction step for F < (m,n)): I will demonstrate the existence of a se-
quence of worlds

*1 = *Ί,0> h,\> - h,nx>

h,09 '2,1> / 2 , Λ 2 »

^,0> 4,1> ^,/IA:

Each new world in the sequence will be <, the previous one, and so by transi-
tivity </ ix. It will turn out that iktΆk will satisfy the requirements for /0 in (24).

Set / l f 0 = i\. From (19) and (23) we have / l f 0 £ l&i v v &m v V1 v v
Vnl. Now suppose, in general, that we have

(25.a) iffge ld{v . . . v α m v % ? l V . . . v \ ]

(25.b) /y>J? <z />;£' for al l/ ' < / and g' < g.

If />,g £ [ β i v . . . v α w j , then set nf = g.
Otherwise, iLg £ IVX v v VΛg]l. So, for some Λ with 1 < Λ < hg, iftg £

ϋ ^ I . But, from (21), / £ [0LΛ < Vhl, so there is some iftg+i such that iRif,g+ι
and iftg+ι ^/ i/tg and i/f g+i G I ^ Λ I Because iftg+\ ^ , ί/,g, and from the tran-
sitivity of </, we get (25.b). From (20.h), and setting hg+x - h - 1, iftg+\ £
[ β i v v α m v Vι v v Vh_ιl, satisfying (25.a). Since 1 < Λ < Ag, we have
0 < Λ^+1 < Λ .̂ So Λi, Λ2,. , is a strictly decreasing sequence of integers
bounded below by 0. Thus it must be a finite sequence, and by construction it
must end with some hnf - 0.
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Thus given (25) we can show that there is a sequence of worlds iffg, i/tg+\9

. . . , iftflff such that i^Άf E ECEi v v dm\. The sequence starts because setting
/ = 1, g = 0, and hg = n satisfies the conditions of (25).

Now suppose, in general, that

(26.a) ι> f Π / e I β i v ••• v y

(26.b) iftn/ <, ix and iftn/ <, />,nf, for a l l / ' < /.

So if>n/ E ί&afl fo r some ay. If ay = 1, then set k — f and /0 = ik,nk Other-
wise we have from (23) / £ [ β O / < SD^J. So there is some if+χy0 E I such that
i/+i,o e I3Dβ/]| and /Rι>+i,o and ι>+1>0 </ ι>fΛ/ and

(27) Vy E I (iRj andy <,. />+1>0) Dy <£ i α β / ] | .

By the transitivity of < f , and the fact that //+i,o </ (/;«/» */+i,o satisfies (25.b).
By (19), i>+ l f 0 E [ β j v v am v V1 v - v V J ,' so ι>+lfΌ satisfies (25.a).
Therefore //+i,Π/+1 satisfies (26.a) and (26.b).

This establishes a sequence /i,Λl,/2,/i2>
 a n ^ an associated sequence #i,

ύr 2 , . . . such that /};Λ/ E IG O / ]]. Now the latter sequence cannot have any repe-
titions, for if g > / then, by (25) and (26) igjng </ ί/+i,o> and so by (27) ig^ng ^
I β β / ] | . So the sequence aua2,... is at most length m. Yet it can only stop
when ak = 1. So for some finite k, ak = 1, and we have ifk>n/ E [[fii]] and
i/ΛtΠΛ </ ii, and so we have satisfied (24).

6 Completeness

Definition 6.1 A Hintikka element is a finite set Σ of signed formulas such
that:

if [ (BΛe] + EΣthen [(B] + EΣand [ C ] + E Σ ; and
if [(BΛβ]~EΣthen [(B]~EΣor [ β ] " G Σ ; and
if [ ( B v β ] + E Σ t h e n [(B] + EΣor [ β ] + E Σ ; a n d
if [(B v β ] ~ E Σ t h e n [(B]-EΣand [ β ] ~ E Σ ; and
if [(Ά Dβ]+ E Σ then [CB]" E Σ or [ β ] + E Σ; and
if [(B D β ] ~ E Σ then [(B]+ E Σ and [C]~ E Σ; and
if [-i(B]+ E Σ then [CB]" E Σ; and
if [-πCBΓEΣthen [(B] + EΣ.

A YC-Hintikka element is a Hintikka element Σ that also satisfies

if [ ( B < C ] + E Σ t h e n [(B] + EΣor [ β ] " € Σ ; and
if [ ( B < e ] - E Σ t h e n [(B]"EΣ.

Theorem 6.2 (Completeness Theorem) For any formula d of YC, if there is

no derivation of& then Pvc β.

Proof: It is sufficient to prove that:

(28) For any sequent Σ = {{(&x]
+,..., [(BΛ]+, [Cλ] ~ , . . . , [ β m ] " } which is not

derivable, there is a model <I, R, <, ί 1> of VC and some / E I such that / E
[<&! Λ Λ (Bn Λ -iβi Λ Λ - i β w ] ] . (I will sometimes abuse notation by
writing "/ E J Σ F ' for this.)
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Suppose that a sequent Σι is one of the sequents derived from some sequent Σ o

by one of the rules T Λ , F Λ , T V , F V , T D , FD, T - I , F - I , T < , o r F < . Then it is
easy to show that if z G IΣXB then i G EΣO]1 and so / G [ Σ o U Σx J . If Σ o is not
derivable, then any sequence of applications of these rules must end (by a sim-
ple complexity argument) and leave at least one underivable sequent. Since the
series of applications of rules has ended, none of the rules except F < (m, n) can
be applicable to the underivable sequent. Now consider the union of all the an-
cestor sequents of this underivable sequent in the attempted derivation. Since the
definition of a VC-Hintikka element matches the definition of the rules, this
union must be a VC-Hintikka element. So if Σ o is not derivable, there is some
VC-Hintikka element Σ' which is not derivable, and such that if / e [[Σ']] then

The previous paragraph shows that it is sufficient to prove (28) only for se-
quents Σ' which are VC-Hintikka elements. This will be done by induction on
the maximum nesting of the symbol " < " in Σ'.

Induction Base: Since Σ' is not derivable, Σ' does not contain [T]~, [J_]+, or
[CB]"" and [CB]+ for any (B. Define a model M for VC by

• I = {/oj which makes R and < trivial.
• For atomic propositions (P, ι0 G [CPU if and only if [G>]+ G Σ'.
• For nonatomic formulas d of VC, [(£J is defined by the above and the

semantics of VC. ([ J is well-defined because for each compound formula
fi, [CE]] is defined in terms of strictly simpler formulas.)

It is now easy to show (28) by induction on the total size of the formulas in the
sequent Σ'.

Induction Step: Suppose Σ is not derivable. Then there is a sequence of rules,
not including F < (m,n), which can be applied to yield a VC-Hintikka element
Σ' such that each possible application of F < (m, n) to Σ' yields at least one un-
derivable sequent.

Suppose the set of all signed formulas in Σ' with < dominating is Σx =
{[dx < £>iΓ,...,[CLm < 3Dm]",[cU1 < Vx]\ . . . ,[<UΛ < Vn] + }. I will show the
existence of two finite sequences of sequents Σ 1 ? . . . Σ ^ , . . . and Σ u , . . . ΣPtQi

. . . which can be used to construct a model for Σ'. If m = 0, the first sequence
will be simply Σ! and the second will be empty.

Suppose, in general, that Σp c Σλ and that Σp = [[dx < £ > ! ] " , . . . ,
[amp < &mp] -, [Tl! < Vx] \ . . . , [Λlnp < Vnp]I+} with mp > 0. We can apply

F < (mp, np) to Σi and we know by the definition of Σ' that the application will
not close. This means that either one of the sequents { [β i ]~, . . . Λ^mp] ~>
[T>j]+, [Vι ] " , . . . , [VΠp] ~} is not derivable for some j , or the special condition
(*) fails. If the former, then set Σ A θ = {[βi ] " , . . . , [amp] ~, [3Dy]

+, [Vx]",...,
[^np]~] and set Σp+1 = ΣP- {[βy < 3D,-]"}. If the special rule fails, then for
some k<np there must be a sequenceyi,y2> >Jk ( a n d I wiU assume, without
loss of generality, that it is the sequence 1,2,..., k) with the property that: each
sequent { [ ^ ] " . . . , [ β m p ] ~ [0Ly]

+, [Vx]",..., [Vj_x]"} is derivable for 1 <
j < k9 but no sequent {[Q.x]",..., [Q.mp]", [%]+, [Vx]~ . . . , [Vk]'} is derivable
for k < j < np. If there was no such sequence for k <np then the special rule
would not fail. In this case, set ΣPiQ = i[ax]~9.. .,[«„,„] " J ' U / H - ^ M ^ I Π
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. . . ,[V*Γ} for 1 < q < np - k and set Σp+ι = Σp - [[%k+ι < Vk+ι]
+

We can repeat this process until mp = 0, when we stop. Note that if mp = 0
then the first sequence ends with Σp and the second with some Σp_hq. Each ΣPiQ

is underivable, and so from each one we can build an underivable VC-Hintikka
element Σ'p g, as in the opening of this completeness proof. The symbol " < " is
nested strictly less deeply in ΣptQ than in Σ', and none of the rules used to build
Σ'p q increases the nesting of " < " . So " < " is nested strictly less deeply in each
Σ'p>g than in Σ'. So by the induction hypothesis, and since ΣPyQ C ΣptQ, we may
assume that for each ΣPtQ there is a VC model MPyQ = <IA < 7, R A ( 7 , < A ^ , [[ lp,g)
and some iPyQ G lp,g such that iPyQ G Ϊ Σ A 9 1 I A 9 .

Now define a VC model <I, R, <, [[ J> containing a world ί0 as follows.

I = Uo} U { / : / G l A 9 f o r some/?,*?}

{ ij G l A < 7 a n d /RA^y

or / = z0 and j = iPtQ

or / = /0 and j = i0

i <kj defined by the < A < 7 relations and by:

ip,q<i0ip',q'ifP<P'

ίp,q —io ίp,q' a n < ^ ίp,q' —h h,Q

|[ J defined by the I ] ] A ^ relations and by:
For atomic propositions (P, ι0 G E(P] ^ [(P]+ G Σ'.

For nonatomic propositions β, whether or not /0 G [ f i l is given by the above
definitions and the semantics of VC.

Note that for each world in one of the models MPiQ, the above definitions
leave the semantics of that world unchanged, since each such world bears exactly
the same R and < relations as it did in MPiQ. Also the semantics of /0 for atomic
propositions are well defined since Σ' does not contain [<P]+ and [(?] ~ for any
proposition P. The definition of semantics of VC defines each nonatomic prop-
osition in terms of strictly simpler propositions, and so the semantics of all prop-
ositions in i0 are well defined. Thus the definition of [[ I is well defined.

It remains to show that for any formula a of VC: that if [ f t ] + G Σ' then
io Ξ I β I and that if [ β ] " G Σ' then i0 £ [ « ] ] . This will be done by another,
inner, induction on the complexity of the structure of &. The induction base is
the case of atomic formulas. In this case, these requirements are met by the def-
inition of [ ] ] above. The induction step is straightforward for signed formu-
las dominated by a propositional symbol. So it only remains to prove the
induction step for signed formulas dominated by <.

(Inner) Induction step for formulas [ ^ < Vk]
+: If [ΠX̂  < Vk]

+ G Σ' then i0 G

Proof: Since Σ' is a VC-Hintikka element, either [CUA:]+ Ξ Σ' or [Vk]~ G Σ'.
Each of these signed formulas is strictly simpler than [CUA: < Vk]

+, so by the in-
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ner induction hypothesis either /0 G I^AΓI o r *o ί ϊ^kl If *o £ ϊ^kl>then by
the semantics of VC, we have /0 E [ \ < Vk][, and we have finished. So we
may assume that [Vk] " E Σ ' and so i0 £ lVkl.

Suppose that for some /?', there is no iPiQ such that p <p' and iPfq G [ ^ I .
Then, from the choice of model M A q, for each p < /?', [SX^]+ φ Σ A ^ and so, by
construction, [TI^ < "V^]+ G Σ^. Then, again by construction, [Vk] ~ G Σp>q and
so, again by the choice of MPfq,iPtq£ H ^ I for/? </?'. Either n o / A 9 G 1^^]
or some iPyQ G I^ytl If the former, then by the above argument we have that
for each/?, q,ip>q£ lVkl, and remembering that we assumed that /0 φ. \yk\,
we have that there is no world j such that i0Rj and j G E ^ l Thus /0 Ξ
[ΊX^ < Vk^. If the latter, then there is some smallest p' such that for some qf

ip',qr Ξ E^AΓII Then by the above argument, and the assumption that /0 ί
II^Arll, we have that there is no world j such that i0Rj andy G E ^ B andy < / 0

/ p ; ^ . T h u s / 0 G l<\lk*sVkl.

(Inner) Induction step for formulas: [ ^ < Vk]': If [Q.k < 30^]" G Σ' then

Proof: By construction, there is some Σ p which does not contain any formula
[β, < £ ) / ] " and so there is some largest p' such that [&k < 3)^] ~ GΣP>. Then,
by construction, [ S y 4 " G Σ^ o* and so by the choice ofMp>q9 ip.$ G USD*:] Now
consider y G l such that j < / o /p;0 Either j - i0 or j = /A^ for some p < /?'. If
7 = /0, then since Σr is a VC-Hintikka element, [d^] ~ G Σ r, and so by the (in-
ner) induction hypothesis, i0 £ [ f i^I . If j = iPiQ for some/? < /?', then [dk <
S)k]~ G Σ p . Then, by construction, [Qk]~ G Σ A ^ , and so by the choice of
Mp,q, ip,q ί I^AΓI So we have established that there is some/?' such that /p;0 £
[3D*], and that if j < / o / p ; o theny ^ ECl*]|. This establishes that /0 φ lάk <
SDJ.
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NOTES

1. I use the term "sequent" as shorthand for "set of signed formulas". The ambiguity
with the term "Gentzen sequent" is unimportant since the proof system presented here
would appear very Gentzen-like if each formula [Q]+ were written to the left of a
sequent arrow and each formula [&]~ to the right of a sequent arrow.

2. The reader may be interested in how this counterexample was discovered. Curiously,
I wrote down the system of Section 4 before I realized that de Swart's system was
wrong. In studying the relationship between the two systems, I was able to construct
the above counterexample to their equivalence. It was only then that I noticed that
de Swart's system gives the wrong answer in this case.
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3. This condition could be expressed as a complicated condition on various sets of se-
quents, mirroring the presentation of F < (1,2) and F < (1,3) in de Swart's system.
However, this method of presentation makes the general rule much clearer.
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