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Contractions of Closure Systems

STEPHEN POLLARD and NORMAN M. MARTIN

Abstract This essay shows that some recent work by George Weaver can be
reformulated in an especially perspicuous way within the theory of closure sys-
tems. Closure theoretic generalizations of some theorems of Robert Goldblatt are
presented. And, more generally, the relation between closure systems and the
deducibility relations of Goldblatt is explored.

1 Introduction Pick some set D to be our universe of discourse. Let ℘(D) be the
power set of D. We adopt the convention that

⋂
∅ = D. If C ⊂ ℘(D), then we say

that C is a closure system if and only if
⋂

W ε C whenever W ⊂ C. (For an early
discussion of closure systems, see Moore [6], pp. 59–60. For discussions from the
point of view of lattice theory, universal algebra, and proof theory, respectively, see
Birkhoff [1], Cohn [3], and Tarski [7].) In a typical proof theoretic application, the
members of a closure system will be sets that are closed under certain inference rules.
(In that case, A � ϕ just in case ϕ belongs to each member of C that contains A.) If
additional inference rules are adopted, then fewer sets count as closed. So expansions
of deductive systems correspond to contractions of closure systems. It turns out that
some theorems in Weaver [9] can be recast as elementary results in the theory of
such contractions.

We begin with a discussion of the relation between closure systems and the
“deducibility relations” of Goldblatt [4] and Weaver [9].

Definition 1.1 If Cl:℘(D) →℘(D), then Cl is a closure operator just in case it
satisfies the following postulates:

(K1) Cl(A) ⊂ Cl(A∪B);

(K2) A ⊂ Cl(A);

(K3) Cl(Cl(A)) ⊂ Cl(A).
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We say that a set A is Cl-closed just in case Cl(A) ⊂ A. One can now prove that if Cl is
a closure operator, then the Cl-closed subsets of D form a closure system. Suppose,
on the other hand, that C is a closure system. If A ⊂ D, we let Clc(A)=

⋂
{B ε C : A

⊂ B}. Then Clc is a closure operator.

Definition 1.2 Now consider the following four postulates governing �, ¬, and ⊥;
where � is a subset of ℘(D)×D, ¬ is a function on D into D, and ⊥ ε D:

(D1) If A � x , then (A∪B) � x ;

(D2) If xεA, then A � x ;

(D3) If A � y whenever yεB, then (A ∪ B) � x only if A � x ;

(D4) A � x if and only if (A∪{¬x}) �⊥.

If �, ¬, and ⊥ satisfy D1, D2, D4, and all those instances of D3 in which B is
finite, then � is a deducibility relation in the sense of Goldblatt and Weaver. (Weaver’s
formulation of D3 differs from Goldblatt’s—though, as Weaver demonstrates, the
two formulations are interderivable using D1 and D4. We follow Weaver here.)
The relationship between closure systems and deducibility relations is somewhat
obscure—unless, that is, we drop the requirement that B be finite in D3. We say that
� is a generalized deducibility relation if and only if � satisfies D1, D2, and (the
unrestricted version of) D3. Now suppose x ε Cl(A) if and only if A � x . Then Cl
is a closure operator if and only if � is a generalized deducibility relation. We can
now see that, from the closure theoretic perspective, D1–D3 express the most natural
notion of deducibility relation. Say that A is �-closed just in case {x : A � x} ⊂ A. If
� is a generalized deducibility relation, then {A : A is �-closed} is a closure system.
And if C is a closure system, then {<A,x> : xεClc(A)} is a generalized deducibility
relation.

We shall now show that the employment of a closure theoretic notion of de-
ducibility results in an immense simplification of some important proofs. In many
applications, it also allows us to dispense with D4. Since this postulate guarantees
that ¬ behaves like a classical negation, its elimination should allow us to extend our
results to a variety of interesting deviant logics. (Note for example our remark below
about cyclical negations.) At the very least, this change would remove a definite
impediment to such applications. Our claim, then, is; (1) that many results obtained
by Weaver and Goldblatt can be reformulated and proved for generalized deducibil-
ity relations, (2) that employment of closure theoretic methods greatly simplifies the
proofs, and (3) that avoidance of a commitment to classical negation promises to
widen the range of applicability of the results so proved.

Suppose f :℘(D) →℘(D). If D is a set of sentences and A ⊂ D, then we might
say that each member of f(A) is “derivable” from A by means of the “inference rule”
f. If B ⊂ D, then we say that B is f-closed if and only if f(A) ⊂ B whenever A ⊂ B. If
W ⊂℘(D), then we say that W respects f if and only if each member of W is f-closed.
From now on, we assume that C is a closure system. Let Cf = {XεC : X is f-closed}.
Then Cf is (obviously) the largest subset of C that respects f. Furthermore:

Theorem 1.3 Cf is a closure system.

Proof: If A ⊂
⋂

W and each member of W is f-closed, then f(A) ⊂ ⋂
W . So

⋂
W is

an f-closed member of C whenever W ⊂ Cf.
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Cf is the closure system we obtain when we incorporate the “inference rule” f into
a deductive system with closure topology C. As we shall soon see, Cf is the closure
theoretic counterpart of Weaver’s �I (see [9], p. 454). We approach �I via a further
discussion of closure operators. If Cl and Cl′ are closure operators, we stipulate that
Cl�Cl′ if and only if Cl(A) ⊂ Cl′(A) whenever A ⊂ D. We say that Cl′ extends Cl
just in case Cl � Cl′. Suppose C and C′ are the closure systems associated with the
closure operators Cl and Cl′, respectively. Then it is fairly easy to show that Cl�Cl′
if and only if C′ ⊂ C, (see Ward [8], p. 194). From now on, we assume that Cl is a
closure operator. Suppose, as above, that f :℘(D) →℘(D). We say that Cl respects
f if and only if Cl(A) is f-closed whenever A ⊂ D. Notice that if Cl is the closure
operator associated with the closure system C, then Cl respects D if and only if C
does.

Theorem 1.4 There is a �-smallest closure operator that extends Cl and respects
f.

Proof: Let C be the closure system associated with Cl. By Theorem 1.3, we can let
Clf be the closure operator associated with Cf. Then Clf respects f because Cf does.
And Clf extends Cl because Cf ⊂ C. Suppose Cl′ is a closure operator that respects f

and extends Cl. Let C′ be the associated closure system. Then C′ respects f and C′
⊂ C. So C′ ⊂ Cf and, hence, Clf� Cl′.

Now suppose I ⊂ (℘(D)×D). If A⊂D, we stipulate that f(A) = {x : <A,x>εI}. Let
� be a generalized deducibility relation. And let Cl be the closure operator associated
with �. (That is, A � x if and only if xεCl(A).) Then we say that � respects I just in
case Cl respects f. (We depart here from the terminology of Goldblatt and Weaver.
When we say that � respects I, they would say that each subset of D respects I. For a
set A respects I, in the sense of Goldblatt and Weaver, just in case Cl(A) is f-closed.)
Note that � ⊂ �′ if and only if Cl�Cl′—where Cl and Cl′ are the closure operators
associated with the generalized deducibility relations � and �′.
Theorem 1.5 There is a smallest generalized deducibility relation that extends �
and respects I. (See also Weaver [9], Lemma 2).

Proof: Let Cl be the closure operator associated with �. By 1.4, we can let Clf be
the �-smallest closure operator that extends Cl and respects f. If we stipulate that A
� Ix if and only if xεClf(A), then � I is the smallest generalized deducibility relation
that extends � and respects I.

The principal interest of Theorem 1.5 is not its guarantee that � I exists. Weaver
already showed that in a more straightforward way. It is more significant that the
proof of Theorem 1.5 indicates the closure system associated with � I. If C is the
closure system associated with � and f is defined as above, then Cf is the closure
system associated with � I. That is, {A : A is � I-closed} = Cf. And A� Ix if and
only if xε

⋂
{BεCf : A⊂B}. (To see this, just recall that Clf is the closure operator

associated with Cf, while � I is, by our construction, the generalized deducibility
relation associated with Clf.)

We now turn to analogues of theorems that Weaver proves with the help of
a complicated transfinite construction. No such construction is necessary within
closure theory. As promised, we also dispense with the classical negation operator
of D4. Suppose that W⊂℘(D). If A ⊂ D, then we say A is W-consistent if and
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only if some member of W\{D} contains A. In a proof theoretic application, the
idea would be that A is contained in a deductively closed set distinct from the set
of all sentences (that is, A is proof theoretically consistent). A W-consistent set is
maximally W-consistent if and only if none of its proper supersets are W-consistent.

Theorem 1.6 A set is Cf-consistent if and only if it is contained in a C-consistent,
f-closed member of C. (See also Weaver [9], Lemma 7.)

Proof: A set belongs to Cf\{D} if and only if it is an f-closed member of C\{D}.
Theorem 1.7 Each maximally W-consistent set belongs to W.

Proof: Suppose A is maximally W-consistent. Let B be a member of W\{D} that
contains A. Then B is W-consistent and, hence, A=B.

Theorem 1.8 Each maximally C-consistent, f-closed set is also maximally Cf-
consistent. (See Weaver [9], Theorem 5.1, right-to-left.)

Proof: Suppose A is f-closed and maximally C-consistent. Then, by Theorems
1.6 and 1.7, A is Cf-consistent. Let B be a member of Cf\{D} that contains A.
Then B is C-consistent (since Cf⊂C ) and, hence, A=B. We conclude that no proper
superset of A belongs to Cf\{D}.

As our references to Weaver indicate, the preceding theorems are not entirely
novel. We do not claim to be breaking completely new ground. We mean, rather,
for the reader to contrast the triviality of our derivations with the Herculean labors
expended by Weaver in his proofs of analogous results. This may help to explain our
own preference for a closure theoretic approach to deducibility relations. Perhaps the
simplifying power of closure theory is clearest in the case of Weaver’s Lemma 6—
which we now restate as a theorem about generalized deducibility relations. Suppose
I⊂ (℘(D)×D). As before let f(A) = {x : <A,x> ε I} whenever A⊂D. Finally, let �
be a generalized deducibility relation, let C be the closure system associated with �,
and let � I be the extension of � guaranteed by Theorem 1.5.

Theorem 1.9 If A is maximally C-consistent and f-closed, then A � x if and only
if A � I x.

Proof: Suppose A is maximally C-consistent and f-closed. Then, by Theorem 1.7,
AεCf. Suppose A � Ix . Then xε

⋂{BεC f : A ⊂ B} and, hence, xε A. So, by D2,
A � x . On the other hand, since � ⊂� I, A � x only if A � Ix .

Weaver’s Lemma 6 is a sophisticated result in the theory of deducibility relations.
Its proof could scarcely be described as trivial. So it is striking that the corresponding
result for generalized deducibility relations (our Theorem 1.9) is quite elementary.
It is all the more striking when one recalls that the move to generalized deducibility
relations involves not just the strengthening of Weaver’s D3, but the omission of
D4—that is, the omission of a classical negation operator. This allows the theory of
generalized deducibility relations (or, as we prefer to emphasize, the theory of closure
systems) to accommodate a common form of logical deviance (i.e., the employment
of a non-classical negation).

Clearly, a theorem that characterizes every deducibility relation also character-
izes every closure system with a classical negation. And, in some cases, classical
negation is indispensable. (That is, some theorems about deducibility relations are
true only of those generalized deducibility relations that satisfy D4.) On the other
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hand, we have just given examples of properties of deducibility relations that apply
to all closure systems—even those in which no classical negation is definable. In
these cases, neither classical negation nor any expressive capacity similar to classical
negation is required. It is natural to wonder whether there are logically significant
properties of deducibility relations that, while not applying to all closure systems, do
apply to closure systems that fall somewhere between closure-systems-in-general and
closure-systems-with-a- classical-negation. Properties of just this sort are explored
in Goldblatt [4]—as we shall see after some preliminary definitions and theorems.

Suppose, as above, that A and B are both subsets of D. Then we say that B
W-decides f at A if and only if either f(A) ⊂ B or (A ∪ B) is not W-consistent. B
W-decides f (simpliciter) if and only if B W-decides f at each subset of D.

Theorem 1.10 Each W-consistent set that W-decides f is f-closed.

Proof: If B W-decides f and A ⊂ B, then either f(A) ⊂ B or B is not W-consistent.

We say that W has Lindenbaum’s property if and only if each W-consistent
subset of D is contained in a maximally W-consistent subset of D. A subset of D

is finitely W-consistent if and only if each of its finite subsets is W-consistent. W
is compact if and only if each finitely W-consistent subset of D is W-consistent.
(It is easy to see that W-consistent sets are always finitely W-consistent.) It may
seem perverse to employ the model theoretic term “compact” in a setting that invites
proof theoretic applications of closure systems. Note, however, that closure systems
are not intrinsically proof theoretic structures. Sets closed under a model theoretic
consequence relation typically form a closure system—and, in such applications, our
definition supplies “compact” with its usual model theoretic sense. Furthermore, we
are motivated here by a conception of compactness that is common in lattice theory.
Let C be, as usual, a closure system. Say that W is a cover of A just in case A ⊂
Clc(

⋃
W ). A finite cover, then, is a cover with only finitely many members. Lattice

theorists (following the practice in real number analysis) say that a subset of D is
compact if and only if each of its covers contains a finite cover (see Birkhoff [1],
p. 186). We find our notion of compactness suggestive because one can show that C
is compact (in our sense) if and only if D is compact (in the lattice theoretic sense).

Our treatment of the term “compact” is essentially the same as Goldblatt’s use
of the term “finitary” (see Goldblatt [4], p. 37). Weaver, on the other hand, uses
“finitary” in much the same way as Birkhoff (see Birkhoff [1], p. 185.) A closure
system C is finitary, in this sense, just in case xε Clc(A) for some finite subset A of
B whenever xεClc(B). As it turns out, the finitary deducibility relations are precisely
the compact ones. In the case of closure systems, the connection between the two
notions is only slightly more complicated. Each compact closure system with a
classical negation is finitary. And if some finite subset of D is not C-consistent, then
C is finitary only if C is compact. (Note, incidentally, that Cleave uses “compact” in
the way that Birkhoff and Weaver use “finitary”! See his [2], p. 76.) We turn now to
a fundamental result concerning compact sets.

Theorem 1.11 Each compact subset of ℘(D) has Lindenbaum’s property.

Proof: If V consists of finitely W-consistent subsets of D linearly ordered by con-
tainment, then

⋃
V is finitely W-consistent. So, by Zorn’s Lemma, if A is finitely

W-consistent, then there is a largest finitely W-consistent set that contains A. The
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theorem follows since, in a compact subset of ℘(D), there is no distinction between
W-consistent and finitely W-consistent sets (see also Goldblatt [4], p. 37).

We are now in a position to discuss two logically significant types of closure
system with features similar to those provided by classical negation. We say that W
is expressive if and only if, for each A in W\{D} and each B that properly contains A,
there is a subset D of D such that (A ∪ D) is W-consistent, but (B ∪ D) is not (that is,
A has a consistent extension that is incompatible with B). W is strongly expressive if
and only if, for each A and B as above, there is a finite D of the indicated sort. Note
that each compact, expressive subset of ℘(D) is strongly expressive. It is also easy
to prove that each closure system with a classical negation is strongly expressive.
The converse, however, is false. (To confirm this, consider the closure system whose
members are the filters of the lattice M5.) So expressiveness is a generalization of
the classical notion of negation.

Expressiveness has a substantial claim on our interest. It is the dual of a notion
that has received attention (albeit scant) from lattice theorists, (see Maeda & Maeda
[5], Lemma 7.2.) More importantly, it figures prominently in some powerful results
in the general theory of closure systems. (One can prove, for example, that each
C-consistent member of a compact, expressive closure system C is the intersection
of maximally C-consistent sets.) Finally, some significant deviant logics (logics
with “cyclical negations,” for example) have expressive formalizations that preserve
designated values. So it is not frivolous to extend some of Goldblatt’s results to
expressive or strongly expressive closure systems.

Theorem 1.12 If C is strongly expressive, B is C-consistent, f(A) is finite, and
A ⊂ Clc(B) only if f(A)⊂ Clc(B), then B has a C-consistent, finite extension that
C-decides f at A. (See Goldblatt [4], Lemma 1.4).

Proof: Assume the hypotheses of the theorem. Recall that Clc(A) =
⋂{BεC : A ⊂

B}. (That is, Clc(A) is the smallest member of C that contains A.) If A⊂Clc(B), then
(B ∪ f(A)) is a C-consistent, finite extension of B that C-decides f at A. Suppose
Clc(B) does not contain A. If Clc(A ∪ B) is not C-consistent, then neither is (A ∪ B)

and, hence, B itself C-decides f at A. Suppose, on the other hand, that Clc(A ∪ B) is
C-consistent. Then we can pick a finite D such that (Clc(B)∪ D) is C-consistent, but
(Clc(A ∪ B) ∪ D) is not. It follows that (B ∪ D) is C-consistent, but (A ∪ (B ∪ D))

is not. So (B ∪ D) is a C-consistent, finite extension of B that C-decides f at A.
We say that f is countable if and only if f assigns a finite set to each subset of D

and assigns ∅ to all but countably many subsets of D.

Theorem 1.13 If C is compact and expressive, B is C-consistent, f is countable,
and Clc(D) is f-closed whenever D is a finite extension of B, then B has a maximally
Cf-consistent extension.

Proof: Assume the hypotheses of the theorem. Let {An : nεω} be an enumeration
of the sets to which f assigns a nonempty subset of D. Furthermore, let B0 = B; let
Bn+1 be a C-consistent, finite extension of Bn that C-decides f at An (as guaranteed
by Theorem 1.12); and let Bω = ⋃{Bn : nεω}. Then Bω is a C-consistent extension
of B that C-decides f. By Theorem 1.11, we can let B* be a maximally C-consistent
extension of B that C-decides f. Then, by Theorems 1.8 and 1.10, B* is maximally
Cf-consistent. (See also Goldblatt, [4], pp. 38–39).
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For an indication of how Theorem 1.13 might be applied within proof theory,
see Weaver’s discussion of his Corollary 2 in his [9], p. 454. Weaver’s deducibility
relation � 1 is finitary and, hence, is a generalized deducibility relation. So it is
routine to give a closure theoretic reformulation of his remarks. Furthermore, if C1

is the closure system associated with � 1, then C1 is both compact and expressive.
So our Theorem 1.13 can do the work of Weaver’s Corollary 1.

Since Goldblatt and Weaver only require that their deducibility relations satisfy
those instances of D3 in which B is finite, their approach does have a particular kind
of generality that the closure theoretic approach lacks. Nonetheless, under a wide
variety of conceptions of proof, deductively closed sets form closure systems. Say,
for example, that 〈π, ≤〉 is an f-proof of x from A if and only if;

(I) π is a subset of D partially ordered by ≤;

(II) given any y in D, yεπ if and only if y ≤ x ;

(III) given any y in π , {zεπ : z ≤ y} is well-ordered by ≤;

(IV) given any y in π , either yε A or yεf(D) for some subset D of {zεπ : z< y}.
According to this account, a proof of conclusion x from premise-set A is a tree whose
greatest element is x and all of whose elements are members of A or are derivable
from prior elements by inference rule f. Now say that A � x just in case there is an
f-proof of x from A. Then it is an amusing exercise to confirm that � is a generalized
deducibility relation. So {A : Ais � −closed} is a closure system. The above notion
of proof (and, hence, the closure theoretic approach itself) can accommodate all
sorts of curious features. To cite just one, f(D) might be non-empty only when D is
infinite. And postulates (I) through (IV) themselves express just one of the expansive
conceptions of proof that can be explored closure theoretically.
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