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Reasoning with Sentences and Diagrams

ERIC HAMMER

Abstract A formal system is studied having both sentences and diagrams as
well-formed representations. Proofs in the system allow inference back and forth
between sentences and diagrams, as well as between diagrams and diagrams, and
between sentences and sentences. This sort of heterogeneous system is of interest
because external representations other than linguistic ones occur commonly in
actual reasoning in conjunction with language. Syntax, semantics, and rules of
inference for the system are given and it is shown to be sound and complete.

1 Introduction The representations used in actual inference come in many different
forms. Besides language, there are diagrams, charts, graphs, tables, etc. Moreover,
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Figure 1: An Euler diagram.

often two or more different types of representations are used in the very same proof
or reasoning task with great success. To give a simple example, in actual practice one
would routinely assert that the two sentences “All A’s are B’s” and “All B’s are C’s”
together express the same claim as Euler diagram in Figure 1. Similarly, it would
be typical to state that it can be immediately seen from the diagram that all A’s are
C’s, that this can be “read off” of the diagram or “inferred” from it. Beyond such
simple examples, diagrams occur in very complicated mathematical proofs for such
purposes as revealing the overall structure of a proof, clarifying the main construction
of a proof, etc. They are used in many other types of complicated reasoning tasks as
well. So in informal practice at any rate, inference between sentences and diagrams
and assertions of synonymy between diagrams and sentences are a matter of course.
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Perhaps it is common wisdom to say that while diagrams do appear at the external
level of the proofs people actually give, still they are not an essential part of these
proofs. Rather, it is said that they are a heuristic tool or psychological aid, that the
real proof is best modeled as some finite sequence of sentences. Nevertheless, it is
not at all clear that this is a view that should be defended at any cost. Such things as
the structure of the proofs given in informal practice, the length of the proofs given,
the types of rules applied and in what order, the simplicity of the rules used, etc. have
all been considered to be important factors in the construction of logical systems. For
example, natural deduction systems are motivated by a desire to accurately model
the way proofs are actually structured, such as the use of temporary assumptions in
a proof, the method of breaking into cases, the use of proof by contradiction, etc.
Likewise, a second-order logic rather than a first-order logic might be taken to model
some inference practice simply because it appears to more adequately reflect the
type of inferences actually made, as illustrated by Boolos in [1]. Mere extensional
accuracy is not the only demand made of a mathematical model of a given inference
practice. It is only one among many.

This being the case, there seems no reason why one shouldn’t consider the type
of representation used in actual proofs to be a legitimate motivation in the construction
of logics. Since diagrams are used in key places in mathematical proofs, they should
appear in the same key places in formal accounts of those types of proofs. Likewise,
since inferences are commonly made from diagrams to sentences and vice versa, such
inferences should also be duly analyzed from a logical point of view. The present
paper attempts to do this for a simple case.

A “heterogeneous” inference system will be analyzed, heterogeneous in having
as representations both sentences and diagrams and in allowing inference between the
two types of representations. The system is based on Shin’s work in [3] and [4]. Shin
studies the syntax, semantics, and model theory of two purely diagrammatic systems
of Venn diagrams. In addition to the Venn diagrams studied by Shin, the present
system allows information to be represented by means of first-order sentences. Rules
of inference allow one to make inferences from sentences to sentences, from sentences
to diagrams, from diagrams to diagrams, and from diagrams to sentences. While the
system is a fairly simple example of a heterogenous logic, it will hopefully serve to
illustrate that such systems are a legitimate topic for logical analysis and also to raise
some topics of concern for them.

The syntax of the system’s well formed representations, both diagrams and
sentences, is described first. Semantics are given which encompass both types of
representations, thereby allowing for meaningful interaction between the two. Rules
of transformation are given, some of which are standard first-order rules, some of
which are purely diagrammatic, and some of which are heterogeneous. The rules are
shown to be sound and complete with respect to the given semantics. Besides the
inference rules, the diagrams themselves of the system are heterogeneous, having both
diagrammatic and linguistic elements. The question therefore arises as to whether
a diagram is a consequence of another in virtue of its “diagrammatic features” or
whether merely in virtue of its “linguistic features.” The question also arises as to
whether the purely diagrammatic rules of the system are complete with respect to
this notion of “diagrammatic consequence.” These matters are discussed in the final
section.

There are many potentially interesting topics for further study concerning the
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formal properties of heterogeneous logics. For example, the presence of two or more
different types of representations in such a logic suggests various comparisons of the
different components. Does one subsume the other with respect to expressive power?
Is one more computationally efficient than the other? Are there any advantages (such
as length of proof) with proofs involving both (or all three, etc.) types of represen-
tations as opposed to proofs using just one type? Is one type of representation more
closely tied to the semantics than the other? Are the different types of representa-
tions better suited to different types of expressive tasks? What sorts of claims is each
component best designed to make? Is each component of the system complete?

2 Well-Formed Representations The primitive diagrammatic objects of the system
include both linguistic and diagrammatic objects. Among the linguistic primitives
are the basic symbols of first-order logic plus a lambda operator used to bind free
variables in formulas:

1. Logical constants: ∀, ∃, →, ∨, ∧, ¬, and λ

2. Constant symbols: a, b, c, a1, b1, c1, . . .

3. Variable symbols: x, y, z, x1, y1, z1, . . .

4. Predicate symbols of each arity: P, Q, R, P1, Q1, R1, . . .

The diagrammatic primitives of the system consist of the “Rectangle,” “Closed Curve,”
“Shading,” “Line” and “X” as shown below:

The terms and well-formed formulas (wffs) of the system are formed in the usual
way. In addition, the system has set terms formed by abstracting over the free variable
in a wff. These set terms are used to tag the closed curves of Venn diagrams. In other
words, the set of “set terms” is the smallest class satisfying the following condition:
λxϕ is a set term whenever x is a variable and ϕ is a wff having at most the variable
x occurring free. For example, λx Pilot (x) is a set term and will be interpreted in a
model as the extension of the predicate Pilot , i.e., as the set of pilots.

An “X-sequence” is a finite number of X’s connected by lines into a chain. For
example, “⊗ − ⊗ − ⊗ − ⊗” is an X-sequence. Likewise, for any constant symbol b,
a “b-sequence” is a finite number of tokens of b connected by lines into a chain, such
as “b − b − b.”

Definition 2.1 The set of “well-formed diagrams” (wfds) is the smallest class
satisfying the following four conditions:

1. Any rectangle is a wfd.

2. If D is a wfd and C is a closed curve labelled by exactly one set term not
occurring in D, then the diagram obtained by adding C to D in accordance with
the partial overlapping rule is a wfd. The partial overlapping rule requires that
C intersect each enclosed region of D exactly once, and that it overlaps only
part of each enclosed region.
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3. If D is a wfd and b is any constant symbol, then the diagram obtained by
adding a b-sequence or X-sequence to D is a wfd, provided that every link of
the sequence falls entirely within the rectangle and does not contact any border
of a closed curve of D.

4. If D is a wfd, then the diagram obtained by shading some enclosed area of D is
a wfd, provided that the shading is entirely bounded by parts of closed curves
and the rectangle.

A “well-formed representation” (wfr) is any wff or wfd. A “closed wfr” is any
sentence or wfd. The two diagrams in Figure 2, for example, are well-formed.

Figure 2: Two well-formed diagrams.

Intuitively, the region enclosed by a closed curve represents the set indicated by
its label. The region of overlap of two regions represents the intersection of the two
sets represented by the two regions, and so on. The shading of a region is an assertion
that the set represented by that region is empty. Similarly, an X-sequence asserts non-
emptiness of the set represented, and a b-sequence asserts that b is a member of the
set represented. For example, in the right-hand diagram in Figure 2, the left-hand
closed curve represents the Q’s, and the right-hand curve represents those objects x
such that a bears R to x . The diagram asserts (by the shading) that there is no object
x which is non-Q such that a bears R to x , and (by the b-sequence) that b is such that
either a bears R to b or else both b is not Q and a does not bear R to b.

Figure 3: Some non well-formed diagrams.

On the other hand, the three diagrams in Figure 3 are not well-formed. The first
one has a closed curve not labelled by a set term. The second and third ones violate
the partial overlapping rule.

The relevant syntactic units of a wfd are its “regions” which are defined by its
rectangle and closed curves. Regions are defined as follows: A “basic region” of a
wfd D is any region enclosed by a closed curve occurring in D or enclosed by the
rectangle of D. Thus, in a wfd having n closed curves there are n + 1 basic regions.
The “regions” of D are then defined inductively as follows:
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1. If r and s are regions of D, then the combined region consisting of r together
with s is a region (denoted by “r ∪ s”);

2. If r and s are regions of D that overlap, then the region composed of the area
of overlap of r and s is a region (denoted by “r ∩ s”);

3. If r and s are regions of D and s is a proper part of r , then the region that is
part of r but not part of s is a region (denoted by “r − s”);

4. If r is a region of D, then the region within the rectangle of D but outside of r
is a region (denoted by “r”).

Finally, a “minimal region” is any region which has no other region as a proper part,
and a “subregion” of a region r is any region s which is a part of r . If r is a subregion
of s, s is also said to “contain” r . A wfd having n closed curves will have 2n minimal
regions and 22n − 1 regions.

Note that the operations ∪, ∩, etc. in the definition of regions are operations on
parts of diagrams, i.e., on syntactic objects, not on sets. The same operation symbols
will be also be used with their usual set-theoretic meaning, but it will be clear from
context which operation is intended.

3 Correspondence Between Regions and Set Terms While the logical connec-
tions between different sentences are often subjected to analysis, the corresponding
connections between sentence and diagram are not. However, with its requirement
that every closed curve be labelled by exactly one set term, the present system has all
the necessary apparatus for making the logical connections between sentences and
diagrams explicit.

The set terms that tag the closed curves of wfds will tell us what sets those closed
curves are meant to represent. For example, if λxPilot(x) tags a curve enclosing region
r , then r represents the set of objects that are pilots. If λx(P(x) ∨ Q(x)) tags the
curve, then r represents the objects that are either P or Q. And so on. Beyond these
basic regions, we are also interested in the set represented by the overlap of two closed
curves and the region enclosed by either curve, as well as the sets represented by more
complex regions. For example, if λx P(x) and λx R(x, x) tag two closed curves, we
want to be able to conclude that the region of overlap represents those objects that
have the property P and are also R-related to themselves. Similarly, we want to be
able to conclude that the region enclosed by the first but not the second closed curve
represents those objects that are P but are not R-related to themselves, that the region
enclosed by the rectangle but outside of the first closed curve represents those objects
that are not P , etc.

To precisely capture this intuition, it is necessary to syntactically connect the
basic syntactic elements of wfds (regions) to set terms and thereby to language. With
this in mind, we will define a syntactic “correspondence relation,” in symbols “∼=,”
which will hold between the regions of diagrams and various set terms derived from
those occurring in them. This correspondence relation will hold, for example, between
the region enclosed by a curve and its tag, and also between more complex regions
and set terms composed appropriately from tags of D. The correspondence relation
will determine the set a given region gets interpreted as in a particular model. It will
play the role of intermediary between diagrams and sentences.

Definition 3.1 Let D be an arbitrary diagram and x , y, and z be arbitrary variables.
Then the relation ∼= is defined as the smallest relation satisfying the two conditions:
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1. If λxϕ(x) tags a closed curve of D and r is the region enclosed by that closed
curve, then r ∼= λyϕ(y) provided y is free in ϕ(y).

2. If r ∼= λxϕ(x), s ∼= λyψ(y), and z is free in both ϕ(z) and ψ(z), then:
r ∼= λz¬ϕ(z), r ∩ s ∼= λz(ϕ(z) ∧ ψ(z)), r ∪ s ∼= λz(ϕ(z) ∨ ψ(z)), r − s ∼=
λz(ϕ(z) ∧ ¬ψ(z)), and r ∪ s ∼= λz(ϕ(z) → ψ(z)).

To illustrate the correspondence relation, consider the diagram D in Figure 4.
Let r be the region within the rectangle but outside all of its closed curves. Then
r ∼= λx¬(P(x)∨ Q(x)∨∀y P(y)), r ∼= λy(¬P(y)∧¬Q(y)∧¬∀y P(y)), and so on.
Let s be the region of overlap of the upper two curves. Then s ∼= λz(P(z) ∧ Q(z)),
s ∼= λx¬(P(x) → ¬Q(x)), etc. Let r ′ be the region enclosed by the upper right-hand
closed curve. Then r ′ ∼= λx Q(x), r ′ ∼= λx¬¬Q(x), and so on. It is easy to verify

Figure 4: A diagram.

that there is an effective procedure for determining whether any given region and set
term stand in the correspondence relation.

4 Counterpart Relation Between Regions It is convenient to define a “counterpart”
relation that holds between regions of different diagrams signifying that the two
regions are meant to represent the same set. For example, if two closed curves are
both tagged with the same set term, then the two regions enclosed by the curves are
intended to represent the same set. Further, the two regions falling outside the two
closed curves also are intended to represent the same set. Similarly, if regions r of
diagram D and r ′ of D′ represent the same set, and s of D and s ′ of D′ represent the
same set, then the region of overlap of r and s represents the same set as the region
of overlap of r ′ and s ′, and likewise for the operations ∪ and - on regions. More
precisely:

Definition 4.1 The “counterpart relation” is defined inductively as the smallest
binary relation on regions of diagrams such that for any two diagrams D having
regions r and s and D′ having regions r ′ and s ′:

1. If r and r ′ are regions enclosed by closed curves tagged with the same set term,
then r and r ′ are counterparts, and

2. If r and r ′ are counterparts and s and s ′ are counterparts, then so are: r and s;
r ∪ s and r ′ ∪ s ′; r ∩ s and r ′ ∩ s ′; and r − s and r ′ − s ′.

5 Models and Truth in a Model Models for the system will be extentions of
standard first-order models. As with first-order models, they will assign objects and
sets of tuples to terms and predicate symbols. They will also assign sets to regions of
diagrams in a way that respects the terms that tag closed curves. The sets assigned to
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more complicated regions will depend systematically on the sets assigned to simpler
regions.

“First-order model,” “assignment function of values to variables,” “satisfaction
of a wff ϕ by an assignment function v in a model M” (in symbols M |=first-order ϕ[v]),
and “truth of a sentence in a model” (in symbols M |=first-order ϕ) are all defined in the
usual way. The class of first-order models is now used to define “extended first-order
models,” which are first-order models extended in a natural way to assign subsets of
the domain to each set term:

Definition 5.1 A pair (U, I ′) is an “extended first-order model” provided that
there is some first order model (U, I ) such that: (1) The interpretation function
I ′ extends I , and (2) For every set term λxϕ, I ′(λxϕ) = {d ∈ U : (U, I ) |=
ϕ[v] for some assignment function v on U assigning d to the variable x}.

Intuitively, this says simply that I ′ must assign to a set term λxϕ the set of all
objects in the domain satisfying the formula ϕ in (U, I ).

Proposition 5.2 For every extended first-order model M ′, there is a unique first-
order model M such that M ′ extends M. Furthermore, every first-order model can
be extended to an extended first-order model.

The extended first-order models are now extended to full-fledged models. These
models extend the extended first-order models by assigning sets to regions of diagrams
in accordance with the set terms labelling the closed curves of the diagrams. Thus:

Definition 5.3 A pair (U, I ′) is a “model” provided that there is an extended first-
order model (U, I ) and function F from regions of diagrams into the powerset of U
such that I ′ = I ∪ F , and for every wfd D:

1. If r is a region of D enclosed by a closed curve tagged with λxϕ, then F(r) =
I (λxϕ),

2. If r is the region of D enclosed by the rectangle, then I (r) = U , and

3. If r and s are regions of D, then F(r) = U − I (r), F(r ∪ s) = I (r) ∪ I (s),
F(r ∩ s) = I (r) ∩ I (s), and F(r − s) = I (r) − I (s).

Proposition 5.4 For every model M ′′ there is exactly one extended first order model
M ′ and exactly one first-order model M such that M ′′ extends M ′ and M ′ extends M.
Furthermore, every extended first-order model can be extended to a model.

Proof. Let (U, I ) be an extended first-order model. Then define an extention I ′
of I to be I ∪ F where F is defined inductively such that for any diagram D,

1. If r is the region enclosed by a closed curve of D tagged with λxϕ, then
F(r) = I (λxϕ).

2. If r is the region enclosed by the rectangle, then F(r) = U .

3. If r is a minimal region and s1, ..., sn are all the regions of closed curves that
include r plus the region of the rectangle, and t1, ..., tm are all the regions
enclosed by closed curves that r falls outside of, then F(r) = (F(s1) ∩ ... ∩
F(sn)) − (F(t1) ∪ ... ∪ F(tm)).

4. If r is a region and s1, ..., sn are the minimal regions constituting r , then F(r) =
F(s1) ∪ ... ∪ F(sn).
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It is now routine to verify that F has the desired properties, and thus that (U, I ′) is a
model that extends (U, I ), finishing the proof of the proposition.

We are now prepared to define the notions of “truth of a wfd D in a model M”
(in symbols M |= D) and “truth of a sentence ϕ in a model M” (in symbols M |= ϕ).

Definition 5.5 Let (U, I ) be a model, D be a wfd, and ϕ be a sentence. Then:

1. (U, I ) |= D if and only if for every region r of D: if r is shaded then I (r) is
empty; if r has an X-sequence then I (r) is non-empty; and if r has a b-sequence,
then I (b) ∈ I (r), and

2. (U, I ) |= ϕ if and only if (U, I ′) |=first-order ϕ, where (U, I ′) is the first-order
fragment of (U, I ).

A closed wfr δ is a “logical consequence” of a set of closed wfrs � (in symbols
� |= δ) provided that every model M such that every member of � is true in M is such
that δ is true in M. A sentence ϕ is a “first-order consequence” of a set of sentences �

(in symbols � |=first-order ϕ) provided that every first-order model M such that every
member of � is true in M is such that ϕ is true in M .

6 Interpretation Lemma The interpretation lemma plays a key role in both the
soundness and completeness theorems. It systematically links up the interpretation
of regions with the interpretation of set terms via the correspondence relation. Intu-
itively, it states that a region is interpreted in a model as the same set as any set term
corresponding to it.

Theorem 6.1 Interpretation Lemma Let (U, I ) be a model, λxϕ be a set term,
and r be a region of D. Then, if r ∼= λxϕ, then I (r) = I (λxϕ).

Proof. The proof is by induction on ϕ . For the base case, let ϕ be atomic. Then
by the construction of ∼=, r must be the region enclosed by some closed curve of D
which λxϕ tags. So by the definition of model we have that I (r) = I (λxϕ). For the
induction steps, suppose the lemma holds for every set term of lesser complexity than
λxϕ. There are several cases:

1. r ∼= λx(ψ ∧ π) where ψ ∧ π is ϕ . We can assume that r is not a region
enclosed by a closed curve which λxϕ tags, since in that case the result follows
immediately from the definition of model. By the definition of ∼= there must
be regions s and t of D such that r is s ∩ t , s ∼= λxψ , and t ∼= λxπ . Therefore,
I (r) = I (s ∩ t) since r is s ∩ t , which equals I (s) ∩ I (t) by the definition
of model, which is I (λxψ) ∩ I (λxπ) by the induction hypothesis, which is
{d ∈ U : (U, I ) |= ψ[v] for some assignment function v assigning d to x} ∩
{d ∈ U : (U, I ) |= π [v] for some assignment function v assigning d to x} by
the definition of model, which equals {d ∈ U : (U, I ) |= (ψ ∧ π)[v] for some
assignment function v assigning d to x} by the definition of satisfaction, which
is {d ∈ U : (U, I ) |= ϕ[v] for some assignment function v assigning d to x}
since ψ ∧ π is ϕ, which is I (λxϕ) by the definition of model.

2. r ∼= λx∀yψ(x) where ∀yψ is ϕ . By the construction of ∼=, r must be the
region enclosed by some closed curve of D that is tagged by λz∀yψ(z) for
some z that is free in ψ(z). Thus, by definition of model, I (r) = I (λxϕ). The
cases for the other connectives are proved in a similar fashion, concluding the
proof of the interpretation lemma.
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Lemma 6.2 Counterpart Lemma Let (U, I ) be a model and let r and s be regions
of diagrams D and D′. Then if r and s are counterparts, then I (r) = I (s).

Proof. Since every closed curve of every diagram must be tagged with a set term,
and since r and r ′ are counterparts, there is a wff ϕ such that r ∼= λxϕ and r ′ ∼= λxϕ.
By the interpretation lemma, then, I (r) = I (λxϕ) = I (r ′), as desired.

7 Rules of Inference The rules of the system are of three sorts. Diagrammatic
rules allow one to infer a diagram from other diagrams. Heterogeneous rules allow
one to infer a first-order sentence from a diagram, or to infer a new diagram from a
first- order sentence and a diagram. First-order rules allow one to infer a sentence
from other sentences.

A closed wfo ϕ is “provable” from a set � of closed wfo’s (in symbols � � ϕ)
if and only if there is a finite sequence of sentences and diagrams, each of which is
either a member of �, an axiom, or obtainable from earlier members of the sequence
by one of the rules of inference. A sentence ϕ is “first-order provable” (in symbols
� �first-order ϕ) from a set � of sentences if and only if there is a finite sequence of
sentences, each of which is either a member of �, a first-order axiom, or obtainable
from earlier members of the sequence by one of the first-order rules of inference.

7.1 Diagrammatic Rules

Setup: A wfd with no shading or sequences may be asserted at any line of a proof.

Erasure: D′ is obtainable from D by this rule if and only if D′ results from either
erasing a closed curve of D, erasing the shading of some region of D, or erasing
an entire X-sequence of D. If it is a curve that is erased, any shading that would
fill only part of some minimal region upon the erasure of the curve must also be
erased from that minimal region. For example, the right-hand diagram below
follows from the left-hand one by the erasure of a closed curve:

Extention of a Sequence: D′ is obtainable from D by this rule if and only if D′ results
from D by the addition of extra links to some sequence of D.

Erasure of Links: D′ is obtainable from D by this rule if and only if D′ results from
D by the erasure of links of a sequence falling in shaded regions, provided the
remaining links are reconnected.

Unification of Diagrams: D′′ is obtainable from D and D′ by this rule if and only if:

Every region of D′′ is the counterpart of a region of either D or D′. Conversely,
every region of either D or D′ is the counterpart of a region of D′′.

If any region of D′′ is shaded (has an X-sequence), it has a counterpart in either
D or D′ which also is shaded (has an X-sequence). Conversely, if a region
of either D or D′ is shaded (has an X-sequence), it has a counterpart in
D′′ that is shaded (has an X- sequence).
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Non-Emptiness: D′ is obtainable from D by this rule if and only if D′ occurs
from D by the addition of a sequence such that some link of the sequence
falls into every minimal region of D.

7.2 Heterogeneous Rules The heterogeneous rules are of two sorts. Observe rules
allow one to infer a sentence from a diagram, while apply rules allow one to apply
the information expressed by a sentence to a diagram.

∀-Apply: D′ is obtainable from the sentence ∀xϕ and the diagram D by this rule if
and only if there is some region r of D such that r ∼= λxϕ and D′ results from
D by the shading of any subregion of r or the addition of any sequence to r .

∀-Observe: The sentence ∀xϕ is obtainable from D by this rule if and only if there
is some region r of D such that r ∼= λxϕ and r is shaded.

Figure 5: A diagram.

For example, ∀x((P(x)∧ Q(x))∨(¬P(x)∧¬Q(x))) is obtainable from the diagram
in Figure 5, since the non-shaded region corresponds to λx((P(x)∧Q(x))∨(¬P(x)∧
¬Q(x))). The sentence ∀x((¬P(x) ∧ ¬Q(x)) ∨ (P(x) ∧ Q(x))) is also obtainable
from the diagram by the same rule, as is ∀x((P(x) → Q(x))∧ (¬P(x) → ¬Q(x)))

and many others. All of these are inferences one would be inclined to make in informal
practice. So the motivation behind using the correspondence relation to state these
rules is to have relatively powerful but natural heterogeneous rules which correspond
relatively closely to informal practice.

∃-Apply: D′ is obtainable from the sentence ∃xϕ and the diagram D by this rule if
and only if there is a region r of D such that r ∼= λxϕ and D′ results from D
by the addition of an X-sequence to some region containing r .

∃-Observe: The sentence ∃xϕ is obtainable from D by this rule if and only if there
is a region r of D such that r ∼= λxϕ and either some subregion of r contains
a sequence or else r is shaded.

Constant-Apply: D′ is obtainable from the sentence ϕ(a) and the diagram D by this
rule if and only if there is a region r of D such that r ∼= λxϕ(x) and D′ results
from D by the addition of an a-sequence to some region containing r .

Constant-Observe: The sentence ϕ(a) is obtainable from D by this rule if and only
if there is a region r of D such that r ∼= λxϕ(x) and either some subregion of
r contains an a-sequence or else r is shaded.

Inconsistent Information: Any closed wfo π is obtainable from D by this rule if and
only if there is a shaded region r of D with a sequence in one of its subregions.
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(5) by Rule of Setup

λx A(x) λx B(x)

λxC(x)

(6) by ∀-Apply from (1) and (5)

λx A(x)
λx B(x)

λxC(x)

(7) by ∀-Apply from (2) and (6)

λx A(x)
λx B(x)

λxC(x)

(8) by ∀-Apply from (3) and (7)

λx A(x) λx B(x)

λxC(x)

(9) by ∃-Apply from (4) and (8)

λx A(x) λx B(x)

λxC(x)

(10) by Erasure of Links from (9)

λx A(x) λx B(x)

λxC(x)

(1) Premise∀x(Bx → ((Ax ∧ ¬Cx) ∨ (Cx ∧ ¬Ax)))

(2) Premise∀x((Ax ∨ Cx) → (¬Bx ∨ (Bx ∧ Cx)))

(3) Premise∀y((Cy ∨ By) ∧ ¬(Cy ∧ By ∧ ¬Ay))

(4) Premise∃x(Ax ∨ Bx)

(11) by ∃-Observe from (10)∃x(Ax ∧ Cx ∧ ¬Bx)

Figure 6: A heterogeneous proof in the system.
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7.3 First-Order Rules The focus of the present paper is on the diagrammatic and
heterogenous aspects of the system. Therefore, rather than providing a particular set
of first-order rules and axioms, I’ll simply assume that we have an axiomatization
which is sound and complete with respect to |=first-order.

Having now stated all the rules and axioms of the system, Figure 6 shows a proof
in the system of the last line from the first four lines. The two styles of shading are
used to highlight the region of focus and the rectangles are omitted.

8 Soundness

Lemma 8.1 If � is a set of sentences and ϕ is a sentence, then � |= ϕ if and only
if � |=first-order ϕ.

Proof. This follows from the fact that every first-order model can be extended
to a model, and that truth of a sentence in a model depends only on the first-order
fragment of the model.

Theorem 8.2 Soundness Theorem Let � be a set of wfos and δ be a wfo. Then,
if � � δ then � |= δ.

Proof. By induction using the fact that each of the rules is valid. By a standard
argument, all the first-order rules are valid. For the remaining rules:

Unification: Let D′′ result from D and D′ by this rule, and let D and D′ be true in
(U, I ). Then every region of D′′ has a counterpart in either D or D′, and any
shading or sequence occurring in a region of D′′ occurs also in its counterpart
in either D or D′. Therefore, since I assigns each of these regions of D or D′
the empty set, a non-empty set, or a set containing a particular object according
to whether it is shaded, has an X- sequence, or a constant-sequence, by the
counterpart lemma we have that D′′ is true in (U, I ).

∀-Apply: Let (U, I ) |= ∀xϕ, (U, I ) |= D, r ∼= λxϕ, and D′ be obtained from D by
the shading of some subregion of r or the addition of a sequence to r . By the
interpretation lemma, I (r) = I (λxϕ). Further, since (U, I ) |= ∀xϕ, we have
that (U, I ) |= ϕ[v] for every assignment function v in U . Thus, by the definition
of extended first-order model, I (λxϕ) = U . So I (r) = U . By the definition of
model, then, I (r) is empty. By the counterpart lemma, r ’s counterpart in D′ is
also assigned the empty set. Therefore, whatever subregion of r ’s counterpart
in D′ is shaded in applying the rule, we have that (U, I ) |= D′. Also, since U
is non-empty, I (r) is non-empty and contains the denotation of every constant
symbol. Therefore, if a sequence is added to r to get D′ we still have, using
the counterpart lemma, that (U, I ) |= D.

∀-Observe: Let (U, I ) |= D, r ∼= λxϕ, and r be shaded. By the interpretation lemma,
I (r) = I (λxϕ). Further, U − I (r) = I (r), which is empty since (U, I ) |= D.
So I (r) = U . So I (λxϕ) = U . By definition of extended first-order model,
{d ∈ U : (U, I ) |= ϕ[v] for some assignment function v assigning d to x}
= U . By the definition of truth in a model, (U, I ) |= ∀xϕ. The remaining
cases are verified similarly, concluding the proof.

9 Completeness Completeness of the system is proved by exploiting the fact that the
first-order fragment of the rules constitute a complete system with respect to |=first-order.
The representation lemma allows this standard result to be used by showing that every
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diagram has a linguistic counterpart that is provably and semantically equivalent to
it.

Lemma 9.1 Representation Lemma For every diagram D there is a formula ϕ

such that: (1) ϕ is provable from D, (2) D is provable from ϕ , (3) D is a logical
consequence of ϕ , and (4) ϕ is a logical consequence of D.

Proof. Let D be a diagram. Let s be the shaded region of D. Let r1, ..., rm be the
regions of D with X-sequences. Let t1, ..., tn be the regions of D with ai -sequences
for 1 ≤ i ≤ n where each ai is some constant symbol. Let s ∼= λx S(x), ri

∼= λx Ri (x)

for each 1 ≤ i ≤ m, ti ∼= λxTi (x) for each 1 ≤ i ≤ n. Then the desired formula ϕ is:

¬∃x S(x) ∧ ∃x R1(x) ∧ .... ∧ ∃x Rm(x) ∧ T1(a1) ∧ .... ∧ Tn(an).

By the soundness theorem, to prove the representation lemma it suffices to prove (1)
and (2). To prove (1), observe that since s is shaded and s ∼= λx S(x), it follows that
s ∼= λx¬S(x). Thus, we get from D by ∀-Observe ∀x¬S(x). Then, using first-order
rules we can get ¬∃x S(x). Since each ri has an X-sequence, and since ri

∼= λx Ri (x)

for each 1 ≤ i ≤ m, we can infer ∃x Ri (x) for each 1 ≤ i ≤ m using the rule ∃-
Observe. Similarly, we get Ti (ai ) for each 1 ≤ i ≤ n from D using the rule Constant
Observe. Then, first-order rules yield the sentence ϕ, completing the derivation of ϕ

from D. To prove (2), use the setup rule to get a diagram with the same tagged curves
as D. The first-order rules give ∀x¬S(x), which allows s to be shaded by ∀-Apply.
Furthermore, each ∃x Ri (x) and ∃-Apply allows an X-sequence to be put into each
region ri , 1 ≤ i ≤ n. Finally, each Ti (ai ) and the rule Constant-apply allows an
ai−sequence to be put in each region ti , 1 ≤ i ≤ m. This completes the proof.

Lemma 9.2 Equivalence of |= and � for sentences Let � be a set of sentences and
ϕ be a sentence. Then � |= ϕ if and only if � � ϕ.

Proof. Suppose � |= ϕ . Then � |=first-order ϕ. So by the fact that |=first-order

and �first-order coincide we have that � �first-order ϕ. Therefore � �first-order ϕ and so
� �first-order ϕ. The other direction follows from soundness.

Theorem 9.3 Completeness Theorem Let � be a set of closed well-formed rep-
resentations and δ be a closed well-formed representation. Then � |= δ if and only
if � � δ.

Proof: For any closed wfr γ or set of wfrs �, let [γ ] and [�] be the sentence
and set of sentences, respectively, that result from replacing each diagram occurring
in � ∪{γ } with its linguistic equivalent in accordance with the representation lemma.
Suppose � |= δ. By the representation lemma [�] |= α for every α ∈ �, and also
δ |= [δ]. So [�] |= [δ]. By the previous lemma, it follows that [�] � [δ]. Let [�0]
be the finite subset used. Then [�0] � [d]. By the representation lemma �0 � α for
every α ∈ [�0], and also [δ] � δ. Hence �0 � δ. But then since � � α for every
α ∈ �0, we have � � δ, as desired.

10 Isolating the Diagrammatic Fragment of the System The above proof of com-
pleteness shows that the first-order rules along with the heterogeneous rules and the
setup rule form a complete system. In other words, it shows that none of the diagram-
matic rules save setup are needed for completeness. Nonetheless, the diagrammatic
rules often allow one to give more natural proofs between diagrams. For example,
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to eliminate a link of a sequence falling in a shaded region without the use of the
corresponding diagrammatic rule would require transferring information of the first
diagram into sentential form, carrying out a first order proof from these sentences to
the linguistic equivalent of the second diagram, and finally applying this information
back into diagrammatic form. A result is therefore needed showing that the purely
diagrammatic rules of the system are complete with respect to some natural notion of
“diagrammatic consequence,” |=Diag, holding among diagrams.

It is not sufficient to define D |=Diag D′ as holding whenever D |= D′ and
both D and D′ are diagrams. For let α and β be any two sentences such that β

is a logical consequence of α. Then, trivially, the right-hand diagram below is a
logical consequence of the left- hand diagram. But clearly this fact does not hold in
virtue of the two diagrams’ “diagrammatic” features. Rather, it holds only because
of the logical structure of the two set terms. A case of logical consequence between
sentences has merely been superficially coded up as a question about diagrams. So
the desired notion |=Diag will need to ignore such spurious examples.

The desired notion is obtained by treating the labels as atomic in the following
sense. Redefine “model” to allow basic regions to be interpreted as any set, provided
only that any two basic regions sharing the same label are interpreted to represent the
same set. So the only feature of labels now that is semantically relevant is whether
or not the same label tags two curves. No analysis beyond mere identity is needed.
Then, let models be defined as before on non-basic regions, treating basic regions as
just described. In other words:

Definition 10.1 A pair (U, I ) is a “diagrammatic model” if and only if U is a set
and I a function from regions into the powerset of U satisfying:

1. Any two basic regions enclosed by closed curves having the same label are
assigned the same subset of U , and

2. If r and s are regions of a diagram D, then: I (r ∪ s) = I (r)∪ I (s), I (r ∩ s) =
I (r) ∩ I (s), I (r − s) = I (r) − I (s), and I (r) = U − I (r).

Let |=Diag be the resulting notion of logical consequence between diagrams
arising from this new definition of model. Let �Diag be the syntactic notion holding
between a set � of diagrams and a diagram D if and only if there is a proof of D
from � using only the diagrammatic rules of the system with the exception of the
Rule of Non-Emptiness (which is just a concession to the non-emptiness assumption
of first-order logic).

In [3], Shin proved that for any finite set � ∪ {D} of diagrams, � |=Diag D if
and only if � �Diag D. Hammer and Danner [2] extended this result to infinite sets,
proving that for any set � ∪ {D} of diagrams, � |=Diag D if and only if � �Diag D.
This theorem provides the desired result, showing that the diagrammatic rules of the
system are complete with respect to the “diagrammatic” notion of consequence just
defined. So the system is “diagrammatically complete” in the sense that whenever a
diagram can be seen to follow from a set of diagrams without analyzing labels beyond
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being able to recognize the identity of two labels, it can be proved from that set using
only diagrammatic rules of the system.
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