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Automorphisms of Models of True Arithmetic:
Recognizing Some Basic Open Subgroups

HENRYK KOTLARSKI and RICHARD KAYE

Abstract Let M be a countable recursively saturated model of Th(N), and let
G =Aut(M), considered as a topological group. We examine connections between
initial segments of M and subgroups of G. In particular, for each of the following
classes of subgroups H <G, we give characterizations of the class of terms of the
topological group structure of H as a subgroup of G.

(a) {H : H =G(K ) for some K ≺e M}
(b) {H : H =G{K } for some K ≺e M}
(c) {H : H =G{M(a)} for some a ∈ M}
(d) {H : H =G{M(a)} =Ga for some a ∈ M}

(Here, M(a) denotes the smallest I ≺e M containing a, G{A} = {g ∈ G : A ={gx :
x ∈ A}}, G(A) ={g ∈G :∀a ∈ A ga =a}, and Ga ={g ∈G : ga =a}.)

1 Introduction For any structure, M , denote by Aut(M) the group of automor-
phisms of M . This is a topological group, where the topology is determined by the
sub-basis of all sets U b

a ={g ∈Aut(M) : ga =b}. In the case of models of PA (Peano
Arithmetic) this sub-basis is in fact a basis (because of the pairing function in PA) and
each U b

a is a coset of the stabilizer Ga =U a
a of a. We shall refer to these stabilizers as

basic subgroups. In this paper we shall concern ourselves with countable recursively
saturated models M only.

The main problem in this area is to recover as much information as possible
about M from its automorphism group G = Aut(M). In the case of models M of
PA, a lot could be done in this direction if we could distinguish the basic subgroups
of G from the open ones by a purely topological-group theoretic property. The aim
of this paper is to give properties of this sort which are satisfied by subclasses of
the basic subgroups, namely the strongly maximal ones and the maximal ones, in the
case when M is an elementary extension of the standard model N. The important
problems of finding a property describing precisely the basic subgroups, and the
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problem of finding a topological-group theoretic description of the model’s standard
system, SSy(M), are unsolved. (After this paper was written we learnt that Kossak
and Schmerl in their [5] did actually find such a description in the special case when
M is an arithmetically saturated model. Their methods use many ideas from this
paper).

Our notation concerning models of PA and recursive saturation is standard.
See Kaye [2] or Smoryński [9]. For a bibliography of papers concerned with auto-
morphisms of countable recursively saturated models of PA, see Kaye, Kossak and
Kotlarski [4]. More recent papers in this direction are Kaye [3] and Kossak, Kotlarski
and Schmerl [6]. Indeed, many ideas used below are from this last-mentioned paper,
including the cut J (H) associated with an open subgroup H of G.

Let T be any complete extension of PA, and let p be a nontrivial 1-type over T .
We say that p is n-indiscernible if for any M � T and any two increasing n-tuples
a0, a1, . . . , an−1 and b0, b1, . . . , bn−1 from M , each ai and b j realizing p, we have
tp(a0, a1, . . . , an−1) = tp(b0, b1, . . . , bn−1). In other words, the type of the n-tuple
a0, a1, . . . , an−1 is completely determined by the following data: a0 <a1 <. . .<an−1

and tp(a0) = tp(a1) = · · · = tp(an−1) = p. The key to the results of this paper is a
topological-group theoretic property, SMB(H), H is strongly maximal basic-open,
which (provided M is a countable recursively saturated model of Th(N)) is true of a
subgroup H iff H =Ga for some a realising a 2-indiscernible type in M .

We stress that our method works only for models of true arithmetic. On the other
hand, it should be noted that every unbounded 2-indiscernible type is minimal (in the
sense of Gaifman [1]) and hence n-indiscernible for all n. See [6] for a proof of this
fact.

In the rest of this section, we shall recall some definitions and lemmas that will
be used in the sequel.

Let M be a model of arithmetic, and let G be its automorphism group. For a set
A⊆ M , we denote by G{A} the setwise stabilizer of A, i.e., {g ∈G : g A= A} and G(A)

denotes the pointwise stabilizer of A, {g ∈G :∀a ∈ A ga =a}. For an initial segment
I of M , G(>I ) denotes {g ∈ G : ∃b> I g � <b = id}. We shall also use the notation
Ifix( f ) for {b : ∀c<b f c = c}, and Ifix(D) = ⋂

g∈D Ifix(g). The initial segment I is
almost invariant iff I is Ga-invariant for some a ∈ M , or in other words if G{I } is
open.

Given a in M , M(a) denotes the elementary cut

{x ∈ M : x < t (a) for some Skolem term t}

and M[a] denotes

{x ∈ M : t (x)<a for all Skolem terms t}.

The set difference of these, M(a)\ M[a] is denoted [a) and called the gap around a.
It is easy to check that G{M(a)} =G{M[a]} =G{[a)}.

It will also be convenient to have the notation 2xn defined by 2x0 = x and 2xn+1 =
22xn , and also logn n given by log0 x = x and logn+1 x =�log2(1+ logn x)�.

The next two lemmas concern automorphisms that fix a given initial segment
pointwise. The first of these was independently discovered by Kotlarski, Smoryński,
and Vencovská (for a proof see [7], lemma 4.4; or [4], lemma 2.1).
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Lemma 1.1 Let M be a countable recursively saturated model of PA, let a, b̄, c̄∈ M,
and suppose that for all k ∈N and all formulas ϕ

M �∀x <2a
k (ϕ(x, b̄) ↔ ϕ(x, c̄)).

Then there is g in G with a ∈ Ifix(g) and g(b̄)= c̄.

The next lemma is due to Smoryński [8] (see also lemma 2.2 of [4]).

Lemma 1.2 Let M be a countable recursively saturated model of PA, and let
I ⊆e M be closed under exponentiation. Then there is g ∈G with Ifix(g)= I .

The converse of this lemma (that Ifix(g) is closed under exponentiation) is easy,
and can be proved by considering binary representations of elements of M .

The next lemma is a useful application of the last two lemmas which to the
best of our knowledge has not appeared before. Recall that the normalizer in G of a
subgroup H <G, NG(H) or more simply N(H), is the largest K ≥ H in which H is
normal, i.e., {g ∈G : H g = H}.
Lemma 1.3 (i) If I ⊆e M is closed under exponentiation, M is a countable recur-
sively saturated model of PA, and G =Aut(M), then N(G(I ))=G{I }.

(ii) If I, J ≺e M with N(G(I )) = G{J } then either I = J , or I = M(a) and
J = M[a] for some a ∈ M, or I = M[a] and J = M(a) for some a ∈ M.

Proof: (i) Clearly G{I } ≤ N(G(I )). If g ∈ N(G(I )) then G(I ) = G(gI ) so the closures
of I and gI under exponentiation are equal, by lemma 1.2. But by hypothesis these
cuts are already closed under exponentiation so gI = I , in other words g ∈G{I }.

(ii) We show that if K , L ≺e M and a, b, c ∈ M with K <a < M(a)<b < L <c
then there is g ∈ G(K ) with g(b) > c. This suffices since if the conclusion fails and
if I < J there are b < J < c and g ∈ G(I ) with g(b) > c, i.e., N(G(I )) �≤ G{J }; and
if J < I by a similar argument there is g ∈ G(J ) \ G{I }, i.e., G{J } �≤ N(G(I )). But by
lemma 1.1 it suffices to find x > c such that ∀y <a (ϕ(x, y) ↔ ϕ(b, y)) for all ϕ.
By saturation if this fails then for some ϕ1 . . . ϕn we have

c≤max{x :
n∧

i=1

∀y <a (ϕi (x, y) ↔ ϕi (b, y))}∈ M(a).

By coding {(i, y) : y < a ∧ ϕi (b, y)} by some z ∈ M(a), we see that b, c ∈ M(a),
which is impossible.

The next lemma is the moving gaps lemma. This lemma is due to Kotlarski (see
lemma 3.1 of [4] for a proof) and is essentially a strong way of saying that the action
of G on gaps [x) is faithful.

Lemma 1.4 (Moving gaps) Let M be a countable recursively saturated model of
PA, let g ∈ G = Aut(M), and suppose a < x < y in M with ga �= a and M(x) < y.
Then there are u, v∈ M with x <u < M(u)<v< y, and either gu >v or gv<u.

Our final preparatory lemma in this paper is:

Lemma 1.5 Let M be a countable recursively saturated model of PA, and let
H =G{J } for some J ⊆e M. Then H is open iff at least one of

(i) J =sup{tn(a) :n ∈N} for some a ∈ M and some sequence of terms tn
(ii) J = inf{sn(a) :n ∈N} for some a ∈ M and some sequence of terms sn.
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Proof: The proof is a simple exercise in the use of recursive saturation.

Both (i) and (ii) may hold, even for elementary cuts J , but of course if this happens
at least one of these sequences is not coded in M . In fact, if N is strong in M , then
neither can be coded, and conversely if N is not strong there are cuts J satisfying (i)
and (ii) for which one of the sequences tn , sn , is coded. See Kossak, Kotlarski and
Schmerl [6] for some results in this direction. These were also noted independently
by Kaye.

2 Maximal open subgroups This section is concerned with setting the scene for
our considerations, and also with some preliminary results concerning maximal open
subgroups. The first result is a useful lemma relating the subgroups G(I ) and G(>I )

when I is an initial segment of M .

Lemma 2.1 Let M be a countable recursively saturated model of PA, and let I ⊆e M
be closed under exponentiation such that, for all a ∈ M,

I �= inf{logn(a) :n ∈N}.

Then the closure of G(>I ) is G(I ).

Proof: Let H be the closure of G(>I ). Since G(I ) is closed and contains H we have
one inclusion trivially. For the other inclusion, let g ∈G(I ). To show g ∈ H it suffices
to show that any open neighbourhood gGa of g meets G(>I ). Write b = ga, and
suppose without loss of generality that I <a <b. For each n ∈N we put

wn =max{w :∀x <w
∧
i<n

(ϕi (x, a) ↔ ϕi (x, b))}

where ϕi (u, v) is a fixed recursive enumeration of all formulas in the variables shown.
By recursive saturation the sequence (wn)n∈N is coded by some w∈ M . If x ∈ I then
gx = x and hence ϕi (x, a) ↔ ϕi (x, b) for all i . Thus I ≤ infn wn . We claim that this
inequality is in fact strict.

Assume to the contrary that I = infn wn , and set w′ = gw. Note that this
assumption implies I �=N because I is coded from above but N is coded from below.
By the maximality of the wn’s we have

¬
∧
i<n

[ϕi (wn, a) ↔ ϕi (wn, b)]

so tp(wn, a) �= tp(wn, b). Hence gwn �=wn for all n. Thus for all n ∈N

M �wn �=w′
n ∧ ∀i < j <n (wi ≥w j )

By overspill this is true for some n >N in I . But then gwn =w′
gn =w′

n since n ∈ I ,
w′

n �=wn , and wn ≤wk for all standard k. Hence wn ∈ I is moved by g, a contradiction.
It follows that there is c with I <c< infn wn , and by assumption I < infn logn c.

Then by lemma 1.1, for all d with I <d < infn logn c there is h ∈G fixing {x : x <d}
pointwise and sending a to b, and we are finished.
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Note that, in the case excluded in the statement of the lemma, i.e., when I =
inf{logn(a) :n ∈N}, we have G(>I ) =G(J ) for J = sup{2a

n :n ∈N} so G(>I ) is already
closed.

The following notions will be basic for our considerations. Let G be a group,
g ∈ G, and let H be an open subgroup of G. Then HgH denotes the double coset
{αgβ : α, β ∈ H}. Double cosets have the following property similar to ordinary
cosets: for g, h ∈G, HgH∩HhH is nonempty iff HgH=HhH. Thus the double cosets
of a subgroup H partitions G. The double coset index of H in G is the cardinality
of {HgH : g ∈ G}. We say that H is strongly maximal in G iff H �= G and for every
g ∈G \ H

G = HgH ∪ H ∪ Hg−1 H.

In other words, H is strongly maximal iff for every g in G \ H , H ∪{g} generates G
in ‘one step’. The acronym SMO abbreviates ‘strongly maximal open’.

Basic strongly maximal subgroups correspond to 2-indiscernible types as fol-
lows:

Lemma 2.2 Let M be a countable recursively saturated model of PA, let G =
Aut(M), and let H =Ga. Then H is strongly maximal in G iff tp(a) is 2-indiscernible.
If both H = Ga and K = Gb are strongly maximal, then H = K iff there is a Skolem
term t such that b = t (a) (and if this happens there is also a Skolem term s with
a =s(b)).

Proof: ⇐: Let f, g ∈ G \ H . We show that g ∈ H f H or g ∈ H f −1 H . Without loss,
we may assume that f a, ga >a (work with f −1 and/or g−1 otherwise). Then, by the
2-indiscernibility of tp(a), tp(a, ga) = tp(a, f a) so there is r ∈ Ga with r f a = ga.
Hence s = f −1r−1g ∈Ga and g =r f s as required.

⇒: Let b, c∈ M realize tp(a) be such that a <b, c. Pick r, s ∈G with sa =b and
ra =c. Using strong maximality, pick α, β ∈ H such that r =αsβ (a simple argument
shows that there can be no α, β ∈ H with r = αs−1β). Then tp(a, b) = tp(a, sa) =
tp(αβa, αsβa)= tp(a, c).

For the second part of this proof, note that if b = t (a), Ga ≤ Gb �= G, so by
maximality Ga = Gb. Conversely, if Ga ≤ Gb then by recursive saturation b = t (a)

for some term t .

Note that lemma 2.2 implies that Ga is strongly maximal if and only if it has
double coset index three. One direction has been proved; for the other, note that if G
is the disjoint union of Ga , GagGa and GahGa then Ga �= Gag−1Ga (else g ∈ Ga)
and Gag−1Ga �= GagGa (else tp(a, ga) = tp(a, g−1a)), so Gag−1Ga = GahGa .
lemmas 2.7, 3.1, and 3.2 below extend this observation to the case of arbitrary open
subgroups in place of Ga .

Note too that, if M and G are as in the lemma, then there exist maximal open
subgroups of G which are not strongly maximal, although the only ones known have
small double-coset index. See [6] for the construction and further details. Maximal
basic-open subgroups Ga correspond to selective types, i.e., complete types p(x) such
that for all Skolem terms t there is a Skolem term s with t (x) = s(0) ∨ x = s(t (x))

in p(x), in the same way as strongly maximal basic-open subgroups correspond to
2-indiscernible types. Again, see [6] for details.

Next, we shall show that an arbitrary maximal open subgroup is the (setwise)
stabilizer of an essentially unique initial segment. To do this we associate with each
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open H <G a cut J ⊆e M by setting

J (H)= inf{b∈ M : Gb < H}.

Lemma 2.3 Let M be a countable recursively saturated model of PA. Let H be a
proper open subgroup of G. Then N< J (H)< M.

Proof: The only non-obvious inequality is N< J (H). Suppose N= J (H). Since H
is open, and hence closed, it suffices to see that it is dense in G. But by our supposition
G(>N) ≤ H (where G(>N) ={g ∈ G : ∃b>N g � <b = id}); G(>N) is also dense in G
by resplendency, since every g ∈G such that (M, g) is recursively saturated must fix
a nonstandard initial segment of M .

Lemma 2.4 For any open H <G, H ≤G{J (H)}.

Proof: Left to the reader.

Corollary 2.5 Let M be a countable recursively saturated model of Th(N), and let
H be a proper open subgroup of G = Aut(M). Then for some proper cut J of M,
H ≤G{J } �G.

The point here is that in the case of true arithmetic, J=J(H) being a proper cut is not
G-invariant. We do not know if the corollary is true if M does not satisfy Th(N).

Lemma 2.6 If M is a countable recursively saturated model of Th(N), and H is a
proper open and maximal subgroup of G, then J (H)≺ M.

Proof: Assume to the contrary that a < J (H)< F(a) for some Skolem term F . We
will show that there is a term s such that N<s(a)<a and

∀x (a ≤ x ≤ F(a) → s(x)=s(a)).

Granted this, pick b with a <b < F(a) and Gb ≤ H . Then Gs(a) �≥ H because Gs(a)

is proper (since s(a) > N and M � Th(N)), H is maximal, and H �= Gs(a) (since
s(a) ∈ J (H)). So there is h ∈ H \ Gs(a). But s(a) = s(x) for all x in the interval
(a, F(a)), so h �∈G{J (H)}. But H <G{J (H)}, and hence h �∈ H a contradiction.

We have reduced the theorem to showing the existence of the term s. To do this
we may assume that F is strictly increasing (for otherwise work with F ′ defined by
F ′(0) = F(0), F ′(x + 1) = max(F(x + 1), 1 + F ′(x))). We let K (u) = Fu(0), the
uth iterate of F . Then there exists at most one value of K between a and F(a). If
there is no such value of K in this interval, put s(x)=min{u : K (u)≥ x}. Otherwise
let u0 ≤ a be such that a ≤ K (u0) < F(a) and suppose u0 is even. Then we put
s(x) = min{u : K (u) ≥ x and u is odd}. The case when u0 is odd is dealt with
similarly.

Note that if H < G is a maximal open subgroup, then J (H) is not of the form
M(a), otherwise H =G{M(a)} and a < M(a) with Ga < H . It is of course always the
case that G{M(a)} =G{M[a]}, but other than for this the cut J = J (H) is unique as we
see in the next lemma.
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Lemma 2.7 Let M �Th(N) be countable and recursively saturated, and let H <G
be a maximal open subgroup. Then

either there is exactly one nontrivial elementary cut J ≺ M with H ≤G{J }
or for some nonstandard a in M, H ≤G{M(a)} and H ≤G{J } for a nontrivial cut

J ≺ M implies that J = M(a) or J = M[a].

Proof: If H < G is maximal and open then J = J (H) is elementary in M and
H ≤ G{J } < G by lemmas 2.3, 2.4, and 2.6, so H = G{J }. If K ≺e M is such that
H = G{K } but K �= J then H =N(G(K ))=N(G(J )), so by lemma 1.3 there is a ∈ M
with K = M(a) and J = M[a].

3 Identifying subgroups For the rest of the paper, unless stated otherwise, M
denotes a countable recursively saturated model of Th(N) and G =Aut(M).

As mentioned in the introduction, this paper is concerned with maximal and
strongly maximal open subgroups. In our setting, these subgroups carry rather more
structure than just that associated with their double cosets, and it is this that we shall
start to describe now. By lemma 2.7 such a subgroup H < G is G{I } for some
elementary initial segment I of M . We say that an initial segment I is 2-indiscernible
iff it is not G-invariant and, for all g, h ∈ G, if I < gI < hI there is k ∈ G{I } such
that h−1kg ∈G{I }. This generalizes the previous definition if we agree that an initial
segment of M is a (not necessarily proper) subset I such that ∀x < y ∈ I x ∈ I and we
identify each a ∈ M with the initial segment {x ∈ M : x <a}.
Lemma 3.1 Let I be an initial segment of M. Then G{I } is strongly maximal iff I
is 2-indiscernible.

Proof: Similar to that of lemma 2.2.

From this we can derive some useful properties of the double cosets of a SMO
subgroup H. In the following, note that since we are writing maps on the left, we shall
use the definition H f = f H f −1.

Lemma 3.2 Let I be 2-indiscernible and almost invariant. Then H =G{I } is SMO,
and has precisely three double cosets H−, H and H+ such that:

(i) both H− and H+ are closed under · ;
(ii) H−1

− = H+;
(iii)

⋂
f ∈H− H f �={1};

(iv)
⋂

f ∈H+ H f ={1}.

Proof: Note that H− ={g ∈ G : gI < I } and H+ ={g ∈ G : gI > I } are double cosets.
Properties (i), (ii) and (iii) are obvious. For (iv) we use the fact that I = limn∈N tn(a)

for some a ∈ M and some Skolem terms tn . (‘lim’ is ‘sup’ or ‘inf’ here.) Given
g �= 1 in G, by the moving gaps lemma there are u, v > I in M with M(u) < v and
gu = v or gv = u. Since M is a model of true arithmetic and I is not invariant,
there is a′ in M such that tp(a)= tp(a′) and cofinitely many tn(a′) are in the interval
[u, v]. (This is proved directly by saturation if the sequence tn is coded, and if not
then I = infn tn(a)= supn sn(a) so we may simply find a′ and large enough n so that
both tn(a′) and sn(a′) are in [u, v].) Now consider the image I ′ of I under any h ∈G
sending a to a′.
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Note that the purely group theoretic properties (iii) and (iv) serve to distinguish
H+ from H−. Summarizing, we have:

Theorem 3.3 Let M be a countable recursively saturated model of Th(N), G =
Aut(M), and let H <G be proper. Then:

1. H is SMO iff H = G{J } for some 2-indiscernible almost invariant elementary
cut J of M;

2. if H is SMO and J = J (H), then H has precisely three double cosets H, H+
and H− where

H+ = {k :k J > J }
H− = {k :k J < J }

and that these double cosets satisfy (i), (ii), (iii) and (iv) in lemma 3.2.

Unfortunately, SMO subgroups H exist which are not basic. (Indeed the cuts Ia and
I a of Kossak, Kotlarski and Schmerl [6] have SMO but nonbasic stabilizers.) We
would like to strengthen the notion of SMO to ensure that H is of the form G{[a)}, a
gap stabilizer. To do this, we shall examine some of the properties of SMO subgroups
H further.

Lemma 3.4 If H <G is SMO then N(H)= H.

Proof: Assume H f = H but f �∈ H . Then f ∈ H− or f ∈ H+ and without loss we
may assume that f ∈ H−. Then by (i) f 2 ∈ H− and so f 2 =α fβ for some α, β ∈ H .
Hence f =α fβ f −1 is in H .

Since a SMO subgroup H is G{J } for an essentially unique J = J (H)≺e M as
in lemma 2.7, the family H={H g : g ∈ G} is in 1–1 correspondence with images gJ
of J . We shall write H f ≺ H g (or f ≺ g for short) to denote g−1 f ∈ H−. Note
also that by the last lemma, H f = H g iff g−1 f ∈N(H)= H so that H is also in 1–1
correspondence with (ordinary) cosets of H .

The notation in the last paragraph suggests there should be a close connection
with ≺ and the order relation < of M . The next lemma makes this connection explicit.

Lemma 3.5 Let H be SMO in G and let J = J (H). Then, for all f, g ∈ G, f ≺ g
iff f J <g J .

Proof: It suffices to show g J < J iff g ∈ H−.
Let g be such that g J < J . Then g �∈ H = G{J }. It follows that HgH = { f :

f J < J }, for if f ∈ HgH , f =αgβ for some α, β ∈ H , i.e., β−1 = f −1αg ∈ H hence
f −1αg J = J , so f J < J ; conversely, if f J < J and f �∈ HgH then f =αg−1β some
α, β ∈ H , which is similarly impossible. But H− ={ f : f J > J } is impossible by (iv)
in the definition of SMO and the moving gaps lemma, so HgH = H−.

The converse is similar: if g J > J then HgH = H+, so g �∈ H−.

It follows immediately that, for SMO subgroups H , ≺ is a dense linear order on
both H and also on G/H , the set of cosets of H .

The next lemma is the key application of the the moving gaps theorem to these
subgroups.
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Lemma 3.6 Let H be SMO in G, and let J = J (H) and f ∈G. Then
⋂
h≺ f

H h =G( f J ).

In particular ⋂
h∈H−

H h =G(J ).

Proof: The inclusion ⊇ follows from lemma 3.5. For the converse, suppose g �∈G( f J ).
Let a ∈ f J be such that ga �=a. Then M(a)< f J , since J (H) is never of the form
M(a). Hence, by the moving gaps lemma, there is h ∈ G such that g moves h J and
h J < f J . Hence g �∈⋂

h≺ f H h .

Let us give an application of the results so far. The application rests on the easy
observation that gaps [a) containing elements realising 2-indiscernible types are dense
in the set of all gaps, i.e., whenever a < M(a)<b there is c realizing a 2-indiscernible
type with a <c<b. We shall prove the following:

Theorem 3.7 There are topological-group theoretic properties StabP
I , StabI and

StabG such that, for any countable recursively saturated model M of Th(N) and any
H <G =Aut(M) we have:

i) StabP
I (H) iff H =G(K ) for some K ≺e M; and

ii) StabI(H) iff H =G{K } for some K ≺e M.
iii) StabG(H) iff H =G{[a)} for some a ∈ M.

Proof: With a given SMO subgroup S < G understood and g, h ∈ G, g � h denotes
h−1g ∈ S− ∪ S and g ≺h denotes h−1g ∈ S− as before. An S-initial segment of G is a
nonempty subset I such that g �h ∈ I ⇒ g ∈ I . The property StabP

I (H) is:

There is an SMO subgroup S <G and an S-initial segment I such that either

H =
⋂
h∈I

Sh

or
H =

⋃
h �∈I

⋂
k≺h

Sk

Suppose S = G(J ) is an SMO subgroup, J = J (S), I is an S-initial segment and
H =⋂

h∈I Sh . Then
H =

⋂
f ∈I

⋂
h≺ f

Sh =
⋂
f ∈I

G( f J )

if I has no maximal element, using lemma 3.6, so H is the pointwise stabilizer of the
elementary initial segment

⋃
f ∈I ( f J ); if I has a maximal element f then

H =
⋂
h� f

Sh =
⋂
h≺ f

Sh ∩ S f =G( f J ) ∩G{ f J } =G( f J )

as before. Similarly, if

H =
⋃
h �∈I

⋂
k≺h

Sh
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then
H =

⋃
h �∈I

G(h J )

which is either G(h J ) for some h �∈ I (if G \ I has a ≺ minimal element) or is
G(>K ) =G(K ) by lemma 2.1 otherwise, where K =⋂

h �∈I (h J ).
For the converse, suppose H = G(K ) where K ≺e M and let S = Gb where b

realises a 2-indiscernible type (so J (S)= M[b]), and put I ={h : h(b)∈ K }. Then if
there are arbitrarily small c> K realising the same type as b (and this always happens
if K = M(a) for some a) then

H =
⋃
h �∈I

G(M[hb]) =
⋃
h �∈I

⋂
k≺h

Sh .

If this doesn’t happen, let c > K be such that no elements between K and c realise
the same type as b. Then for each a ∈ K , M(a) < c since K is elementary so there
are arbitrarily large a ∈ K with the same type as b. It follows that

H =
⋂
h∈I

Sh,

since we have eliminated the case when K = M(a) for some a.
The property StabI is derived from StabP

I and the fact that the normalizer N(H)

of H =G(K ) for an elementary initial segment K of M is precisely G{K } (lemma 1.3).
Note that if H is of this form, then there are at most two K ≺e M for which H =G{K },
and there are exactly two only when H = G{M(a)} = G{M[a]} = G{[a)}. In this case,
the corresponding pointwise stabilizers G(M(a)) and G(M[a]) are different (lemma 1.2)
hence H is a gap stabilizer iff it is the normalizer of two distinct subgroups K1 and
K2 satisfying StabP

I .

The reader should note that nonbasic subgroups of the form G{[a)} exist. More-
over, in Kossak, Kotlarski, and Schmerl [6], nonbasic and nonmaximal groups of this
form are constructed. It is not known if nonbasic strongly maximal subgroups G{[a)}
exist.

We now aim to stengthen our topological group theoretic properties to exclude
nonbasic subgroups. Unfortunately, at present only basic-open subgroups H which
are gap-stabilizers can be recognized in this way. Let H be a gap-stabilizer, G{[a)},
and let S be SMO, and let the subgroups K0 < K1 both satisfy StabP

I with H =
N(K0) = N(K1) (so K0 = G(M(a)) and K1 = G(M[a]).) Note that K0 and K1 are
uniquely determined by H . We shall identify the case when H is basic by examining
normal subgroups of H properly containing K0 and properly contained in K1. Our
goal is to prove:

Theorem 3.8 Let M be a countable recursively saturated model of Th(N), G =
Aut(M) and let H <G be a gap-stabiliser. Then H is basic iff there is a closed D � H
with K0 � D � K1.

The proof will require several lemmas.
Say that a ∈ M has the uniqueness property if it is the only element of its gap

realising its type, i.e., ∀b∈ [a) (tp(a) = tp(b) ⇒ a = b). (The terminology used in
Kossak, Kotlarski and Schmerl [6] is slightly different.)
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Lemma 3.9 Let a > N in M. Then G{[a)} is basic iff there is b ∈ [a) with the
uniqueness property.

Proof: One direction is trivial. For the other, suppose G{[a)} = Gc. Then by the
argument in lemma 2.7 c ∈ [a), and it is easy to check that c has the uniqueness
property.

We now start to prove theorem 3.8. For the easy direction, let H =Ga =G{[a)}.
It is easy to check that D ={g ∈G :∀x <a gx = x} is a closed normal subgroup of H
with K0 � D � K1.

To prove the other direction we will need:

Lemma 3.10 (The closed normal subgroup theorem) If M is a countable recur-
sively saturated model of PA and H is a closed normal subgroup of G = Aut(M),
then H = G(J ) for some G-invariant initial segment J of M which is closed under
exponentiation.

This result appears in Kaye [3] and the proof there is applicable for models of PA∗
(i.e., any theory extending PA with full induction for all formulas in its extended
language).

Our theorem will follow if we can show:

Lemma 3.11 If H =G{[a)} and [a) contains no element with the uniqueness prop-
erty, then there is no normal subgroup D of H with G(M(a)) � D �G(M[a]).

The idea is to represent the gap [a) as a union of a family of intervals in some
uniform way and use the closed normal subgroup theorem for the model (M, a). The
result follows by analysing the limit case. Let trn(· , ·) denote the usual truth definition
for �n formulas. We define a sequence Fn of functions by putting Fn(0)= the Gödel
number of the formula v2 =v1 +1, and

Fn(x +1)=min
{

y : ∀ϕ≤ Fn(x) ∀u ≤ Fn(x)

(
(ϕ∈�n ∧ ∃z trn(ϕ; u, z))

→ ∃z < y trn(ϕ; u, z)

)}

We let Cn be {z :∃y z = Fn(y)}. The other main definitions we will need are

λn(a)=max{z ∈Cn : F0 ◦ F1 ◦· · ·◦ Fn−1(z)<a}
and

ρn(a)=min{z ∈Cn : F0 ◦ F1 ◦· · ·◦ Fn−1(a)< z}.
Let M �PA and a ∈ M \ M(0) so that the gap [a) is defined. Then λn(a)= Fn(b)

for some b. We have F0 ◦ · · · ◦ Fn−1 ◦ Fn(b)< a and F0 ◦ · · · ◦ Fn−1 ◦ Fn(b +1)≥ a.
By the second of these inequalities we have

F0 ◦· · ·◦ Fn−1(a)≤ F0 ◦· · ·◦ Fn−1 ◦ F0 ◦· · ·◦ Fn−1(Fn(b+1))

and the right-hand side of this inequality is less than or equal to Fn(b +2) because
the composition (F0 ◦· · ·◦ Fn−1)

2 is �n . Thus we have shown:

Lemma 3.12 If M � PA and a, b ∈ M \ M(0) with λn(a) = Fn(b) then either
ρn(a)= Fn(b+1) or ρn(a)= Fn(b+2).
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Lemma 3.13 (Covering the gap) Let M � PA and a ∈ M \ M(0). Then

1. [a)=⋃
n∈N

(λn(a), ρn(a));
2. for every n there exists a term τn such that for every x with λn(a)≤ x ≤ρn(a),

we have τn(x)=λn(a);
3. λn+1(a) is definable from λn(a).

Proof: 1. For ⊇, let λn(a)≤b≤ρn(a). Then clearly b≤ρn+1(a)< M(a). Moreover
b ∈ M[a] is impossible because ρn+1(a) is definable from λn+1(a) < b. For ⊆, let
b∈ [a). There are two cases.

Case (i) a < b. Then b < t (a) for some term t . This term t is �n−1 for some
n. Moreover, by the same trick as used in lemma 2.6, we may assume that t is
increasing. We claim that b < ρn(a). Granted this, λn(a) < a < b < ρn(a), and we
would be finished. But observe that

b< t (a)< Fn−1(a)< F0 ◦· · ·◦ Fn−1(a)<ρn(a).

Case (ii) b ≤a. Then a < t (b) for some term t , and once again we may assume
that t is strictly increasing. Just as before, we pick n so that t is �n−1. Then λn(a)<b,
since if b≤λn(a) then, by the definition,

t (b)< Fn−1(λn(a))< F0 ◦· · ·◦ Fn−1(λn(a))<a.

2. Case (i), λn(a)= Fn(c) and ρn(a)= Fn(c+1) for some c. Then we put

τn(v)=max
z≤v

(z ∈Cn)

and obviously
λn(a)≤ x ≤ρn(a) → τn(x)=λn(a)

as required.
Case (ii), λn(a)= Fn(c) and ρn(a)= Fn(c+2). Suppose c is even. We put

τn(v)=max
z≤v

(z ∈Cn ∧ card{w∈Cn :w< z} is odd).

The case for c odd is similar.

3. Immediate by (2) and the inequality λn+1(a)<λn(a)<ρn+1(a).

As an immediate corollary we obtain:

Lemma 3.14 Let M be a countable recursively saturated model of PA, G =Aut(M),
and let a ∈ M \ M(0). Then

G{[a)} =
⋃
n∈N

Gλn(a)

and
Ga ≤Gλ0(a) ≤Gλ1(a) ≤· · ·

Lemma 3.15 The gap [a) contains an element with the uniqueness property iff only
finitely many inclusions Gλn(a) ≤Gλn+1(a) are proper.

Proof: Assume at first that Gλn(a) = Gλn+1(a) =· · ·. Then G{[a)} = Gλn(a) and hence
by lemma 3.9 λn(a) has the uniqueness property. Conversely, if b ∈ [a) has the
uniqueness property then by lemma 3.13 (1) we can find n so that λn(a)<b<ρn(a)

and it is easy to check that G{[a)} =Gb =Gλn(a) =Gλn+1(a) =· · ·.
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We can now give the proof of lemma 3.11. Let H =G{[a)} where the gap [a) has
no unique element. Let Hn = Gλn(a). Let D be a closed normal subgroup of H and
suppose K0 � D � K1 where K0 =G(M(a)) and K1 =G(M[a]). Put Dn = D∩ Hn . Then
Dn � Hn as is easily checked. Moreover, each Dn is obviously closed, and by the
closed normal subgroup theorem (lemma 3.10), for every n there exists a Hn-invariant
cut Jn closed under exponentiation so that Dn = G(Jn) ∩ Gλn(a). Moreover, we have
Jn+1 ≤ Jn , for if Jn < Jn+1 then by lemma 1.2 there exists g ∈ G(Jn) \ G(Jn+1) with
gλn(a)=λn(a), i.e., g ∈ Dn \ Dn+1, which is obviously impossible. Denote by J the
cut infn Jn .

Case 1. J is not of the form infm logm(c). We claim that D = H ∩G(J ). Indeed,
if ϕ ∈ D then ϕ ∈ H and ϕ ∈ G(>J ) (because the sequence Dn does not stabilize
by lemma 3.15), in particular ϕ ∈ H ∩ G(J ). For the converse we observe that by
construction H ∩G(>J ) ≤ D and hence H ∩G(J ) ≤ D since D is closed.

Case 2. J is of the form infm logm(c). It is easy to check that this case does not
happen (since the sequence Dn does not stabilize).

Summing up, D is of the form G(J )∩H for some cut J . It is easy to see that J must
be H -invariant, for otherwise we pick h ∈ H which moves J and k ∈ D which moves
arbitrarily small elements above J . (Recall that J is closed under exponentiation, so
we may apply lemma 1.2.) Then hkh−1 �∈ G(J ). Obviously M[a] ≤ J ≤ M(a) since
if J < M[a] then H ≤ Ga but G(J ) �≤ Ga by lemma 1.2 applied to (M, a), and if
J > M(a) then J � K0 by the same lemma. Thus in order to finish the proof it suffices
to show that either J = M[a] or J = M(a). Suppose otherwise; by lemma 3.13 (1)
we find n so that

λn(a)< J <ρn(a).

By the assumption that [a) contains no unique element we find m >n so that λn(a) is
not definable from λm(a), using lemma 3.15. Then it is easy to check that the type

�(x) =def {x �=λn(a)}∪
{ϕ(λm(a), x) ↔ ϕ(λm(a), λn(a)) :ϕ}

is consistent and hence there exists h ∈ Gλm(a) ≤ H which moves λn(a). But then
either hλn(a)>ρn(a) or hρn(a)<λn(a), by lemma 3.12, and hence h moves J .
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