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Automorphisms of Models of True Arithmetic:
Recognizing Some Basic Open Subgroups

HENRYK KOTLARSKI and RICHARD KAYE

Abstract Let M be acountable recursively saturated model of Th(N), and let
G =Aut(M), considered asatopol ogical group. We examine connections between
initial segments of M and subgroups of G. In particular, for each of the following
classes of subgroups H < G, we give characterizations of the class of terms of the
topological group structure of H as a subgroup of G.

(@ {H:H=Gk, forsome K <M}
(b) {H:H=G, for some K <cM}
(©) {H:H=Gm@), for someaec M}
(d) {H:H=Gm(@)=G,forsomeaec M}

(Here, M (a) denotes the smallest | <¢ M containing a, Gia={ge G: A={gx:
xe A}}, Gia={geG:Vac Aga=a},and Ga={geG:ga=a}.)

1 Introduction  For any structure, M, denote by Aut(M) the group of automor-
phisms of M. Thisis atopologica group, where the topology is determined by the
sub-basis of all sets UQ: {geAut(M):ga=Db}. Inthe case of models of PA (Peano
Arithmetic) thissub-basisisin fact abasis (because of the pairing functionin PA) and
each UP isacoset of the stabilizer G, =U2 of a. We shall refer to these stabilizers as
basic subgroups. In this paper we shall concern ourselveswith countable recursively
saturated models M only.

The main problem in this area is to recover as much information as possible
about M from its automorphism group G = Aut(M). In the case of models M of
PA, alot could be done in this direction if we could distinguish the basic subgroups
of G from the open ones by a purely topological-group theoretic property. The aim
of this paper is to give properties of this sort which are satisfied by subclasses of
the basic subgroups, namely the strongly maximal ones and the maximal ones, in the
case when M is an elementary extension of the standard model N. The important
problems of finding a property describing precisely the basic subgroups, and the
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problem of finding a topol ogical-group theoretic description of the model’s standard
system, SSy(M), are unsolved. (After this paper was written we learnt that Kossak
and Schmerl in their [5] did actually find such a description in the special case when
M is an arithmetically saturated model. Their methods use many ideas from this
paper).

Our notation concerning models of PA and recursive saturation is standard.
See Kaye [2] or Smoryhski [9]. For a bibliography of papers concerned with auto-
morphisms of countable recursively saturated models of PA, see Kaye, Kossak and
Kotlarski [4]. Morerecent papersinthisdirectionare Kaye[3] and Kossak, Kotlarski
and Schmerl [6]. Indeed, many ideas used below are from this last-mentioned paper,
including the cut J(H) associated with an open subgroup H of G.

Let T be any complete extension of PA, and let p be anontrivial 1-typeover T.
We say that p is n-indiscernible if for any M T and any two increasing n-tuples
ap, ay, ..., ap—1 and by, by, ..., by_1 from M, each & and b; realizing p, we have
tp(ag, a1, ..., an_1) =tp(bo, by, ..., byh_1). In other words, the type of the n-tuple
ao, a1, . . ., an_1 iscompletely determined by thefollowingdata: agp<a; <...<an_1
and tp(ag) =tp(a;) =--- =tp(ap—1) = p. The key to the results of this paper is a
topol ogical-group theoretic property, SMB(H), H is strongly maximal basic-open,
which (provided M is a countable recursively saturated model of Th(N)) istrue of a
subgroup H iff H =G, for some a redlising a 2-indiscernible typein M.

We stressthat our method worksonly for models of true arithmetic. On the other
hand, it should be noted that every unbounded 2-indiscernible typeis minimal (inthe
sense of Gaifman [1]) and hence n-indiscernible for al n. See[6] for a proof of this
fact.

In the rest of this section, we shall recall some definitions and lemmeas that will
be used in the sequel.

Let M beamodel of arithmetic, and let G be its automorphism group. For a set
AC M, wedenote by Gy the setwise stabilizer of A, i.e, {ge G:gA=A} and G(a)
denotes the pointwise stabilizer of A, {ge G:Vae A ga=a}. For aninitial segment
| of M, G-y denotes{ge G:3b>1 g | <b=id}. We shall also use the notation
lsix(T) for {b:Vc<b fc=c}, and l5x(D) = Ngep l1ix(9)- The initial segment | is
almost invariant iff | is Ga-invariant for some a € M, or in other words if Gy, is
open.

Givenain M, M(a) denotes the elementary cut

{xe M :x <t(a) for some Skolem termt}
and M[a] denotes
{xe M :t(x) <afor al Skolemtermst}.

The set difference of these, M (a) \ M[a] isdenoted [a) and called the gap around a.
It is easy to check that Gm@)} = G{M[a]} = G{[a)}.

It will also be convenient to have the notation 2*n defined by 20 =x and 2*+1 =
22" and also log" n given by log? x =x and log™** x = |log,(1+1og" x)].

The next two lemmas concern automorphisms that fix a given initial segment
pointwise. Thefirst of these was independently discovered by Kotlarski, Smoryhski,
and Vencovska (for aproof see [7], lemma4.4; or [4], lemma 2.1).
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Lemmal.l LetM beacountablerecursivelysaturated model of PA, leta, b, Ee M,
and suppose that for all ke N and all formulas ¢

MEVX <22 (p(X, b) < ¢(x, ).

Then thereis g in G with a € lix(g) and g(b) =C.
The next lemmais due to Smoryhski [8] (see also lemma 2.2 of [4]).

Lemma 1.2 Let M be a countable recursively saturated model of PA, and let
| CeM be closed under exponentiation. Then thereis ge G with lsx(g)=1.

The converse of thislemma (that lsix(g) is closed under exponentiation) is easy,
and can be proved by considering binary representations of elements of M.

The next lemma is a useful application of the last two lemmas which to the
best of our knowledge has not appeared before. Recall that the normalizer in G of a
subgroup H <G, Ng(H) or moresimply N(H), isthelargest K > H inwhich H is
normal, i.e., {ge G:H9=H}.

Lemmal.3 (i) If | C¢M isclosed under exponentiation, M is a countable recur-
sively saturated model of PA, and G=Aut(M), then N(G(j)) =Gyy.

(@ii) If 1,3 <e M with N(G()) = Gyyj then either | = J, or | = M(a) and
J=M]a] for someaec M, or | =M[a] and J=M (a) for someac M.

Proof: (i) Clearly Gy, <N(G()). If geN(G())) then G(j) = Gq) so the closures
of 1 and gl under exponentiation are equal, by lemma 1.2. But by hypothesis these
cuts are already closed under exponentiation so gl =1, in other words ge Gyy;.

(ii) We show that if K, L <¢M anda,b,ce M withK <a<M(a)<b<L<c
then there is g € G(k) with g(b) > c. This suffices since if the conclusion fails and
if | <Jthereareb<J<candge Gy with g(b) >c,i.e, N(G()) £ Gyy); and
if J <1 by asimilar argument thereisge G\ Gy, i.e., Gy £N(G(y)). But by
lemma 1.1 it sufficesto find x > ¢ such that Yy <a (¢(X, y) < ¢(b, y)) for al ¢.
By saturation if thisfails then for some ¢1 . . . ¢ We have

c<max{x: /\ Vy<a (¢i(x,y) < ¢i(b,y)}eM(@).

i=1

By coding {(i,y):y<aA ¢i(b,y)} by some ze M(a), we see that b, c € M(a),
which isimpossible.

The next lemmais the moving gaps lemma. Thislemmais dueto Kotlarski (see
lemma 3.1 of [4] for aproof) and is essentially astrong way of saying that the action
of G on gaps[x) isfaithful.

Lemmal1l.4 (Movinggaps) Let M bea countable recursively saturated model of
PA, let ge G =Aut(M), and supposea < x <y in M withga#a and M(x) <.
Thenthereareu, ve M withx <u< M (U) <v <Yy, and either gu> v or gv < u.

Our final preparatory lemmain this paper is:

Lemma 1.5 Let M be a countable recursively saturated model of PA, and let
H =Gy for some J Ce M. Then H isopeniff at |east one of

(i) I =sup{t,(a):neN} for someac M and some sequence of terms

(ii) J=inf{s,(a):ne N} for someae M and some sequence of terms s,.
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Proof: The proof isasimple exercisein the use of recursive saturation.

Both (i) and (ii) may hold, even for elementary cuts J, but of course if this happens
at least one of these sequencesis not coded in M. In fact, if N isstrongin M, then
neither can be coded, and conversely if N is not strong there are cuts J satisfying (i)
and (ii) for which one of the sequencest;, s, is coded. See Kossak, Kotlarski and
Schmerl [6] for some results in this direction. These were also noted independently

by Kaye.

2 Maximal open subgroups This section is concerned with setting the scene for
our considerations, and also with some preliminary results concerning maximal open
subgroups. The first result is a useful lemma relating the subgroups Gy and G-,
when | isaninitial segment of M.

Lemma2.1l LetM beacountablerecursivelysaturated model of PA,andlet| CoM
be closed under exponentiation such that, for all ae M,

| £inf{log"(a):neN}.

Then the closure of G~ 1) iIsG)).

Proof: Let H bethe closure of G- ). Since Gy, is closed and contains H we have
oneinclusion trivially. For the other inclusion, let ge G(;y. To show ge H it suffices
to show that any open neighbourhood gG, of g meets G.|). Write b= ga, and
suppose without loss of generdlity that | <a <b. For each ne N we put

wp=max{w:¥x<w A (@i (x,a) < ¢i(x, b))}

i<n

where ¢ (u, v) isafixed recursive enumeration of all formulasin the variables shown.
By recursive saturation the sequence (wn)nen is coded by somew € M. If xe | then
gx=x and hence ¢j (X, @) < ¢j(x, b) forali. Thus| <inf, w,. We claim that this
inequality isin fact strict.

Assume to the contrary that | = inf, wn, and set w’ = gw. Note that this
assumption implies | #N because | is coded from above but N is coded from bel ow.
By the maximality of the w,,’s we have

i<n
SO tp(wn, @) #tp(wn, b). Hence gwn # wy for al n. Thusfor all neN

MEwn#wy AVi <] <n (wi >wj)

By overspill thisistrue for somen>Nin I. But then gwn =wg, =wy, sincenel,
wy, 7 wn, and wp < wy for all standard k. Hence wy, € | ismoved by g, acontradiction.

It follows that thereis c with | <c¢ <inf, wy, and by assumption | <inf, log" c.
Then by lemma 1.1, for al d with | <d <inf, log" ¢ thereish e G fixing {x:x <d}
pointwise and sending a to b, and we are finished.



AUTOMORPHISMS 5

Note that, in the case excluded in the statement of the lemma, i.e., when | =
inf{log"(a):neN}, wehave G(-.|) =Gy for J=sup{22:neN} so G-, isalready
closed.

The following notions will be basic for our considerations. Let G be a group,
ge G, and let H be an open subgroup of G. Then HgH denotes the double coset
{agB : a, 8 € H}. Double cosets have the following property similar to ordinary
cosets: for g, he G, HQHNHhH is nonempty iff HgH=HhH. Thus the double cosets
of asubgroup H partitions G. The double coset index of H in G is the cardinality
of {HgH :ge G}. We say that H is strongly maximal in G iff H £ G and for every
geG\H

G=HgHUHUHg !H.

In other words, H is strongly maximal iff for every gin G\ H, H U{g} generates G
in‘one step’. The acronym SMO abbreviates ‘ strongly maximal open’.

Basic strongly maximal subgroups correspond to 2-indiscernible types as fol-
lows:

Lemma 2.2 Let M be a countable recursively saturated model of PA, let G =
Aut(M), andlet H=G,. Then H isstrongly maximal in G iff tp(a) is2-indiscernible.
If both H =G4 and K =Gy, are strongly maximal, then H = K iff there is a Skolem
termt such that b = t(a) (and if this happens there is also a Skolem term s with
a=s(b)).

Proof: «: Let f,ge G\ H. Weshow that ge Hf H or ge Hf ~1H. Without loss,
we may assumethat fa, ga>a (work with f ~1 and/or g—* otherwise). Then, by the
2-indiscernibility of tp(a), tp(a, ga) =tp(a, fa) so thereisr € G, withrfa=ga.
Hences=f ~!r "1ge G, and g=r f s as required.

=: Leth, ce M redizetp(a) besuchthata<b, c. Pickr, se Gwithsa=band
ra=c. Using strong maximality, pick «, 8 € H such that r =«s8 (asimple argument
shows that there can be no «, g € H withr =as™18). Then tp(a, b) =tp(a, sa) =
tp(apa, aspa) =tp(a, c).

For the second part of this proof, note that if b=1t(a), Gg < Gp # G, s0 by
maximality G, = Gp. Conversdly, if G, < Gy, then by recursive saturation b=t (a)
for sometermt.

Note that lemma 2.2 implies that G is strongly maximal if and only if it has
double coset index three. One direction has been proved; for the other, note that if G
is the disioint union of G, GagGa and GahG, then Ga # Gag 1G, (dsege Ga)
and Gag 'Ga # GagGa (else tp(a, ga) = tp(a, g~'a)), S0 Gag 'Ga = GahGa.
lemmas 2.7, 3.1, and 3.2 below extend this observation to the case of arbitrary open
subgroupsin place of Ga.

Note too that, if M and G are as in the lemma, then there exist maximal open
subgroups of G which are not strongly maximal, although the only ones known have
small double-coset index. See [6] for the construction and further details. Maximal
basi c-open subgroups G, correspond to sel ectivetypes, i.e., completetypes p(x) such
that for al Skolem termst there is a Skolem term s with t(X) =s(0) v X =s(t (X))
in p(x), in the same way as strongly maximal basic-open subgroups correspond to
2-indiscernible types. Again, see[6] for details.

Next, we shall show that an arbitrary maximal open subgroup is the (setwise)
stabilizer of an essentially uniqueinitial segment. To do this we associate with each
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open H <G acut J S M by setting
J(H)=inf{be M: G, < H]}.

Lemma23 Let M bea countable recursively saturated model of PA. Let H bea
proper open subgroup of G. ThenN< J(H) < M.

Proof: The only non-obvious inequality isN < J(H). Suppose N=J(H). Since H
isopen, and hence closed, it sufficesto seethat itisdensein G. But by our supposition
Genm <H (Where Gy ={0eG:3b>Ng[<b=id}); G-y isasodensein G
by resplendency, since every g € G such that (M, g) isrecursively saturated must fix
anonstandard initial segment of M.

Lemma24 Foranyopen H <G, H <GyjH);.
Proof: Left to the reader.

Corollary 25 Let M be a countable recursively saturated model of Th(N), and let
H be a proper open subgroup of G = Aut(M). Then for some proper cut J of M,
H< G{J} < G.

The point here isthat in the case of true arithmetic, J=J(H) being a proper cut is not
G-invariant. We do not know if the corollary istrueif M does not satisfy Th(N).

Lemma2.6 If M isa countable recursively saturated model of Th(N), and H isa
proper open and maximal subgroup of G, then J(H) < M.

Proof: Assume to the contrary that a < J(H) < F(a) for some Skolem term F. We
will show that thereisaterm s such that N < s(a) <a and

¥X (a<x<F(a) - s(x)=s(a)).

Granted this, pick b witha<b < F(a) and G, < H. Then Gga) # H because Gy
is proper (since s(a) > N and M F Th(N)), H is maximal, and H # Gg@a) (since
S(a) € J(H)). Sothereish e H\ Gg@). But s(a) =s(x) for al x in the interval
(@, F(a)),s0hg Gy But H <Gy, and hence h¢ H acontradiction.

We have reduced the theorem to showing the existence of theterm s. To do this
we may assume that F is strictly increasing (for otherwise work with F’ defined by
F'(0)=F(@©), FF(x+1) =max(F(x+1), 1+ F'(x))). Welet K(u) = F"(0), the
uth iterate of F. Then there exists at most one value of K between a and F(a). If
thereis no such value of K in thisinterval, put s(x) =min{u: K (u) > x}. Otherwise
let up < a be such that a < K(up) < F(a) and suppose ug is even. Then we put
s(X) = min{u : K(u) > xanduisodd}. The case when ug is odd is dealt with
similarly.

Note that if H < G isamaximal open subgroup, then J(H) is not of the form
M (a), otherwise H = Gym(a), and a< M(a) with Gy < H. Itisof course alwaysthe
case that Gym )} = Gymia)}, but other than for thisthe cut J = J(H) isunique aswe
seein the next lemma.
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Lemma2.7 Let METh(N) becountableand recursively saturated, andlet H < G
be a maximal open subgroup. Then

either thereis exactly one nontrivial elementary cut J <M with H <G,

or for some nonstandard ain M, H <Gym ) and H <Gy, for anontrivial cut
J <M impliesthat J=M(a) or J=M]a].

Proof: If H < G is maximal and open then J = J(H) is elementary in M and
H <Gy <G by lemmas 2.3, 2.4, and 2.6, so0 H = G(3,. If K <¢ M is such that
H =Gk, but K # J then H=N(G«k)) =N(Gy)), so by lemma 1.3 thereisaec M
with K =M (a) and J=M|[a].

3 ldentifying subgroups For the rest of the paper, unless stated otherwise, M
denotes a countable recursively saturated model of Th(N) and G=Aut(M).

As mentioned in the introduction, this paper is concerned with maximal and
strongly maximal open subgroups. In our setting, these subgroups carry rather more
structure than just that associated with their double cosets, and it is this that we shall
start to describe now. By lemma 2.7 such a subgroup H < G is Gy, for some
elementary initial segment | of M. We say that aninitial segment | is2-indiscernible
iff it is not G-invariant and, for all g,he G, if | <gl <hl thereisk € Gy, such
that h—tkg e Gy1;. Thisgeneralizesthe previous definition if we agree that an initial
segment of M isa(not necessarily proper) subset | suchthat Vx <yel xel andwe
identify each a€ M with the initial segment {x e M :x <a}.

Lemma3.1 Let| beaninitial ssgment of M. Then Gy, is strongly maximal iff |
is 2-indiscernible.

Proof: Similar to that of lemma 2.2.

From this we can derive some useful properties of the double cosets of a SMO
subgroup H. Inthe following, note that since we are writing maps on the left, we shall
use the definition Hf = fHf 1.

Lemma3.2 Let| be2-indiscernibleand almost invariant. Then H =Gy, isSMO,
and has precisely three double cosets H_, H and H_ such that:

(i) both H_ and H. are closed under -;

(i) H-1=H,;

(i) Nren H (1)

(V) Nren, HI={1}.

Proof: Notethat H_.={geG:gl <l}and H, ={ge G:gl > |} are double cosets.
Properties (i), (ii) and (iii) are obvious. For (iv) we use the fact that | =limpcy th(a)
for some a € M and some Skolem terms t,. (‘lim’ is‘sup’ or ‘inf’ here)) Given
g#1in G, by the moving gaps lemmathere areu, v > | in M with M (u) < v and
gu=v or gv=u. Since M isamode of true arithmetic and | is not invariant,
thereisa’ in M such that tp(a) =tp(a’) and caofinitely many t,(a’) arein the interval
[u, v]. (Thisis proved directly by saturation if the sequence t, is coded, and if not
then | =infy, t,(a) =sup, sn(a) so we may simply find & and large enough n so that
both tn(@) and s,(a’) arein [u, v].) Now consider theimage |’ of | under any he G
sendingatoa’.
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Note that the purely group theoretic properties (iii) and (iv) serve to distinguish
H, from H_. Summarizing, we have;

Theorem 3.3 Let M be a countable recursively saturated model of Th(N), G =
Aut(M), and let H < G be proper. Then:

1. H isSMOiff H =Gyy; for some 2-indiscernible almost invariant elementary
cut J of M;

2. if HisSMO and J = J(H), then H has precisely three double cosets H, H.,
and H_ where

Hy = (k:kd>J}
Ho = (k:kd<J}

and that these double cosets satisfy (i), (ii), (iii) and (iv) in lemma 3.2.

Unfortunately, SMO subgroups H exist which are not basic. (Indeed the cuts |5 and
|2 of Kossak, Kotlarski and Schmerl [6] have SMO but nonbasic stabilizers.) We
would like to strengthen the notion of SMO to ensure that H is of the form Gyja);, @
gap stabilizer. To do this, we shall examine some of the properties of SMO subgroups
H further.

Lemma34 IfH<GisSMOthenN(H)=H.

Proof: Assume H =H but f ¢ H. Then f € H_ or f € H,. and without loss we
may assumethat f e H_. Thenby (i) f2e H_ and so f?=«fp for some o, B H.
Hence f =afgfLisinH.

Since a SMO subgroup H is Gy, for an essentialy unique J = J(H) <e M as
inlemma 2.7, the family 5 ={HY:g e G} isin 1-1 correspondence with images gJ
of J. We shall write Hf < H9 (or f < g for short) to denote g~ f € H_. Note
also that by the last lemma, Hf = HY iff g71f e N(H)=H so that § isalsoin 1-1
correspondence with (ordinary) cosets of H.

The notation in the last paragraph suggests there should be a close connection
with < and theorder relation < of M. The next lemmamakesthisconnection explicit.

Lemma35 LetH beSMOiInG andlet J=J(H). Then,for all f,geG, f <g
iff fJ<gJd.

Proof: It sufficestoshow gJ <JiffgeH_.

Let g besuchthat gJ <J. Theng¢ H = Gyy,. It follows that HgH = {f :
fJ<J}, forif feHgH, f =agp forsomew, BeH,i.e, f~1=flageH hence
flagl=J,50 fJ < J; conversely, if fJ<Jand f ¢ HgH then f =g some
o, Be H,whichissimilarly impossible. But H_={f: f J > J} isimpossible by (iv)
in the definition of SMO and the moving gaps lemma, so HgH =H_.

The converseissimilar: if gJ > J then HgH =H,,soggH_.

It followsimmediately that, for SMO subgroups H, < isadenselinear order on
both $ and also on G/H, the set of cosets of H.

The next lemmais the key application of the the moving gaps theorem to these
subgroups.
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Lemma3.6 LetHbeSMOInG,andletJ=J(H)and f €G. Then

M H"=Gt ).
h<f

In particular

) H"=G).

heH_
Proof: Theinclusion > followsfromlemma3.5. For theconverse, supposeg &G+ j).
Letae fJ besuchthat ga#a. Then M(a) < fJ, since J(H) is never of the form
M (a). Hence, by the moving gaps lemma, thereish € G such that g moves hJ and
hJ < fJ. Hence g~ H".

Let us give an application of the results so far. The application rests on the easy
observation that gaps[a) containing elementsrealising 2-indiscernibletypesare dense
inthe set of al gaps, i.e., whenever a < M (a) < b thereisc realizing a2-indiscernible
type with a <c<b. We shall prove the following:

Theorem 3.7 There are topological-group theoretic properties Stab{’, Staby and
Stabg such that, for any countable recursively saturated model M of Th(N) and any
H <G=Aut(M) we have:

i) Stabl’(H) iff H =G for some K < M; and

II) Stab(H) iff H =G{K} for some K <M.

iii) Stabg(H) iff H=Gja), for someac M.

Proof: With a given SMO subgroup S< G understood and g, h € G, g < h denotes
h~lge S.USand g<h denotesh~'ge S_ asbhefore. An S-initial segment of G isa
nonempty subset | suchthat g<hel = gel. The property StabIP(H) is:

Thereisan SMO subgroup S< G and an S-initial segment | such that either
H=s"
hel

or

H_U NS

h¢l k<h
Suppose S= G(3y is an SMO subgroup, J = J(S), | isan S-initial segment and
H=he; S". Then
H=[)[]S"=( Gy
fel h<f fel

if I hasno maximal element, using lemma3.6, so H is the pointwise stabilizer of the
elementary initial segment (J¢, (fJ); if | hasamaximal element f then

H= m S m ShﬂSf=G(fJ)ﬂG{fJ}=G(fJ)
h<f h<f

as before. Similarly, if

H=(J 9
hel k<h
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then
H={JGny
he|
which is either Gy for some h ¢ | (if G\ | has a < minimal element) or is
Gik)=G) by lemma2.1 otherwise, where K =4 (hJ).

For the converse, suppose H = G k) where K <¢ M and let S= G, where b
realises a 2-indiscernible type (so J(S) = M[b]), and put | ={h:h(b) € K}. Thenif
therearearbitrarily small ¢ > K realising the sametype asb (and this aways happens
if K=M¢(a) for some a) then

H= U Gm[hb) = U m S.

hel hel k<h

If this doesn’t happen, let ¢ > K be such that no el ements between K and c realise
the same type as b. Then for each a€ K, M(a) < c since K is elementary so there
are arbitrarily large a€ K with the sametype asb. It follows that

H=)S"

hel

since we have eliminated the case when K = M (a) for some a.

The property Stab, is derived from StablF> and the fact that the normalizer N(H)
of H=G«, for an elementary initial segment K of M isprecisely Gk, (lemmal.3).
Notethat if H isof thisform, then there are at most two K <M for which H =Gk,
and there are exactly two only when H = Gyma); = Gim[a)y = Gy[a)- In this case,
the corresponding pointwise stabilizers G v ), and Gma)) aredifferent (lemmal.2)
hence H is a gap stabilizer iff it is the normalizer of two distinct subgroups K1 and
K, satisfying Stabf.

The reader should note that nonbasic subgroups of the form Gy[,), exist. More-
over, in Kossak, Kotlarski, and Schmerl [6], nonbasic and nonmaximal groups of this
form are constructed. It is not known if nonbasic strongly maximal subgroups Gy(a),
exist.

We now aim to stengthen our topological group theoretic properties to exclude
nonbasic subgroups. Unfortunately, at present only basic-open subgroups H which
are gap-stabilizers can be recognized in thisway. Let H be a gap-stabilizer, G([a),
and let S be SMO, and let the subgroups Ko < K3 both satisfy StabP” with H =
N(Kg) = N(Ky) (&) Ko = G(M(a)) and K1 = G(M[a])-) Note that Ko and K4 are
uniquely determined by H. We shall identify the case when H is basic by examining
normal subgroups of H properly containing Kg and properly contained in K1. Our
goal isto prove:

Theorem 3.8 Let M be a countable recursively saturated model of Th(N), G =
Aut(M) andlet H < G beagap-stabiliser. Then H isbasiciff thereisaclosed D < H
with Ko< D <Kj.

The proof will require several lemmas.

Say that a € M has the uniqueness property if it is the only element of its gap
realising its type, i.e., Vbe[a) (tp(a) =tp(b) = a="b). (The terminology used in
Kossak, Kotlarski and Schmerl [6] is dightly different.)
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Lemma 3.9 Leta> Nin M. Then Gya), is basic iff there is b € [a) with the
uniqueness property.

Proof: One direction is trivial. For the other, suppose Gyja); = G¢. Then by the
argument in lemma 2.7 ¢ € [a), and it is easy to check that ¢ has the uniqueness
property.

We now start to prove theorem 3.8. For the easy direction, let H = Ga = Gy[ay;.
Itiseasy to check that D={ge G:Vx <a gx=x} isaclosed normal subgroup of H
with Ko< D<K;j.

To prove the other direction we will need:

Lemma 3.10 (The closed normal subgroup theorem) If M is a countable recur-
sively saturated model of PA and H is a closed normal subgroup of G = Aut(M),
then H = Gy, for some G-invariant initial segment J of M which is closed under
exponentiation.

This result appears in Kaye [3] and the proof there is applicable for models of PA*
(i.e., any theory extending PA with full induction for all formulas in its extended
language).

Our theorem will follow if we can show:

Lemma3.11 If H=Gy) and[a) contains no element with the uniqueness prop-
erty, then there is no normal subgroup D of H with G(m ) < D < Gm[a))-

The ideais to represent the gap [a) as a union of afamily of intervalsin some
uniform way and use the closed normal subgroup theorem for the model (M, a). The
result followsby analysing thelimit case. Lettry(-, -) denotethe usual truth definition
for X, formulas. We define a sequence F,, of functions by putting F,(0) = the Godel
number of the formulav,=v1+1, and

Fn(x+1)=min{y L Vo < Fn(X) Yu< Fn(X) < (€ 2n A 32 Mn(e: U, 2) )}

— Jdz<ytra(e; U, 2)
Welet C, be {z:3y z= Fy(y)}. The other main definitions we will need are
An(@)=max{zeCp:FgoFi0---0Fy_1(2) <a}

and
on(@=min{zeCy:FgoFio0---0Fq_1(a) < z}.

Let MEPA andae M\ M(0) sothat thegap [a) isdefined. Then An(a) = Fr(b)
for someb. We have Fgo---oFn_10Fqy(b) <aand Fgo---oFn_10Fr(b+1) > a.
By the second of these inequalities we have

Foo---oFy_1(@)<Fgo---oFy_10Fgo---0 Fn_l(Fn(b—l-l))

and the right-hand side of this inequality is less than or equal to Fn(b+2) because
the composition (Fgo- - -0 Fn_1)? is =,. Thus we have shown:

Lemma 312 If MEPA and a,be M\ M(0) with An(@) = Fn(b) then either
pn(@) =Fp(b+1) or pph(a) =Fn(b+2).
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Lemma 3.13 (Coveringthegap) LetM F PA andae M\ M(0). Then

1. [a)=Upen(An(@), pn(@));
2. for every n there exists aterm 1, such that for every x with A,(a) <x < pn(@),
we have 7,(X) =An(a);
3. Ans1(a) isdefinable from Ao, (a).
Proof: 1. For D, let An(a) <b<pn(@). Thenclearly b<pn1(a) < M(a). Moreover
b € M[a] isimpossible because pn11(a) is definable from A 1(8) < b. For C, let
be[a). There are two cases.
Case (i) a<b. Thenb <t(a) for sometermt. Thistermt is X,_; for some
n. Moreover, by the same trick as used in lemma 2.6, we may assume that t is
increasing. We claim that b < py(a). Granted this, An(a) <a < b < pp(a), and we
would be finished. But observe that

b<t(@ <Fn_1(a) < Fgo---oFh_1(a) < pn(a).

Case (ii) b<a. Then a <t(b) for sometermt, and once again we may assume
thatt isstrictly increasing. Just asbefore, wepick nsothattisX,_1. Thenin(@) <b,
sinceif b<An(a) then, by the definition,

t(b) <Fn_1(An(@) <Foo---oFp_1(An(d)) <a.
2. Case (i), An(a) = Fn(c) and pn(a) = Fn(c+ 1) for somec. Then we put

T(v)= nz"j‘g((ze Cn)
and obviously
An(@) <X=pn(@) — t(X)=An(@)
asrequired.
Case (ii), An(@) = Fn(c) and pn(a) = Fr(c+2). Suppose ¢ iseven. We put

rn(v):rygf (zeCh A card{w € Cp:w <z} isodd).

The casefor c odd is similar.
3. Immediate by (2) and the inequality Any1(a) <An(a) < pni1(a).
As an immediate corollary we obtain:

Lemma3.14 Let M beacountablerecursively saturated model of PA, G=Aut(M),
andletae M\ M(0). Then
Giay=J G

neN

and
Ga<Gjuya <Gi@=---

Lemma3.15 Thegap[a) containsan element with the uniqueness property iff only
finitely many inclusions G;,,a) < Gy, 1(a) are proper.

Proof: Assume at first that Gkn(a) = G)L,Hl(a) =-.... Then G{[a)} = Gkn(a) and hence
by lemma 3.9 A,(a) has the uniqueness property. Conversely, if b € [a) has the
uniqueness property then by lemma 3.13 (1) we can find n so that A,(a) <b < pn(a)
and it iseasy to check that Gy[a), = Gp =G, =Gipu@ ="
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We can now give the proof of lemma3.11. Let H = Gy[a), wherethe gap [a) has
no unique element. Let H, =G, a). Let D be aclosed normal subgroup of H and
suppose Ko < D < K1 where Ko=Gma)) and K1=Gm[a}). Put Dn=DNHp. Then
D, < Hyp asis easily checked. Moreover, each D, is obviously closed, and by the
closed normal subgroup theorem (lemma3.10), for every n there existsa H,-invariant
cut J, closed under exponentiation so that D = G(3,) N Gy,a). Moreover, we have
Jnt1 < Jn, forif Jn < Jnyq then by lemma 1.2 there exists g € Gy, \ G(3,,,) With
gin(@)=An(@),i.e, ge Dy \ Dnt1, which isobviously impossible. Denote by J the
cutinfy Jy.

Case 1. Jisnot of theforminfy, log™(c). Weclaimthat D=H NG j). Indeed,
if ¢ € D then ¢ € H and ¢ € G- 3y (because the sequence D, does not stabilize
by lemma 3.15), in particular ¢ € H N Gy. For the converse we observe that by
construction HN G- 3y <D and hence HN G 3, < D since D is closed.

Case 2. J isof theforminf, log™(c). It iseasy to check that this case does not
happen (since the sequence D,, does not stabilize).

Summingup, D isof theform G 3)NH for somecut J. Itiseasy toseethat J must
be H-invariant, for otherwise we pick he H which moves J and k € D which moves
arbitrarily small elements above J. (Recall that J is closed under exponentiation, so
we may apply lemma 1.2.) Then hkh—1¢ G ;. Obvioudy M[a] < J < M(a) since
if J < Ml[a] then H < G, but G3y £ G, by lemma 1.2 applied to (M, a), and if
J > M (a) then J < Kp by the samelemma. Thusin order to finish the proof it suffices
to show that either J = M[a] or J =M (a). Suppose otherwise; by lemma 3.13 (1)
wefind n so that

An(@) <J <pn(@).

By the assumption that [a) contains no unique element we find m> n so that An(a) is
not definable from A (a), using lemma 3.15. Then it is easy to check that the type

F'(X) =det {XFAn(@}U
{p(Am(@), X) < ¢(Am(@), An(a)) : ¢}

is consistent and hence there exists h € G;,, sy < H which moves 1,(a). But then
either hin(@) > pn(@) or hpn(a) < An(a), by lemma3.12, and hence h moves J.
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