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On the Revision of
Probabilistic Belief States

CRAIG BOUTILIER

Abstract In this paper we describe two approaches to the revision of proba-
bility functions. We assume that a probabilistic state of belief is captured by a
counterfactual probability or Popper function, the revision of which determines
a new Popper function. We describe methods whereby the original function de-
termines the nature of the revised function. The first is based on a probabilistic
extension of Spohn’s OCFs, whereas the second exploits the structure implicit
in the Popper function itself. This stands in contrast with previous approaches
that associate a unique Popper function with each absolute (classical) proba-
bility function. We also describe iterated revision using these models. Finally,
we consider the point of view that Popper functions may be abstract represen-
tations of certain types of absolute probability functions, but we show that our
revision methods cannot be naturally interpreted as conditionalization on these
functions.

1 Introduction Most theories of belief revision take belief sets, or sets of (objec-
tive) sentences to be the target of the revision process. A revision function maps one
belief set into another in response to some new piece of evidence A. The informa-
tion that determines the exact nature of this mapping can be represented in various
ways—for instance, as an entrenchment relation or a set of conditional beliefs—and
together with the belief set constitutes an agent’s epistemic state.

It has frequently been suggested that a belief set can be viewed as an abstraction
of a more fine-grained, quantitative epistemic state, namely a probability function (p-
function) that captures degrees of belief. We take the top of the p-function P (i.e.,
those A such that P(A) = 1) to be the agent’s belief set, but allow further discrimina-
tions among nonbeliefs to be held (cf. Gärdenfors [12], Lindström and Rabinowicz
[22]). Of course, the revision problem in this setting requires somewhat more ma-
chinery; but once a method for revising a p-function is in hand, revision of the cor-
responding belief set comes for free: we simply take the revised belief set to be the
top of the revised p-function. Probabilistic revision seems to have received some-
what less attention than its qualitative counterpart, in some measure due to the fact
that Popper functions (or to use Stalnaker’s [29] more suggestive terminology, coun-
terfactual probability functions) provide a rather natural and robust representation of
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an epistemic state and revision method in such a setting. By now the connections
between Popper functions and the qualitative representations of revision functions
are well understood (see Stalnaker [29], van Fraassen [30], Spohn [28], Gärdenfors
[12], and Lindström and Rabinowicz [22]) and confirm that the “belief as top of a
p-function” perspective is tenable.

The problem of iterated revision requires that a revision function produce not
only a new belief set or p-function but a new epistemic state to guide subsequent revi-
sions. On this count many theories are silent and in general, as pointed out by Harper
[18], the problem is a difficult one. However, some proposals for iterated revision
in the qualitative setting have been put forth. In this article we examine the extent
to which similar considerations can be adapted to iterated probabilistic revision. We
pay special attention to Spohn’s [28] ordinal conditional functions (OCFs) and the
author’s proposal [5], [7] for minimal conditional (MC) revision. Spohn’s model im-
poses additional structure on the usual revision functions requiring that the entrench-
ment and plausibility of sentences be quantified and that the evidence causing revision
have an associated strength. The “probabilized” OCFs we introduce further impose
such informational demands on the incorporated evidence that the naturalness of the
model must be called into question. In addition, we show that under certain natural
interpretations, the updates sanctioned by this model cannot be justified by appeal to
conditionalization. We then examine a simpler, more impoverished model that allows
the direct (iterated) revision of Popper functions and examine some of its properties.

We begin by introducing the AGM theory of revision, a semantic model of revi-
sion functions and Spohn’s notion to OCFs in Section 2. In Section 3 we discuss the
connection to Popper functions and present a probabilistic version of OCFs, as well as
giving a quasi-infinitesimal interpretation of these models reminiscent of Adams’s [1]
ε-semantics. This interpretation suggests that, more generally, one may be able to in-
terpret Popper functions as an appropriate abstraction or summarization of a classical
p-function. We then address the question of iterated revision of probability functions
in Section 4. We first discuss the probabilistic OCF model and show that the extension
of Spohn’s update method to this case is not straightforward. In particular, certain pa-
rameters are required to make sense of this model, parameters whose interpretation
is unclear. Furthermore, we show that adopting the view that Popper functions cor-
respond to classical p-functions and that revision corresponds to some form of con-
ditionalization does not help fix these parameters. We then examine the probabilistic
version of MC-revision and its difficulties. The net result is a somewhat negative con-
clusion: the revision of probabilistic belief states is not as straightforward, nor as well
understood, as we might have thought.

2 Nonprobabilistic belief revision We assume an agent to have a deductively
closed set of beliefs K taken from some underlying language. For concreteness, we
will assume this language to be that of classical propositional logic L , generated by
some set of variables P, and with an associated consequence operation Cn. To keep
the technical details to a minimum we assume that P is finite, giving rise to a finitary
language. This will simplify the discussion of probability functions in the next sec-
tion. We let W denote the finite set of possible worlds (or valuations) suitable for L .
Any world w that satisfies A ∈ L (denoted w |= A) is dubbed an A-world, the set of
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which is denoted ‖A‖. We also use this notation for sets of sentences S, ‖S‖ denoting
those worlds satisfying each element of S. The identically true and false propositions
are denoted � and ⊥, respectively.

2.1 The AGM model The expansion of K by new information A is the belief set
K+

A = Cn(K ∪ {A}). The revision of K by A is denoted K∗
A. The process of revision

requires some care, for A may contradict elements of K. Alchourrón, Gärdenfors
and Makinson [2] propose a method for logically delimiting the scope of acceptable
revisions. To this end, the AGM postulates below are maintained to hold for any rea-
sonable notion of revision (see [12]).

(R1) K∗
A is a belief set (i.e., deductively closed).

(R2) A ∈ K∗
A.

(R3) K∗
A ⊆ K+

A .
(R4) If ¬A �∈ K then K+

A ⊆ K∗
A.

(R5) K∗
A = Cn(⊥) iff |= ¬A.

(R6) If |= A ≡ B then K∗
A = K∗

B.
(R7) K∗

A∧B ⊆ (K∗
A)+B .

(R8) If ¬B �∈ K∗
A then (K∗

A)+B ⊆ K∗
A∧B.

It is clear that the epistemic state of an agent cannot consist of a belief set K
alone, for K does not contain the information required to determine its revision. At
the very least, an epistemic state might be a 〈K,∗〉, where ∗ is some revision function.
Less direct but more natural representations of the revision function (at least applied
to K) are possible. Among these are entrenchment relations (see [12], Gärdenfors
and Makinson [13]) and conditional belief sets (see [12], [5]). We briefly describe
entrenchment relations below; but the crucial feature is the fact that they capture the
revision policies of the agent, the information necessary to revise K to form K∗

A.
Semantically, the epistemic state of an agent can be captured using a qualitative

revision model.1 Assuming a fixed set W of possible worlds, a revision model is a
transitive, connected ordering relation ≤ over W .

Definition 2.1 A qualitative revision model (QRM) over W is any relation ≤ ⊆
W × W such that: (a) if w ≤ v and v ≤ u then w ≤ u; and (b) either w ≤ v or v ≤ w

for all v,w ∈ W .

The interpretation of ≤ is as follows: v ≤ w iff v is as at least as plausible a state of
affairs as w. Plausibility is a pragmatic measure that reflects the degree to which one
would accept w as a possible state of affairs. If v is more plausible than w, loosely
speaking v is “more consistent” with the agent’s beliefs than w. Since ≤ is a total
preorder, W is partitioned into ≤-equivalence classes, or clusters of equally plausible
worlds. These clusters are themselves totally ordered by ≤. Thus, ≤ can be viewed
as a qualitative ranking relation, assigning to each world a degree of plausibility. A
K-QRM is a QRM that captures the epistemic state of an agent with belief set K. In
particular, we require that epistemically possible worlds be more plausible than epis-
temically impossible worlds, and that all epistemically possible worlds are equally
plausible. In other words, K-worlds should be exactly those minimal in ≤.

Definition 2.2 A K-QRM is any QRM such that w ≤ v for all v ∈ W iff w |= K.
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For any A ∈ L we define

min(≤, A) = {w ∈ W : w |= A, and v |= A implies w ≤ v for all v ∈ W}

For any satisfiable A we have min(≤, A) �= ∅.2 Intuitively, min(≤, A) is the set of
most plausible A-worlds. When A is learned, it is this set of worlds that is adopted
as the new set of epistemic possibilities. Thus K∗

A can be defined semantically as

‖K∗
A‖ = min(≤, A),

and B ∈ K∗
A iff min(≤, A) ⊆ ‖B‖. It is easy to verify (see [14], [9]) that the revi-

sion function induced by a K-QRM satisfies postulates (R1) – (R8). Furthermore, any
function that satisfies the postulates is representable with such a model.3

Within this setting we can define the relative degree of surprise associated with
sentences as well as the relative entrenchment of beliefs. We say A is at no more
surprising than B iff min(≤, A) ≤ min(≤, B). Intuitively, this reflects the degree to
which an agent is willing to accept A as an epistemic possibility. If A is less surpris-
ing than B then A ∧ ¬B ∈ K∗

A∨B. If A and B are both believed, we say A is more
entrenched than B iff ¬B is less surprising than ¬A. This relation holds when an
agent is more willing to give up belief in B than A.

2.2 Ordinal conditional functions Spohn [28] introduced a related but somewhat
more detailed model of belief revision based on ordinal conditional functions or
OCFs. Instead of a simple ordering of plausibility over possible worlds, a world is
ranked on an ordinal scale according to its degree of plausibility. Spohn recognized
that while a qualitative ranking may be appropriate for revising a belief set, this de-
tailed information may be critical when one considers how an entire epistemic state
is to be updated. (We will elaborate on this point in Section 4.) To simplify the pre-
sentation, we assume that plausibility is measured on an integer scale.

Definition 2.3 An ordinal conditional function (OCF) over W is a function κ :
W → N such that κ−1(0) �= ∅.

The value κ(w) indicates the degree of plausibility of situation w, where κ(w) < κ(v)

indicates that w is more plausible than v. We take the worlds w such that κ(w) = 0 to
be those considered epistemically possible by an agent. The restriction κ−1(0) �= ∅

ensures that the agent’s belief set is consistent. As with QRMs, only certain OCFs
are appropriate for an agent with belief set K.

Definition 2.4 A K-OCF is any OCF such that

κ(w) = 0 iff w |= K.

A K-OCF induces a revision function in the obvious fashion. For any A ∈ L we de-
fine

min(κ, A) = {w ∈ W : w |= A, and v |= A implies κ(w) ≤ κ(v) for all v ∈ W}.

Defining ‖K∗
A‖ = min(κ, A) then determines a revision function that satisfies the

AGM postulates. Clearly each K-OCF is equivalent to a unique K-QRM under the
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definition of K∗
A; but a K-QRM is equivalent to a great number of K-OCFs. (This

distinction is analogous to that made by Spohn [28] between OCFs and SCFs.) The
added expressive power of OCFs will be exploited when we discuss iterated revision
and revision of epistemic states in Section 4.

We can extend the plausibility ranking κ to sentences, defining

κ(A) = min{κ(w) : w |= A}.

The lower κ(A), the less surprising A is, with the least degree of surprise (or epistemic
possibility) indicated by κ(A) = 0. Note that either κ(A) or κ(¬A) (or both) are zero,
and A is believed iff κ(¬A) > 0. The entrenchment of a belief is again the dual of
surprise: the greater κ(¬A), the more entrenched belief in A is.

3 Probabilistic revision models QRMs and OCFs are possible representations of
an agent’s epistemic state. Any such model characterizes a unique belief set K as well
as a (single-step) revision policy that determines the revised belief set K∗

A. However,
belief sets allow only very coarse distinctions in epistemic attitude toward proposi-
tions: they can be accepted (A ∈ K), rejected (¬A ∈ K) or indeterminate (A,¬A �∈
K). One might expect an agent to give more or less credence to certain disbelieved
possibilities, to be more disposed to one possibility than another without fully accept-
ing or believing the first. Thus, we may suppose that an agent’s belief set is deter-
mined by a probability function (p-function) P : L → [0, 1], satisfying the following
conditions:

1. If � A ≡ B then P(A) = P(B).
2. If � A ⊃ ¬B then P(A ∨ B) = P(A) + P(B).
3. If � A then P(A) = 1.

Accepted (rejected) propositions are those A such that P(A) = 1 (P(A) = 0). How-
ever, indeterminate propositions are now graded according to their probability.4 The
function P⊥(A) = 1 for all A ∈ L is dubbed the inconsistent p-function and will
sometimes be treated as a p-function (corresponding to the belief set K⊥ = L).

Rather than taking belief sets as primitive, we assume that an epistemic state
contains a p-function from which a belief set K is derived.

Definition 3.1 A p-function P is compatible with a belief set K just when P(A) =
1 iff A ∈ K.

Each p-function is compatible with a unique (deductively closed) belief set K. Since
many p-functions are compatible with a fixed K, we take p-functions to be the ba-
sic notion from which belief sets are derived. This corresponds to the familiar tactic
(e.g., from [12], [22]) of defining a belief set to be the top of a p-function. We de-
fine the conditional probability P(B|A) as P(A∧B)

P(A)
if P(A) �= 0; by convention we

set P(B|A) = 1 for all B otherwise.
Semantically, a p-function can be characterized by a (normalized) weighting

function P : W → [0, 1] such that
∑{P(w) : w ∈ W} = 1. This induces a p-function

(over L) via the standard relationship:

P(A) =
∑

{P(w) : w |= A}.
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We use P to denote both the weighting function and the induced p-function since each
uniquely determines the other. We will also use unnormalized weighting functions,
which assign arbitrary positive weights to worlds. An unnormalized function P′ de-
termines a normalized function P as follows:

P(w) = P′(w)∑{P(v) : v ∈ W} .

We note that if P is compatible with K then P(w) > 0 iff w |= K. So it is precisely
the epistemically possible worlds that are accorded positive probability.

3.1 Counterfactual probability models The notion of compatibility can be ex-
tended to QRMs in the obvious way: we say a p-function P is compatible with QRM
≤ iff P is compatible with the belief set K induced by ≤. Since the epistemic possi-
bilities given by K correspond to the set of worlds minimal in ≤, an appropriate p-
function can be imposed by a weighting function P with the property that P(w) > 0
iff w ∈ min(≤,�). An agent’s epistemic state might then be taken to consist of a
QRM ≤ together with a compatible p-function P. But, while ≤ is sufficient to deter-
mine the content of K∗

A, a revised epistemic state must include a revised p-function
P∗

A; and ≤ does not contain the required information. Some method for revising p-
functions is needed.

In the special case where ¬A �∈ K (or equivalently, P(A) > 0), we can use con-
ditionalization of P by A to effect revision by A and derive a revised p-function.
We simply set P∗

A = P(·|A). The following observation is straightforward (see, e.g.,
[12]).

Proposition 3.2 Let ≤ be a K-QRM such that ¬A �∈ K, let P be a p-function com-
patible with ≤, and let P∗

A = P(·|A). Then P∗
A is compatible with K∗

A.

Thus “consistent” revision and conditionalization correspond in the desired manner.
If ¬A ∈ K then P(A) = 0, and defining P∗

A via conditionalization results in the in-
consistent p-function P⊥. To alleviate this difficulty, we introduce nonstandard con-
ditional p-functions, or Popper functions (see [29], [30], [12], [22]). A Popper func-
tion is a mapping P : L × L → [0, 1] satisfying the following conditions (cf. [22]):

1. P(A↑A) = 1.
2. P(·↑A) is a p-function.
3. If � A ≡ B then P(C↑A) = P(C↑B).
4. P(A ∧ B↑C) = P(A↑C) · P(B↑A ∧ C).

An absolute p-function is defined by setting P(A) = P(A↑�).5

By taking conditional probability as the primitive relation we can impose non-
trivial constraints on the value of P(B↑A) even when P(A) = 0, and revision of a
p-function can be defined by taking P∗

A(B) = P(B↑A). The relationship between the
revision of p-functions using nonstandard conditionalization and the AGM revision
of beliefs sets is quite close (see, e.g., [12], Ch. 5, or [22]). We take revision of a p-
function P as defined above to be basic, assuming P is determined by an appropriate
Popper function. This induces an revision function on belief sets, where K is the top
of P and K∗

A is the top of P∗
A. Such qualitative revision functions satisfy the AGM
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postulates, suggesting that the Popper functions are an appropriate representation of
probabilistic revision functions.

This relationship can be understood from a semantic perspective as well. The
semantics of simple p-functions uses probability weights on epistemically possible
worlds (consistent with the induced belief set K). This can be extended to Popper
functions by associating weights with all worlds W , regardless of their plausibility
ranking according to ≤. In this way, the relative probability of worlds within the set
min(≤, A) is specified and a compatible p-function P∗

A can be derived. The weights
of worlds in the same cluster of ≤ captures their relative likelihood should the agent
accept them as epistemically possible. They can be viewed as counterfactual proba-
bilities in the sense of Stalnaker [29].

Definition 3.3 ≤P= 〈≤, P〉 is a counterfactual probability model (CPM) iff

(a) ≤ is a QRM; and
(b) P : W → (0, 1].

Definition 3.4 Let ≤P= 〈≤, P〉 be a CPM. The counterfactual probability of B
given A (relative to ≤P) is

P(B↑A) =
∑{P(w) : w ∈ min(≤, A) and w |= B}∑{P(w) : w ∈ min(≤, A)} .

Definition 3.5 The factual probability of A (relative to M) is

P(A) = P(A↑�).

Clearly, the factual probability function P is a p-function. We take the unconditional,
factual probability function P to define the objective epistemic state of the agent in
the usual way. This factual p-function is compatible with the QRM component of the
CPM.

Proposition 3.6 Let ≤P= 〈≤, P〉 be a CPM such that ≤ determines belief set K.
Then P(A) = 1 iff A ∈ K.

We define factual conditional probability in the usual way for P and denote this with
the usual conditioning bar:

Definition 3.7 P(B|A) = P(A∧B)
P(A)

for all A such that P(A) > 0.

We can now describe the new p-function P∗
A that results when the agent’s orig-

inal epistemic state P is revised by A. This revision will proceed by means of coun-
terfactual conditionalization.

Definition 3.8 Let P be the factual p-function determined by M. The revised fac-
tual probability function P∗

A is given by

P∗
A(B) = P(B↑A).

The (factual) p-function of an agent after such a revision is P∗
A. The following results

are easy to verify, and are simple restatements of well-known facts. We emphasize
them as they indicate that the process of counterfactual conditionalization conforms
to the rationality constraints imposed by our original qualitative considerations.
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Proposition 3.9 If A is satisfiable then P∗
A is a (consistent) p-function.

Theorem 3.10 The p-function P∗
A is compatible with the belief set K∗

A.

Theorem 3.11 If P(A) > 0 then P∗
A(B) = P(B|A).

Thus CPMs are consistent extensions of the AGM theory to the probabilistic
case, just like Popper functions. That CPMs in fact determine Popper functions can be
seen by appeal to the representation result of van Fraassen [30]. He demonstrates that
Popper functions can be represented by an ordinal family of p-functions, or a sequence
of p-functions ranked according to plausibility. In our finitary setting, we can use a
finite ordered family {P1, . . . , Pn} of p-functions over L . The minimal A-permitting
p-function PA is the first Pi in the sequence that accords A positive probability; that
is, PA = Pi where Pi(A) > 0 and Pj(A) > 0 only if j ≥ i. We can use this family to
define a counterfactual probability function as follows: if Pi(A) > 0 for some i, we
define P(B↑A) = PA(B|A); if Pi(A) = 0 for all i, we call A an abnormal propo-
sition and set P(B↑A) = 1 for all B. van Fraassen shows that any such conditional
operator is a Popper function and that any Popper function is representable by such a
family.

Indeed, the stronger representation result of Spohn [27] can be adopted in our
finitary setting. Following Spohn, we say an ordered family is dimensional iff for
each Pi there is a sentence Ai such that Pi(Ai) = 1 and Pj(Ai) = 0 for all j < i. If
all p-functions are σ-additive, dimensional ordered families can be used to represent
Popper functions. Dimensional ordered families have several nice properties, includ-
ing minimality in the sense that the ordered family of p-functions cannot be replaced
by a smaller family. Indeed, a dimensional family satisfies an even stronger mini-
mality requirement, for the elements of Pi are orthogonal: if i �= j then Pi(A) = 1
and Pj(A) = 0 for some A (cf. [12]). Thus, not only is the family itself as small as
possible, its elements are as well.

A simple reconstruction of CPMs demonstrates that they are equivalent to finite
ordered families of p-functions and thus equivalent to Popper functions. While rather
straightforward, we spell out the connection in detail since we will exploit the corre-
spondence frequently below. For any QRM ≤, let W1, . . . , Wn denote the equivalence
classes of W determined by ≤. That is, for each Wi, if w, v ∈ Wi then w ≤ v; and if
w ∈ Wi, v ≤ w and w ≤ v then v ∈ Wi. Furthermore, assume that if i < j then there
is some w ∈ Wi, v ∈ Wj such that w < v. Let ≤P be a CPM. For each equivalence
class Wi define a (normalized) weighting function (and equivalent p-function) Pi as

Pi(w) = P(w)∑{P(v) : v ∈ Wi}
if w ∈ Wi and Pi(w) = 0 if w �∈ Wi. We call {Pi : i ≤ n} the ordered family of p-
functions induced by ≤P. A counterfactual probability function can be defined using
the relationship:

P(B↑A) = PA(B|A).

It is easy to verify that this counterfactual probability function is exactly that de-
termined by the original CPM. Furthermore, given any such ordered family of p-
functions, it is easy to construct a corresponding CPM. The results of van Fraassen
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and Spohn ensure that CPMs determine Popper functions and that any Popper func-
tion is representable by a CPM.6 Furthermore, the ordered family generated is dimen-
sional; it is therefore minimal and consists of pairwise orthogonal elements.

In the sequel we will use the original definition of CPMs and their representation
as a minimal, orthogonal ordered family of p-functions interchangeably.

3.2 Probabilistic OCFs Just as we probabilized QRMs by adding probability
weights to the worlds in the qualitative ranking, we can probabilize OCFs. (Indeed,
in his original paper Spohn suggests that OCFs could be probablized.)

Definition 3.12 κP = 〈κ, P〉 is a probabilistic ordinal conditional function (POCF)
iff

(a) κ is an OCF; and
(b) P : W → (0, 1].

The Popper function P(·↑·) induced by a POCF is defined in exactly the same fash-
ion as for CPMs. A POCF determines a minimal, orthogonal ordered family of p-
functions in precisely the same way as CPMs. However, we will index the elements
of this ordered family by the κ-ranking associated with the worlds over which it is
defined; that is, the ordered family will be written

{Pi : κ−1(i) �= ∅}.

While POCFs and Popper functions correspond in the obvious way, we see that
many different POCFs are equivalent to the same CPM and induce the same Popper
function. Thus we might think of POCFs as a Popper function with additional struc-
ture.

3.3 A standard interpretation of POCFs If one is going to use probabilities as de-
grees of belief, it seems natural to question the need for Popper functions, ordered
families of p-functions, and (categorical) belief sets. If one is going to allow a sen-
tence A in K to be retracted when ¬A is learned, why not simply assign A some de-
gree of belief less than 1 in the first place and use standard techniques such as condi-
tionalization to incorporate new items of belief?

If one wishes to allow the possibility that any “belief” can be overturned given
the proper evidence, then full belief can be granted only to tautologies, and every con-
tingency must have some positive probability. To take a slightly less extreme view,
one might accord observational reports (say) the status of full belief, but still no con-
clusions drawn from these would be certain. Presumably, there are certain computa-
tional advantages to be gained by ruling out possibilities that are very unlikely (see
Cheeseman [10], Harman [17]). Chief among these is the ability to exploit logical
rules of inference. Such rules allow conclusions to be reached in manner that is inde-
pendent of context, in contrast to probabilistic inference. The locality of logical rules
can be exploited if parts of the belief set are (treated as if they are) fully believed
(cf. Pearl [23]).

It may also be that the cost associated with reaching incorrect (unhedged) con-
clusions and being forced to revise the belief set is outweighed by the probability of
being correct. We might therefore think of a constraint B ∈ K∗

A as an instantiation of
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an acceptance rule (see Kyburg [20]). If B ∈ K∗
A is satisfied by the epistemic state

of an agent, we take it to mean that there is a certain utility associated with complete
acceptance of B given A.7 On this view, it is reasonable to allow a conditional belief
B ∈ K∗

A to be held even when ¬A is accorded full belief (P(¬A) = 1). Consequently,
we do not take a P(A) = 0 to indicate that A is (logically or physically) impossible,
but simply that is is not, to use Levi’s [21] terminology, a serious possibility.

To make sense of this perspective, it should be possible to interpret a Popper
function, a CPM, or a POCF as some sort of abstraction of a classical, absolute p-
function. There should be some “true” p-function P such that the Popper function P
induces the appropriate beliefs with respect to P. Furthermore, if P is representable
by some minimal, orthogonal ordered family {Pi} of p-functions, the true p-function
P should be constructed through some combination of the elements Pi. In particular,
we expect P to be some additive mixture of the Pi; that is,

P(A) = a1 · P1(A) + · · · + an · Pn(A).

Of course, not any additive mixture will do. We expect a mixture to justify in some
way the “acceptance rules” implicit in the Popper function. Below we suggest one
such interpretation, whereby if some proposition is more plausible than another, the
first can be made arbitrarily more probable than the second with respect to P. We
remark that other interpretations are possible that can be modeled using an additive
mixture of the family {Pi}.8 We do not suggest that this interpretation is the correct
way to view Popper functions, but simply present it as an alternative to illustrate the
feasibility of this point of view.

Imagine an agent whose epistemic state is represented as a POCF which, by our
standard construction, determines an ordered family {Pi : κ−1(i) �= ∅}. We suppose
that P is an absolute p-function abstracted by this POCF. The serious possibilities
admitted by the agent are those sentences A such that κ(A) = 0. If A is a serious
possibility and B is not, we should expect that A is more probable than B by some
significant factor, for instance, P(A) · ε ≥ P(B) for some sufficiently small ε > 0.
Furthermore, we should expect that the degree of plausibility of a proposition (its κ-
rank) determines the extent of this difference. In general, we require that if κ(A) +
i = κ(B) for some i > 0 then P(A) · εi ≥ P(B). That is, more plausible sentences
can be made arbitrarily more probable than less plausible sentences, and difference
in plausibility forces a “lower bound” on this difference. For any POCF, such a p-
function P can be constructed as an additive mixture of its ordered family.

Theorem 3.13 Let 〈κ, P〉 be a POCF determining an ordered family {Pi : κ−1(i) �=
∅}. For any sufficiently small ε, there exists a p-function P = ∑{ai · Pi} such that if
κ(A) + i = κ(B) for some i > 0 then P(A) · εi ≥ P(B).

Proof: For simplicity, we assume that ε satisfies the rather weak constraint that εi ≥∑
j>i ε

j (although for somewhat larger ε the construction can be modified). To prove
the result we must determine appropriate parameters ai. Let Wi = {w : κ(w) = i}. We
have by construction that Pi(w) > 0 iff w ∈ Wi, where Pi denotes the (normalized)
weighting function corresponding to p-function Pi. For each Pi define

min(Pi) = min{Pi(w) : w ∈ Wi}.
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Note that min(Pi) ≤ 1. We define the (unnormalized) additive parameters as follows:

a j = ε2 j ·
∏
i< j

{min(Pi)}.

The p-function P is the represented by the weighting function (where w ∈ Wj):

P(w) = Pj(w) · ε2 j ·
∏
i< j

{min(Pi)}.

Now suppose κ(A) = k and κ(B) = k + i. In the following, P is unnormalized
since the additive parameters ai are unnormalized; but all relationships hold when
normalization is performed. Recall that min(Pi) ≤ 1.

Since κ(A) = k, Wk ∩ ‖A‖ �= ∅. So

P(A) ≥ min(Pk) · ε2k ·
∏
j<k

{min(Pj)}

≥ min(Pk) · ε2k ·
∏
j≤k

{min(Pj)}.

Since κ(B) = k + i, Wj ∩ ‖B‖ = ∅ for all j < k + i. So

P(B) ≤
n∑

j=k+i

{ε2 j ·
∏
l< j

{min(Pl )}}

≤
∏
j≤k

{min(Pj)} ·
n∑

j=k+i

{ε2 j ·
j−1∏

l=k+1

{min(Pl )}}

≤
∏
j≤k

{min(Pj)} ·
n∑

j=k+i

{ε2 j}

≤
∏
j≤k

{min(Pj)} · ε2k+i

≤
∏
j≤k

{min(Pj)} · ε2k · εi

≤ P(A) · εi.

Thus for any small ε > 0, a suitable p-function can be constructed that validates the
relationship imposed by the POCF. The p-function constructed in this proof also has
the property that if κ(A) = i then P(A) ≤ εi.

Proof: If κ(A) = i then

P(A) ≤
∏n

j=i{ε2 j}∏n
j=0{ε2 j} ,

thus,
P(A)

εi ≤
∏n

j=i{ε2 j}∏n
j=0{εi+2 j} ,

so P(A)

εi ≤ 1 and P(A) ≤ εi.
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Thus a POCF can be viewed as an abstract representation of some reasonable addi-
tive mixture of its corresponding ordered family of p-functions. Again, other reason-
able mixtures are possible—the crucial point is that classical interpretations of POCFs
based on additive mixtures of their ordered family presentations are feasible.

4 Iterated revision One difficulty faced by the revision models presented to this
point is that they do not lend themselves to iteration. In the nonprobabilistic case an
epistemic state is represented by a QRM or OCF suitable for some belief set K and
describes the form to be taken by a new belief set K∗

A. But nothing in these models
suggests what form should be taken by the new epistemic state, a new QRM or OCF
suitable for K∗

A. This new model is necessary to process subsequent revisions of K∗
A.

Similar considerations apply to probabilistic models, be they CPMs (simple Popper
functions) of POCFs (structured Popper functions) suitable for some initial p-function
P. Although they dictate the precise form of P∗

A, they provide no guidance for the
construction of a new probabilistic epistemic state (a CPM or POCF). This difficulty
was first noticed by Harper [18].

In the nonprobabilistic setting, Gärdenfors [12] circumvented this difficulty by
introducing the notion of a belief revision system, a set K of belief sets and an AGM
revision function ∗ that maps 〈K, A〉 (where K ∈ K and A ∈ L) to K∗

A ∈ K. Since ∗
is defined for all K ∈ K, the revision of K∗

A is determined and iterated revision pro-
ceeds unobstructed. Such a model of iteration is unattractive for two reasons. First,
the revision of a belief set K is fixed. An agent with objective belief set K cannot
accept different revision policies with respect to K (for example, at different times).
Since there are many QRMs and OCFs suitable for any fixed K, there seems little
reason to expect an agent to choose one such epistemic state once and for all. The
second undesirable feature of this model is its generality. The revision of K is dic-
tated by a plausibility ordering ≤ suitable for K. A belief revision system requires
that the revision of K∗

A also be modeled by (or representable as) a new plausibility
ordering ≤∗

A. (Analogous remarks hold for the revision of OCFs.) However, it im-
poses no constraints on the relation between ≤ and ≤∗

A other than what we dub the
Basic Requirement.

The Basic Requirement: If ≤ is a K-QRM determining revision function ∗, then the
revision model ≤∗

A must be such that min(≤∗
A,�) = min(≤, A).

Hence, essentially arbitrary changes in the plausibility ordering ≤ are permitted.
Equivalently, an agent is permitted to make arbitrary changes in its judgments of the
relative entrenchment and plausibility of propositions. A model of iterated revision
that imposes additional structure on the change of epistemic state is therefore desir-
able.

Lindström and Rabinowicz [22] have proposed a similar model for the revision
of p-functions. They suggest that each p-function be associated with a unique Popper
function. The Popper function associated with p-function P determines the revised p-
function P∗

A as described in the last section. Subsequent revision of P∗
A is determined

by its corresponding Popper function. The unattractive features of belief revision sys-
tems are inherited by this probabilistic model of iteration: each p-function is bound
to a single revision policy (Popper function), and the relationship between a Popper
function and its revision can be arbitrary.
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4.1 Iteration using POCFs As we hinted in Section 2.3, the integer degrees of
plausibility associated with worlds and propositions in Spohn’s OCFs play a crucial
role in iterated revision. Indeed, Spohn’s model of revision, in contrast with the AGM
theory, is influenced primarily by the problem of iteration, with revision by A defined
so that a new OCF is produced. Our presentation of the revised belief set K∗

A deter-
mined by an OCF κ is a mere byproduct of Spohn’s model of belief dynamics, and
this we now present.

In OCFs beliefs are held with a specified degree of strength. If ¬A ∈ K, then
the strength of belief in ¬A is κ(A). If revision of K by A is not only to produce a
new belief set K∗

A, but also a new OCF κ∗
A, then the strength with which A is to be

held in the revised OCF must be given, for otherwise the revision will be underde-
termined. In a manner reminiscent of Jeffrey conditionalization [19], we define the
A, k-conditionalization of κ as follows.

Definition 4.1 Let κ be an OCF, A ∈ L be satisfiable, and k ≥ 0. The A, k-
conditionalization of κ is the OCF κA,k where

κA,k(w) =
{

κ(w) − κ(A) if w ∈ ‖A‖
k + (κ(w) − κ(¬A)) if w ∈ ‖¬A‖.

If κ is an OCF such that ¬A is believed, intuitively κ is adjusted by shifting the A-
worlds down by a factor of κ(A)—this ensures that min(κ, A) is given a new ranking
of 0 (down from κ(A))—and by shifting all ¬A-worlds up by a factor of k (from 0)—
ensuring that A is now believed to degree k. Since worlds within the sets ‖A‖ and
‖¬A‖ stand in the same relation, each new cluster within κA,k will typically be the
union of the some set of A-worlds of some fixed rank (with respect to κ) and some
set of ¬A-worlds of a different fixed rank. In particular, we have:

κ−1
A,k(i) = {w ∈ ‖A‖ : κ(w) = i + κ(A)} ∪ {w ∈ ‖¬A‖ : κ(w) = i + k − κ(¬A)}.

Both sets may be empty, in which case no worlds are assigned rank i in the revised
OCF. If not, we classify the resulting cluster as follows: if κ−1

A,k(i) ⊆ ‖A‖ we say that
κ−1

A,k(i) is a resulting A-cluster; if κ−1
A,k(i) ⊆ ‖¬A‖ it is a resulting ¬A-cluster; other-

wise, it is a mixed cluster. Mixed clusters will play an important role in the revision
of POCFs.

It is easily seen that if k > 0, this is a revision operation that accepts A.9 Note
that to effect revision by A in a way that defines a new OCF, κA,k(w), a strength of ev-
idence k, must be associated with the new fact A. Clearly, the revision process can be
iterated, for the A, k-conditionalization of κ gives a new OCF suitable for the revised
belief set K∗

A. In other words, A, k-conditionalization satisfies the Basic Requirement
that min(κA,k,�) = min(κ, A). Furthermore, the new OCF is strongly related to the
original OCF. An agent’s new judgments of plausibility, surprise and entrenchment
correspond in a natural way to its original epistemic state.

We now examine the extent to which Spohn’s A, k-conditionalization opera-
tion can be applied to POCFs and provide us with a model of probabilistic revision
which deals with iteration. We first point out that a probabilistic extension of A, k-
conditionalization cannot be viewed as a means of revising standard Popper func-
tions. As we noted earlier, POCFs have additional structure, and this structure is
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exploited by A, k-conditionalization. Thus, the view of Popper functions as an ap-
propriate representation of a probabilistic epistemic state is untenable if we use this
revision model to effect changes in epistemic state. Spohn [28], following Harper,
indeed suggests that Popper functions are impoverished for precisely this reason.

Let κP be a POCF with underlying OCF κ and weighting function P. The Pop-
per function P(·↑·) induced by κP is compatible with κ in the sense that its ordered
family presentation {Pi : κ−1(i) �= ∅} directly corresponds to the clusters of κ: we
have Pi(w) > 0 iff κ(w) = i. When we perform A, k-conditionalization, we would
like the revised POCF κP

A,k and its ordered family representation to stand in the same
correspondence with the revised OCF κA,k.

Definition 4.2 Let κP = 〈κ, P〉 be a POCF. A POCF κP
A,k is an A, k-conditionaliza-

tion of κP iff κP
A,k = 〈κA,k, P′〉 where P′ is an arbitrary (positive) weighting function.

If P(·↑·) is the Popper function induced by κP, we use PA,k(·↑·) to denote the Popper
function corresponding to some A, k-conditionalization κP

A,k. We also use PA,k
i to

denote elements of the ordered family of p-functions induced by κP
A,k.

Such arbitrary changes leave κP
A,k drastically underspecified. More importantly,

this class of change functions admits some unintuitive changes in epistemic state.
At the very least, when k > 0 we should require that PA,k

0 = P(·↑ A)—revising
by A should induce the same objective state of belief as counterfactual condition-
alization on A. Furthermore, in analogy with Jeffrey conditionalization, we might
require that an update by A not change the conditional probabilities within the A-
part or the ¬A-part of P; in other words, we insist that PA,k(B↑A) = P(B↑A) and
PA,k(B↑¬A) = P(B↑¬A) for all B. Neither of these restrictions is enforced by arbi-
trary A, k-conditionalization of κP. These conditions can be captured by insisting that
the new weighting component of κP

A,k keep the relative weights of worlds within the
A-part (respectively, the ¬A-part) of each new cluster fixed. For resulting A-clusters
(resp. ¬A-clusters) the weighting function restricted to that cluster corresponds to
the conditional probability function Pi(·|A) (resp. Pi(·|¬A)) for some i. For result-
ing mixed clusters, the p-functions for both the A and ¬A-parts must be mixed in an
appropriate way. We define regular A, k-conditionalizations to capture this notion.

Definition 4.3 Let Pi and Pj be two p-functions. The p-function P is a nontrivial
δ-mixture of 〈Pi, Pj〉 iff P(A) = δPi(A) + (1 − δ)Pj(A), where 0 < δ < 1.

Definition 4.4 Let κP = 〈κ, P〉 be a POCF and m = max{i : κ−1
A,k(i) �= ∅}. Let

δ0, . . . , δm be a set of mixture factors, 0 < δi < 1. We say κP
A,k = 〈κA,k, PA,k〉 is a

regular A, k-conditionalization with mixture factors δ0, . . . , δm of κP iff κP
A,k is an

A, k-conditionalization of κP and PA,k satisfies the following properties:

1. if κ−1
A,k(i) is a mixed cluster and κA,k(w) = i then:

(a) if w ∈ ‖A‖ then PA,k(w) = δi P(w)∑{P(v):κA,k(v)=i,v∈‖A‖} ; and

(b) if w ∈ ‖¬A‖ then PA,k(w) = (1−δi )P(w)∑{P(v):κA,k(v)=i,v∈‖¬A‖}

2. if κ−1
A,k(i) is not a mixed cluster and κA,k(w) = i then PA,k(w) = P(w).
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Intuitively, a regular A, k-conditionalization of κP furnishes a well-behaved
weighting function over κA,k. If a cluster induced by κA,k is not mixed (that is, it
consists solely of A-worlds or ¬A-worlds), the relative weights of worlds within that
cluster are unchanged from κP. For a mixed cluster κ−1

A,k(i), the A-worlds retain the
same relative weight but the total weight is fixed by the some mixture factor δi; and
the total weight of ¬A-worlds is fixed by its complement 1 − δi. We have assumed
the existence of the factors for each cluster in κA,k (as well as “empty clusters”), but
only the δi corresponding to mixed clusters are used and need be specified.

For a fixed set of mixture factors it is clear that the regular A, k-conditionaliza-
tion of κP is unique and induces a fixed Popper function. This Popper function satis-
fies the properties we expect.

Theorem 4.5 Let κP be a POCF and P(·↑·) its corresponding Popper function. Let
κP

A,k be a regular A, k-conditionalization of κP and PA,k(·↑·) its corresponding Pop-

per function. Then P(B↑A ∧ C) = PA,k(B↑A ∧ C) and P(B↑¬A ∧ C) = PA,k(B↑
¬A ∧ C) for all B, C.

Proof: Assume A ∧ C is satisfiable (otherwise P(B↑A ∧ C) = PA,k(B↑A ∧ C) = 1
for all B). We have

P(B↑A ∧ C) =
∑{P(w) : w ∈ min(κ, A ∧ C) and w |= B}∑{P(w) : w ∈ min(κ, A ∧ C)} .

We also have min(κA,k, A ∧ C) = min(κ, A ∧ C). If min(κA,k, A ∧ C) is in a result-
ing A-cluster then PA,k(w) = P(w) for all w ∈ min(κA,k, A ∧ C). Otherwise, it is
in a mixed cluster and PA,k(w) = δi P(w). Thus, the relative weights of all worlds in
min(κA,k, A ∧ C) are unchanged and P(B↑A ∧ C) = PA,k(B↑A ∧ C). An analogous
argument can be made for PA,k(B↑¬A ∧ C).

Corollary 4.6 P(B↑A) = PA,k(B↑A) and P(B↑¬A) = PA,k(B↑¬A).

Corollary 4.7 If k > 0 then PA,k(B↑�) = P(B↑A).

Gärdenfors [12] has proposed a set of postulates for the revision of p-functions that
mirror the postulates (R1) – (R8). We present a modified version of these.10 Let P be
a p-function and A some consistent sentence. A probability revision operation satis-
fies:

(P1) P∗
A is a (consistent) p-function.

(P2) P∗
A(A) = 1.

(P3) If P(A) > 0 then P∗
A = P(·|A).

(P4) If |= A ≡ B then P∗
A = P∗

B.
(P5) If P∗

A(B) > 0 then P∗
A∧B = P∗

A(·|B).

Given the previous results, it is quite easy to verify that regular A, k-conditionaliza-
tion of κP determines a probability revision operation satisfying postulates (P1) – (P5)
if we take P to be the absolute p-function induced by κP and P∗

A to be the p-function
induced by κP

A,k (for any k > 0).
Regular A, k-conditionalization of κP is defined using the POCF explicitly and

constructing an unnormalized weighting function. However, the same effect can be
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achieved by applying a similar operation to the ordered family presentation of κP to
form a revised ordered family. In some sense this operation may be more natural as
operates on the canonical representation of POCFs.

Definition 4.8 Let {Pi : κ−1(i) �= ∅} be the ordered family of p-functions induced
by some POCF κP and let δ0, . . . , δm be a set of mixture factors, 0 < δi < 1. The
regular A, k-conditionalized family of p-functions {PA,k

i : κ−1
A,k(i) �= ∅} is defined as

follows:

PA,k
i =




δi Pκ(A)+i(·|A)+
(1 − δi)Pi+k−κ(¬A)(·|¬A) if Pκ(A)+i(A) > 0, Pi+k−κ(¬A)(¬A) > 0

Pκ(A)+i(·|A) if Pκ(A)+i(A) > 0, Pi+k−κ(¬A)(¬A) = 0
Pi+k−κ(¬A)(·|¬A) if Pκ(A)+i(A) = 0, Pi+k−κ(¬A)(¬A) > 0.

Theorem 4.9 Let κP be any POCF that induces the ordered family {Pi}. Then the
regular A, k-conditionalization of κP using mixture factors δ0, . . . , δm induces the
A, k-conditionalized family of p-functions {PA,k

i } using the same mixture factors.

Proof: Recall that PA,k
i is defined (with respect to κP

A,k) using the weighting func-
tion restricted to κ−1

A,k(i). Assume κ−1
A,k(i) is an A-cluster. Then κ−1(i + k −κ(¬A))∩

‖¬A‖ = ∅ and

PA,k
i (B) =

∑{P(w) : κ(w) = i + κ(A) and w |= A ∧ B}∑{P(w) : κ(w) = i + κ(A) and w |= A} .

Thus, PA,k
i (B) = Pi+κ(A)(B|A). However, in light of the fact that κ−1

A,k(i) is an A-
cluster, Pi+k−κ(¬A)(¬A) = 0, and the direct A, k-conditionalization of {Pi} also de-
fines PA,k

i (B) = Pi+κ(A)(B|A).
Similar arguments can be made for resulting ¬A-clusters and mixed clusters.

Regular A, k-conditionalization of a POCF or its ordered family has a number of
attractive properties. However, in order to use this procedure for revision of a POCF,
or its associated Popper and p-functions, a fair bit of knowledge has to be provided.
Because POCFs generalize OCFs, the evidence A has to be specified with a degree
of strength (or entrenchment) k. In addition, a sequence of mixture factors δi must
also be specified. Unfortunately, these mixture factors do not seem to have a natu-
ral interpretation in general.11 There are few hints in the formal structure of a POCF
that might guide the selection of the appropriate δi, or even a single fixed δ for all
mixtures. A lack of principles for the selection of mixture factors and intuitive in-
terpretation of their meaning and function make regular A, k-conditionalization, and
perhaps POCFs, less attractive as models of probabilistic revision.

One possible solution to this problem is to treat a POCF as a representation of
some classical p-function P, as suggested in Section 3.3, and treat update by A, k
as Jeffrey conditioning (setting P(A) = p for some appropriate value p) on this p-
function. One may be able to select an appropriate probability p based on the strength
of evidence k; suitable parameter values for A, k-conditionalization might then be

suggested by the classical p-function P
A,p

that results from classical Jeffrey con-
ditioning on P. Specifically, recall that if a POCF κP induces an ordered family
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{Pi : κ−1(i) �= ∅}, we require the underlying p-function P to be some additive mix-
ture of the Pi:

P(A) =
∑

{ai Pi(A) : κ−1(i) �= ∅}.
A, k-conditionalization determines a new POCF κP

A,k which in turn determines a new

ordered family {PA,k
i : κ−1

A,k(i) �= ∅}. To interpret A, k-conditionalization as Jeffrey

conditioning on P, we require that some p-function P
A,p

—determined by Jeffrey
conditioning of P—be equivalent to an additive mixture of this new ordered family:

P
A,p

(A) = P
A,k

(A) ≡df

∑
{bi PA,k

i (A) : κ−1
A,k(i) �= ∅}.

If such a value p can be found (along with appropriate additive weights bi), it may be
the case that appropriate mixture factors δi are fixed by this relationship.

It turns out that if any A, k-conditionalization can be interpreted as Jeffrey con-
ditioning on an underlying classical p-function in the manner suggested, it must be
(equivalent to) some regular A, k-conditionalization, as indicated by the following
lemma. To prove this, we exploit the fact that the Jeffrey conditioning of P by
P(A) = p leaves the conditional p-functions P(·|A) and P(·|¬A) unchanged. In-
deed, to guarantee that P′ can be formed using Jeffrey conditioning on A it is suffi-
cient to show that P′(C|A) = P(C|A) and P′(C|¬A) = P(C|¬A) for all C.

Lemma 4.10 Let κP be a POCF with ordered family {Pi}, and let P be an additive
mixture of {Pi}. Let κP

A,k be some arbitrary A, k-conditionalization of κP with induced

ordered family {PA,k
i }, and let P

A,k
be defined as some additive mixture of {PA,k

i }.
If P

A,k = P
A,p

(i.e., the Jeffrey conditioning of P setting P(A)=p) for some p, then
{PA,k

i } is a regular A, k-conditionalization of the family {Pi}.
Proof: We prove that the resulting mixed clusters of the A, k-conditionalization
must conform to the constraints of regular A, k-conditionalization. The proof for A
and ¬A-clusters is similar.

Let κ−1
A,k(i) be some mixed cluster in κP

A,k such that

PA,k
i �= δi Pκ(A)+i(·|A) + (1 − δi)Pi+k−κ(¬A)(·|¬A)

for any 0 < δi < 1. This implies either that (a) for some pair of worlds w, v ∈ ‖A‖
such that κA,k(w) = κA,k(v) = i, we have

PA,k
i (w)

PA,k
i (v)

�= Pκ(A)+i(w)

Pκ(A)+i(v)
,

or (b) a similar relation for the ¬A-part of κ−1
A,k(i). (We assume the former; the proof

of the latter case is identical.)
Since P is an additive mixture of {Pi} and P

A,k
is an additive mixture of {PA,k

i },
we must have

P
A,k

(w)

P
A,k

(v)
�= P(w)

P(v)
.

Thus, P
A,k

cannot be formed by Jeffrey conditioning on P.
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The Jeffrey conditioning of an underlying classical p-function justifies the use of reg-
ular A, k-conditionalization of κP; but it still cannot aid in the selection of appropri-
ate mixture factors δi. Again, assume that κP induces an ordered family {Pi} and that
P = ∑{ai Pi} is an additive mixture of this family. If κP

A,k induces the family {PA,k
i },

we want P
A,k = ∑{bi PA,k

i } to be an additive mixture of this family. If P
A,k

can also
be produced by Jeffrey conditioning of P, using Lemma 4.10 it is easy to verify the
following fact.12

Lemma 4.11 P
A,k

is produced by Jeffrey conditioning of P by A iff (1) {PA,k
i } is

the regular A, k-conditionalization of {Pi} (using some factors δi); and (2) for any two
clusters κ−1

A,k(i) and κ−1
A,k( j) of κP

A,k, the new additive weights bi satisfy the following
properties:

(a) If both are mixed clusters then

aκ(A)+i · Pκ(A)+i(A)

aκ(A)+ j · Pκ(A)+ j(A)
= δibi

δ jb j

and
ai+k−κ(¬A) · Pi+k−κ(¬A)(¬A)

a j+k−κ(¬A) · Pj+k−κ(¬A)(¬A)
= (1 − δi)bi

(1 − δ j)b j
.

(b) If κ−1
A,k(i) is a mixed cluster and κ−1

A,k( j) is an A-cluster then

aκ(A)+i · Pκ(A)+i(A)

aκ(A)+ j · Pκ(A)+ j(A)
= δibi

b j
.

(c) If κ−1
A,k(i) is a mixed cluster and κ−1

A,k( j) is a ¬A-cluster then

ai+k−κ(¬A) · Pi+k−κ(¬A)(¬A)

a j+k−κ(¬A) · Pj+k−κ(¬A)(¬A)
= (1 − δi)bi

b j
.

If the additive weights bi are varied, the constraints on suitable mixture factors δi also
change. Rather than restricting the choice of appropriate δi, we have introduced yet
another parameter to be tuned in the revision of a p-function. This is not so problem-
atic, for we may assume that the additive weights are fixed. After any revision of a
POCF, the weight assigned to each p-function PA,k

i can be simply that assigned to its
predecessor Pi; that is, bi = ai in the above scheme. Of course, this is too stringent,
for the number of nontrivial clusters or p-functions may change in the move from κP

to κP
A,k. More realistically, we might imagine that these weights be fixed, but nor-

malized to discount those weights ai that correspond to empty clusters. So suppose

P = ∑{ai Pi} and P
A,k = ∑{bi PA,k

i }. We call the new p-function P
A,k

a propor-

tional revision of P (with respect to κP) just when ai
a j

= bi
b j

whenever the clusters

κ−1(i), κ−1( j), κ−1
A,k(i) and κ−1

A,k( j) are nonempty. Unfortunately, the requirement of
proportionality conflicts with the interpretation of A, k-conditionalization as Jeffrey
conditioning.

Theorem 4.12 There exists a POCF κP such that for no additive mixture P of its or-

dered family is there a proportional additive mixture P
A,k

of its A, k-conditionaliza-
tion that can be constructed from Jeffrey conditioning of P.
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We present a simple counterexample to verify this fact. Let κP be a POCF with
four clusters and associated ordered family of p-functions {P0, P1, P2, P3}. Assume
P0(A) = P1(A) = 1 and P2(¬A) = P3(¬A) = 1 and that P = a0 P0 + a1 P1 + a2 P2 +
a3 P3. The A, 1-conditionalization of κP causes the ¬A-worlds to be shifted down one
level; thus κP

A,1 consists of three clusters. By Lemma 4.10, if P
A,1

is to be equiva-
lent to the Jeffrey conditionalization of P, then the ordered family induced by κP

A,1

must have the form, for some 0 < δ1 < 1: PA,1
0 = P0; PA,1

1 = δ1 P1 + (1 − δ1)P2;

and PA,1
2 = P3. Now, let P

A,1 = b0 PA,1
0 + b1 PA,1

1 + b2 PA,1
2 . By the constraints de-

scribed above, if P
A,1

is to be equivalent to the Jeffrey conditionalization, we have

a0

a1
= b0

δ1b1
.

However, if P
A,1

is a proportional revision of P then by Lemma 4.11 we must also
have

a0

a1
= b0

b1
.

This contradicts the fact that 0 < δ1 < 1.
We notice that this counterexample is a very typical form of probability revision,

and most such “run of the mill” revisions will give rise to the same “impossibility”
result. Thus, to treat POCFs as abstractions of absolute p-functions in order to deter-
mine mixture weights δi by appeal to Jeffrey conditioning, one must propose criteria
according to which new additive factors bi should be selected. Thus, rather than re-
stricting the choice of δi, one introduces yet another choice, another parameter that
must be fixed in the updating of POCF. Revision of Popper functions using POCFs
is somewhat unattractive because of the epistemological demands on the holder of
an epistemic state and the provider of evidence by which the epistemic state is to be
updated. For this reason, it is certainly worthwhile exploring simpler alternatives.

4.2 Probabilistic minimal conditional revision Spohn’s revision method allows
for iteration but cannot be applied to to QRMs, for the relative plausibility of worlds is
not sufficient to determine an updated ranking; the actual κ-ranking of a world’s plau-
sibility is necessary. For this reason, the extension of Spohn’s method to POCFs can-
not be applied to Popper functions directly—the ordered family representation of a
Popper function merely determines the relative plausibility of worlds and p-functions,
not the magnitude of plausibility. Methods of iterated revision that work directly with
QRMs are therefore most directly applicable to the problem of Popper function revi-
sion.

Several such proposals have been put forth. Safe contraction (as in Alchourrón
and Makinson [3]), generalized epistemic entrenchment (as in Rott [25]) and the prob-
abilistically motivated system of Schlechta [26] each take a similar approach to the
problem: each assumes the existence of a “global” ordering of entrenchment over all
sentences in the language. For any belief set K the appropriate revision function is
immediately available, and iteration of the process requires no additional apparatus.
These models have the rather severe drawback that any objective belief set K is as-
sociated with a unique revision function. Furthermore, such an ordering determines
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globally preferred belief sets. Hansson [16] proposes that instead a revision method
be associated with belief bases rather than belief sets. Thus, the same belief set may
be revised in different ways if it is generated by different bases in each instance. In
our setting, the revision of a belief set need not be tied to its underlying belief base.13

We will examine in detail the probabilistic extension of the method of minimal
conditional (MC) revision from the author’s [7], [5], [4]. Given a QRM ≤ suitable
for some belief set K, a scheme for iterated revision must produce not only a revised
belief set K∗

A but also a new QRM ≤∗
A. This QRM must satisfy the Basic Requirement

that min(≤∗
A,�) = min(≤, A). MC-revision is based on the intuition that the rest of

the structure of ≤ should be left intact to the greatest extent possible. The set of worlds
min(≤, A) becomes most plausible, and the relative plausibility of all other worlds
remains unchanged.

Definition 4.13 Let ≤ be a QRM. The MC-revision operator ∗ maps ≤ into ≤∗
A,

for any A ∈ L , where (a) if v ∈ min(≤, A) then v ≤∗
A w for all w ∈ W and w ≤∗

A v

iff w ∈ min(≤, A); and (b) if v,w �∈ min(≤, A) then w ≤∗
A v iff w ≤ v.

Given ≤∗
A, the revised belief set K∗

A is defined in the obvious way as those sentences
true on the set min(≤∗

A,�), clearly satisfying the AGM postulates. Iterated revision
of K∗

A proceeds using the new QRM ≤∗
A to guide the process.

We do not elaborate on the properties of MC-revision here. However, we note
that this method produces a new QRM that preserves as much of the original en-
trenchment relation as is consistent with the AGM postulates.14 Also of interest is
the fact that any sequence of revisions A1, . . . An can be reduced to a single unit-
erated revision A; that is, there is a characteristic sentence A ∈ L for the sequence
such that ((K∗

A1
)∗A2

· · ·)∗An
= K∗

A. Furthermore, this A can be determined using the
entrenchment information captured by the original QRM ≤. However, the ordering
((≤∗

A1
)∗A2

· · ·)∗An
is generally not equivalent to ≤∗

A (nor generally does there exist a
single A that has the same effect on the ordering).

The method of MC-revision can be extended to CPMs, the probabilistic coun-
terpart of QRMs, in a rather straightforward way, just as A, k-conditionalization was
extended to POCFs.

Definition 4.14 Let ≤P= 〈≤, P〉 be a CPM. The MC-revision of ≤P by (consis-
tent) A ∈ L is ≤P

A= 〈≤∗
A, P〉, where ≤∗

A is the MC-revision of ≤ by A.

Note that the weighting function P remains unchanged in the move from ≤P to
≤P

A. This is feasible because of the structure of MC-revision: the cluster min(≤, A)

is “split” and its A-part becomes most plausible, whereas all other clusters remain un-
changed. Thus, no clusters are combined, and the relative weights need not be altered
to preserve the appropriate conditional probabilities (given A and ¬A). This stands in
stark contrast with the potentially drastic changes to weights required when revising
POCFs. In particular, we have the following.

Theorem 4.15 Let ≤P be a CPM and P(·↑·) its corresponding Popper function.
Let ≤P

A be the MC-revision of ≤P and PA(·↑·) its corresponding Popper function.
Then P(B↑A ∧ C) = PA(B↑A ∧ C) and P(B↑¬A ∧ C) = PA(B↑¬A ∧ C) for all
B, C.
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Proof: Assume A ∧ C is satisfiable (otherwise P(B↑A ∧ C) = PA,k(B↑A ∧ C) = 1
for all B). We have

P(B↑A ∧ C) =
∑{P(w) : w ∈ min(≤, A ∧ C) and w |= B}∑{P(w) : w ∈ min(≤, A ∧ C)} .

We also have min(≤P
A, A ∧ C) = min(≤, A ∧ C). Since the weights of the worlds in

min(≤, A ∧ C) is unchanged, P(B↑A ∧ C) = PA(B↑A ∧ C). An analogous argu-
ment can be made for PA(B↑¬A ∧ C).

Corollary 4.16 P(B↑A) = PA(B↑A) and P(B↑¬A) = PA(B↑¬A).

Corollary 4.17 PA(B↑�) = P(B↑A).

It is easy to see, as a result, that MC-revision of of ≤P determines a probability re-
vision operation satisfying postulates (P1) – (P5) if we take P to be the absolute p-
function induced by ≤P and P∗

A to be the p-function induced by ≤P
A.

We can apply the operation of MC-revision directly to the minimal, orthogo-
nal ordered family of p-functions induced by a CPM. Intuitively, a family P0, . . . Pn

mutates into the sequence Pk(·|A), P0, . . . , Pk−1, Pk(·|¬A), Pk+1, . . . , Pn, where Pk

is the first p-function in the original sequence that gives A positive probability. Of
course, if Pk(¬A) = 0, the term Pk(·|¬A) is deleted from the sequence.

Definition 4.18 Let {Pi : 0 ≤ i ≤ n} be the ordered family of p-functions induced
by some CPM ≤P. Let Pk be the minimal A-permitting p-function in this sequence
for some consistent A ∈ L . The MC-revised family of p-functions {PA

i } is defined as
follows:

PA
0 = Pk(·|A)

PA
i+1 = Pi for 0 ≤ i < k

PA
k+1 = Pk(·|¬A) if Pk(¬A) > 0

= Pk+1 if Pk(¬A) = 0
PA

i+1 = Pi for k < i ≤ n, if Pk(¬A) > 0
= Pi+1 for k < i ≤ n, if Pk(¬A) = 0.

The following theorem is immediate.

Theorem 4.19 Let ≤P be any CPM that induces the ordered family {Pi}. Then the
MC-revision of ≤P by A induces the MC-revised family of p-functions {PA

i }.
There are some crucial differences between MC-revision and regular A, k-con-

ditionalization. First, since clusters in a CPM can only be split by MC-revision, the
need for mixture factors (the δi used above) is obviated. Furthermore, revision by A
need not be accompanied by a degree of entrenchment or “weight of evidence” pa-
rameter k as is the case for A, k-conditionalization. Finally, since the result of MC-
revision is determined solely by the structure of a CPM or its ordered family represen-
tation (and not by the magnitudes of plausibility measures), it is well-defined for any
Popper function and uniquely determines a revised Popper function. In general, we
will take the MC-revision of a Popper function to be the Popper function correspond-
ing to the MC-revision of its minimal, orthogonal ordered family representation.

One drawback of MC-revision is that new beliefs are accepted with what might
be termed a “minimal” degree of entrenchment. Only the most plausible A-worlds
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are shifted in relative plausibility; if some new fact B is learned subsequently and
¬B ∈ K∗

A then A is at great risk of being retracted.15 However, without degrees of
entrenchment whose magnitudes can be compared, this might be the best we can hope
for. Furthermore, the use of MC-revision to revise Popper functions has the follow-
ing appealing property: subject to the constraints of (P1) – (P5), the MC-revision of a
Popper function changes as few conditional probabilities as possible. In other words,
MC-revision represents the minimal possible change of a Popper function required to
capture revision by A.16

Lemma 4.20 Let P(·↑·) be a Popper function and let PA(·↑·) be the Popper func-
tion determined by the MC-revision of P by any consistent A ∈ L . If P(B↑A) = 0
then PA(C↑B) = P(C↑B) for all B, C ∈ L .

Proof: We assume B, C are consistent, for the lemma holds trivially otherwise. Let
{Pi} be the ordered family of p-functions induced by P and let {PA

i } be the revised
ordered family determining PA. Denote by PC (resp. PA

C ) the minimal C-permitting
p-function in {Pi} (resp. {PA

i }). Since P(B↑ A) = 0, we have that PB and PA are
distinct. By definition of {PA

i }, we are guaranteed that PB = PA
B ; thus, PA(C↑B) =

P(C↑B) for all B, C.

Lemma 4.21 Let P(·↑·) be a Popper function and let PA(·↑·) be the Popper func-
tion determined by the MC-revision of P by any consistent A ∈ L . If P(B↑A) > 0
then PA(C↑B) = P(C↑A ∧ B) for all B, C ∈ L .

Proof: The proof proceeds as that of the previous lemma. By definition of {PA
i },

we have that PA
0 = PA(·|A). Since P(B↑A) > 0, we have PA(B|A) = PA

0 (B) > 0.
Thus PA

B = PA
0 and PA(·↑B) = PA

0 (·|B) = PA(·|A ∧ B). So, we have PA(C↑B) =
P(C↑A ∧ B) for all B, C.

Notice that the conditional probability PA(C↑B) may be different from P(C↑B)

after revision in the case where P(B↑A) > 0, as indicated by Lemma 4.21. However,
these changes are required if the revision function applied to the induced absolute
function P(·|�) is to satisfy postulate (P5). By Lemma 4.20 all other conditional
probabilities are unchanged. Thus, we are guaranteed that MC-revision minimally
changes the Popper function. Formally, we say that P′ is more similar to P than P′′

is just when

{〈A, B〉 : P′′(A↑B) = P(A↑B)} ⊂ {〈A, B〉 : P′(A↑B) = P(A↑B)}.

Theorem 4.22 Let ∗ be a revision function satisfying (P1) – (P5). Let P(·↑·) be
a Popper function with underlying p-function P(·|�), and let P′(·↑·) be a Popper
function suitable for P∗

A. Then P′ is maximally similar to P iff P′ is the MC-revision
of P.

Finally, we see that the information content of the sequence of underlying p-
functions induced by a sequence of revisions is nondecreasing.

Definition 4.23 Let P, Q be p-functions. We say P is less informative than Q iff
Q can be obtained from P by nontrivial conditionalization; that is, if Q = P(·|A) for
some A such that 0 < P(A) < 1.
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Proposition 4.24 Let P(·↑·) be a Popper function and P = P(·↑�) its underlying
p-function. Let PA1 , (PA1 )A2 , . . .(((PA1 )A2 ) · · ·)An ) be the sequence of p-functions
induced by the revision of P by A1, . . . , An. Then (((PA1 )A2 ) · · ·)Ai ) is not less in-
formative than (((PA1 )A2 ) · · ·)A j ) if i ≥ j.

5 Concluding remarks We have presented some considerations on the iterated re-
vision of probability functions. We have described two possible models of the pro-
cess. The first is based on a probabilistic extension of Spohn’s OCFs and updating
mechanism. Difficulties arise due to the epistemological demands placed on the epis-
temic state of POCFs and on the provider of evidence. It remains to be seen if rea-
sonable criteria can be proposed for the selection of mixture factors required to com-
bine p-functions in the manner dictated by Spohn’s proposal. A second model, MC-
revision, is based more directly on the structural properties of Popper functions and
allows for minimal changes in an agent’s conditional probabilities. Unfortunately,
this model does not allow degrees of entrenchment to be associated with evidence
(nor could it deal with those if they were provided). As such, the minimal and weak-
est change to the Popper function is adopted. We conclude that the revision of prob-
abilistic belief states is not as well understood as we might have imagined and that it
is not as well behaved as we might hope.
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NOTES

1. The presentation is based on the ordering model and logic described in the author’s [9],
[6]. In our finite setting, this model has no essential differences from Grove’s [14] system
of spheres model.

2. If we relax the finiteness restriction, this condition can be guaranteed by imposing a cer-
tain type of well-foundedness constraint on ≤.

3. More accurately, an AGM revision function is representable by a collection of models
{≤}, with one ordering for each belief set K. Note that if A is unsatisfiable, min(≤, A) =
∅ and K∗

A = L .

4. Note that notions such as entrenchment or plausibility of sentences do not make any such
distinction between indeterminate propositions.

5. We will consistently use P(·|·) to denote standard conditional probability functions and
P(·↑·) to denote nonstandard, Popper functions.

6. We should point out that since CPMs assign nonzero weight to every element of W , they
can represent only Popper functions such that no consistent A is abnormal; that is, we
must have P(¬A|A) = 0. To capture all Popper functions, we can simply relax the re-
quirement of nonzero weight, thus allowing abnormal elements. We will not be con-
cerned with such functions in the sequel.

7. We do not address here the issue of how one determines appropriate acceptance rules.
Below we show how such acceptance rules can interpreted in a very strong probabilistic
way that guarantees this to be the case; but in general decision-theoretic criteria should
be brought to bear (cf. Poole [24], Boutilier [8]).
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8. One example uses standard acceptance rules so that P∗
A(B) = k ensures that P(B|A) >

ek · (1 − ε) for some small ε > 0. A variant of Adams’s [1] semantics for conditionals
can be used to verify that such an interpretation can be given and that it corresponds to
an additive mixture (where the weights ai are a function of ε).

9. The restriction that k ≥ 0 is made for convenience of presentation. The A, k-condition-
alization of κ can be captured by ¬A,−k-conditionalization if k < 0.

10. In particular, we consider only revision by consistent A (see also [22]). Gärdenfors per-
mits revision by some inconsistent A to result in the inconsistent p-function P⊥.

11. One exception pertains to A, 0-conditionalization. Such a revision is best thought of as
contraction as it ensures that both A and ¬A are considered completely unsurprising.
The revised POCF κP

A,0 induces a new absolute p-function PA,0(·) = PA,0(·↑�) whose
structure is influenced considerably by δ0. In particular, we have PA,0(A) = δ0 and
PA,0(¬A) = (1 − δ0). Thus, regular A, 0-conditionalization is a form of weighted con-
traction that might be viewed as some type Jeffrey conditionalization setting P(A) = δ0.

12. A proof is based on the same considerations as those used in the proof of the lemma,
namely, that the conditional p-functions P(·|A) and P(·|¬A) must remain unchanged.

13. Of course, such ties can be added. Work on base contraction, including Hansson [15],
[16], and Fuhrmann [11], can be viewed in this light.

14. We refer to [7], [4] for details; equivalently, MC-revision produces the minimal possible
change in an agent’s set of conditional beliefs.

15. A similar point is made by Spohn [28] who briefly describes and dismisses a proposal
much like MC-revision for QRMs.

16. By “minimal change” we mean that PA(C↑B) = P(C↑B) for as many C, B as possible,
where PA is the Popper function induced by MC-revision of P. Other notions of minimal
change, as applied to p-functions, include the cross-entropy measure of a distribution
and its revised counterpart (see Williams [32], van Fraassen [31]). Unfortunately, such a
measure is not directly applicable to Popper functions—unless we give them a classical
interpretation as in Section 3. In the case where such a measure is applicable—when
P(A↑�) > 0: both MC-revision and A, k-conditionalization hold up to the test with
respect to the absolute p-function P(·↑�) > 0, for both perform ordinary conditioning
by A on this p-function, and therefore minimize cross-entropy.
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