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Arithmetic With Satisfaction

JAMES CAIN

Abstract A language in which we can express arithmetic and which contains
its own satisfaction predicate (in the style of Kripke’s theory of truth) can be
formulated using just two nonlogical primitives{the successor function) and
Sat (a satisfaction predicate).

Let £ be a language with vocabulary:
,(O3-v = st

plus the variablesg, X1, X, .... A term is a variable followed by zero or more oc-
currences of. An atomic formula is any formula of the forg = t;, Sat(tp), or

Sat(to, ..., tj) (for any finite string of termg, . . ., t;). Nonatomic formulas are de-
fined in the normal way. (Note that, though for simplicity we3at take any number

of terms, this is not necessary for our purposes. We could consider just a 5-place pred-
icate,Sat(Xo, .. ., X4). More will be said about this later.)

We will be concerned with partial interpretations afin which the variables
range over the natural numbefss interpreted as the successor function, and a dis-
joint pair of sets(S,, S,) of finite sequences of natural numbers is assigneshto
Let L(S;, S) represent such an interpretationfLet s be an infinite sequence of
natural numbers, and Ist be the corresponding assignment of natural numbers to
terms (thuss*(x;) = s(i) ands*(t') = the successor & (t)). Then we say:

L(S, ) E Sat(to, ..., t)[s]

(i.e., L(S, S) satisfieszat(tg, ..., tj) with g) iff (s*(tp),...,s"(tj))) € S, . Onthe
other hand, we say:

L(S, ) F St(t, ..., ti)]9]

(i.e., L(S, S) falsifiesSat(t, . .., tj) with g) iff (S*(tg),...,s"(t;))) € S. And fi-
nally, L(S;, $) leavesat(ty, . . . tj) undefined with respect ®if L(S;, $) neither
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satisfies nor falsifieSat(to, . . . tj) with s. We evaluate nonatomic formulas using the
Strong Kleene scheme. Thus:

L(S1, &) = —~AlS[(L(S1, &) 5 ~Als])

iff
L(S1, $) = AlSI(L(S1, ) = AlsD.
Similarly:
L(S1, &) = (AV B)[s(L(S, &) = (AV B)[g])
iff

L(S, $) E Alslor L(S1, $) = B[8](L(S1, $) = Als] and L(S;, ) = B[s]).

Finally:
L(S1, $) E IXNA[S|(L(S, ) = I Als])
iff

L(S,S) E Ar]L(S, S) = Ar]) for some (every) sequence
such that for j £1i,s(j) =r(j).

Welet (A A B) abbreviate~(—Av —B).

Say that sequenceextends (ng, . .., nj) provided, forj <i, s(j) = nj. We say
thatL(S;, ) = Al(ng, ..., m)]iff, for everysextendingng, ..., n), L(S, ) &
Als]. L(S1, )5 A[(no, ..., n)]iff, for everysextending(ng, ..., N, L(S, )=
AlS).

We will be interested in those interpretations 6fin which Sat can be under-
stood as expressing a satisfaction predicate for the language. Assume that we have
a Godel numbering of the formulas & by the natural numbers (we place no fur-
ther restrictions on the @lel numbering—it can even be nonrecursive). We say that
D(S,S) = (%, %), whereS; = {(ng, ..., nj)|ng is the Gdel number of a for-

mula A such thatA contains at most, ..., Xj_1 as free variables and(S,, $) =
ANy, ..., m)]}, and S = {(ng, ..., nj)| eitherng is not the @del number of a for-
mula which contains at mosy, . . ., X_; free, orng is the Gdel of such a formula,

A andL(S, $) 5 Al(ng, ..., n)]}. It should be clear that i, and S, are disjoint
then® (S, S) will be a disjoint pair. We say th&at expresses a satisfaction pred-
icatefor L(S,, ) iff ®(S, ) = (S, $), in which case we say that,, S) is a
fixed point of ® and L(S;, ) is afixed point language.

Say that(S, ) < (3, ) iff § € S andS, € S4. Clearly @ is monotonic
(in the sense that ifS;, ) < (S35, &) thend® (S, $) < O(S, &), and(A, A) <
@ (A, A) (whereA is the empty set). It follows thab has fixed points, including a
smallest fixed point.

We need to define the notion of definability in a partially interpreted language.
We say that ani-place relationR, is weakly defined in L(S;, S,) by a formulaA pro-
vided thatA contains atmost, . .., Xi_; freeand.(S;, S) = A[s] for exactly those
swhich extend elements &. Ris strongly defined by Aiff it is weakly defined byA
andN' — Ris weakly defined by~ A. Ris weakly (strongly) definable iff it is weakly
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(strongly) definable by some formula. A function is said to be strongly definable iff its
graph is. (To handle definability of a s&,of numbers, we tregbas a set of 1-tuples
and let(n) =n.)

Theorem 1  Every relation definablein the first order language of arithmetic (with
vocabulary: + x 0 =)isstrongly definablein any fixed point language L(S;, $).

Proof: Suppose that(S;, ) is a fixed point language. Sind® S;, S;) contains
= and’, it will suffice to show that the relations=0,Xx+y=z andxx y =1z
are strongly definablex = 0 is o course definable by3y(x = y'). We show that
addition is definable as follows.

Consider the formula:

(X1 =0 A X2 = Xp) V IxgTxs (X1 = Xy A SaAt(X3, Xo, Xa, X5, X3) A Xo = Xg).

Suppose the &el number of this formula isn. Let SUM(xg, X1, Xo) be the for-
mulaSat(m, Xg, X1, X2, M) (which in turn abbreviates the formuag (—3x7Xs = X; A

Sat(x™, Xo, X1, X2, X™))).

Jum(Xg, X1, X2) strongly defines the addition function. We prove this by in-
duction. Suppose that we are givap We first need to show that for eaah
andny, ng + Ny = N iff L(S;, $) = UM(Xo, X1, X2)[(No, N1, N2)]. Supposen; =
0. L(S1, &) E umM(Xg, X1, X2)[{Ng, 0, nx)] iff (m, ng, 0, Ny, m) € S, which holds,
sinceL(S;, $) is a fixed point, iff

L(S,S) E (x1=0AX =XV IxIxXs (X1 = Xy A Sat(X3, X0, X4, X5, X3) A
X2 = X5)[(Ng, 0, N2, M)],

which in turn holds iff
L(S1, S) E (X1 = 0A X2 = Xg)[(No, 0, np, m)],

which holds iffng + 0 = n,. Supposen, = k+ 1. L(S;, ) &= UM(Xg, X1, X2)[ (N,
k+ 1, np)]iff (m, ng, K+ 1, np, m) € S;, which holds, since&l(S;, $) is afixed point,
iff

LS, ) E (xx=0AX2=Xo) V IxgIxs (X1 = X4 A Sat(X3, X0, X4, X5, X3) A
X2 = X5)[(No, K+ 1, np, m)],
which holds iff
L(S1, $) = IxgTxs (X1 = Xy A SAt(X3, X0, X4, X5, X3) A X2 = X5)[(No, K+ 1, N2, m)],
which holds iff
L(S1, ) = IxgTIXs (X1 = X3 A SUM(Xo, X4, X5) A X2 = X5)[(No, K+ 1, n2)],

which, by the induction hypothesis, holds i + (k + 1) = n,.
We next need to show that

L(S,S) E  —Sum(Xo, X1, X2)[(No, Ny, np)] iff ng+ny # ny
i.e., L(S1, $) = UM(Xo, X1, X2)[(No, N1, N2)] iff ng+ Ny # ny.
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The proof is again by induction, only now we replaeavith o, € S, with € S,
and= n, with # n,. The case is similar fokx. Take the formula:

(X1 = 0A X2 = 0) Vv IxgIXs (X1 = X A SAt(X3, X0, X4, X5, X3) A UM(Xg, X5, X2)).

Suppose that this formula ha® @l numbek. Sat(k, Xg, X1, X2, k) definesx in any
fixed point. The proof is parallel to the case for addition.

Remark 2 Note that the satisfaction predicate is used in the above proof only in
the form Sat(t, t1, to, t3, t4). We could have letL contain just a 5-place predicate
Sat(Xg, X1, X2, X3, X4) inaddition td’. Then, given the theorem, the language will con-

tain adequate resources to code finite sequences and talk about its own syntax. One
will then be able to define a more general notion of satisfaction as a relation between
a Godel number for a formula and a code for a finite sequence. The approach taken
in the paper is simpler and less atrtificial.

Remark 3 The proof also works if we use the van Fraassen supervaluation scheme
instead of the Strong Kleene scheme. On the other hand, the proof will not go through
if the Weak Kleene scheme is used. This is so because any formula of the form
. 3X( L Sat(x, L. L) L. will be paradoxical (i.e., neither satisfied nor falsified in any
fixed point by any sequence) since for some instaisags, . . .) is undefined (e.qg.,
instances in which the value &fis a paradoxical sentence).

Remark 4  Of course the strength of the fixed point languages go well beyond that
of arithmetic, since they contain their own satisfaction predicates. So, for example, in
the minimal fixed point the’li relations are weakly defined and the hyperarithmetical
relations are strongly defined.

NOTES

1. Of course there will be no fixed point in whicat is totally defined. The formula
—Sat(Xg, Xo) (cf., “Xg is heterological”) will be neither satisfied nor falsified by its own
Godel number in any fixed point. On the other haBak(xo, Xo) (cf., “Xg is autologi-
cal”) will sometimes be satisfied by its ownd@el number, sometimes falsified by it,
and sometimes neither satisfied nor falsified by it.

2. The basic trick involved in the proof of the theorem (the construction of appropriate self-
referential formulas without the use of a substitution function) came to me while con-
templating remarks of Kripke on diagonalization and the recursion theorem. It has been
brought to my attention that Vissﬂ[ pp. 666—667 also uses this trick in his proof of
the "Prediagonal Lemma for SAT,” though he does so while considering a language in
which itis already given that a pairing function is available Saiexpresses a two-place
relation between a &@lel number for a formula and a code for a finite sequence.
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