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Ontologically Minimal
Logical Semantics

UWE MEIXNER

Abstract Ontologically minimal truth law semantics are provided for various
branches of formal logic (classical propositional logic, S5 modal propositional
logic, intuitionistic propositional logic, classical elementary predicate logic,
free logic, and elementary arithmetic). For all of them logical validity/truth
is defined in an ontologically minimal way, that is, not via truth value assign-
ments or interpretations. Semantical soundness and completeness are proved
(in an ontologically minimal way) for a calculus of classical elementary predi-
cate logic.

1 The aim of this paper is to develop a workable semantics for various branches
of logic that is minimal in its ontological assumptions. Reference will be restricted
as far as this is feasible to linguistic entities (including finite, but not infinite sets of
linguistic entities);1 these will figure as linguistic types, which are assumed to be un-
problematic abstract entities. (This assumption may be questioned, of course, but it
will not be questioned here.) If it becomes necessary to go beyond linguistic entities,
then the enlargement of ontological scope will be kept as small and as unproblem-
atic as possible. The reader is advised that he or she will find here a presentation of
semantical methods which are compatible with ontological minimality taken in the
sense described but not new interpretations of the logical constants. All interpreta-
tions formulated in the paper are well known, and the central semantical concept is
in fact simply truth. Hence, indeed, well known truth conditions for the logical con-
stants will be presented here; but these are well known truth conditions with a dif-
ference to them: they carry as little ontological weight as possible. (Sticking to truth
conditions distinguishes my approach from proof-theoretic semantics which charac-
terizes logical constants—in a sense completely—by Gentzen-style introduction and
elimination rules.)

The envisaged ontological frugality differs sharply of course from the opulence
of model-theoretic semantics, especially of the model-theoretic semantics of modal
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logic (possible worlds, sets of possible worlds, etc.). This formidable ontological ma-
chinery invoked is not otiose. Rather it is responsible for the unquestionable power
of model-theoretic semantics. Nevertheless, can we not do without it (at least in some
central areas of logic)?

A motivation similar to the one displayed in this article can be found in Le-
blanc [4]. I would like to stress two differences between Leblanc’s approach and
mine, and between truth value semantics and ontologically minimal semantics gen-
erally. Both are logical semantics, that is, semantics employed for the foundation of
logical systems. But ontologically minimal semantics does even without truth value
assignments which are essential to truth value semantics, and a fortiori it does with-
out sets of truth value assignments, which in addition to truth value assignments are
essential to truth value semantics for modal logics. Truth value assignments, if speci-
fied for infinite sets of (atomic) sentences, are functions with infinite domains, that is,
infinite sets of ordered pairs. This is too much for ontologically minimal semantics.
It does, moreover, without infinite sets of object language sentences; Henkin proofs
of completeness are thus out of the question. (“It does without” these entities in the
sense that they are not quantificationally referred to; they are not values of metalin-
guistic variables.) Full-blown model-theoretic semantics (with ontological imagery
taken seriously or not) and truth value semantics have in common the unscrupulous
use of infinitary set theory, which will be avoided here.

It will be shown here how logical validity is to be defined in the framework
of ontologically minimal semantics (OMS) for a representative range of object lan-
guages without talk of “assignments” or “interpretations.” Completeness proofs in
OMS (here called “proofs of 2-completeness”) hinge on the possibility of standard-
izing metalinguistic deductions demonstrating the logical validity of some formula F
to such an extent as to be able to translate them (in a wide sense of “translate”) into
a proof of F in the calculus concerned. Along these lines a completeness proof in
OMS for a calculus of classical elementary predicate logic (including truth-functional
propositional logic) will be given (in Section 5).

Frege defined logic as the science concerned with the laws of being true. Curi-
ously, logic in its standard practice, though being indebted to Frege in so many ways,
is at variance with Frege’s definition of it: on the object language level the concept
of truth does not occur at all (and if it does, it is redundant), yet on the metalanguage
level there are no laws of truth, but rather (recursive) definitions of truth. The differ-
ence is clear: laws of truth are themselves true, whereas definitions of truth can be
only more or less adequate to certain standards.

OMS in general will be ontologically minimal valence law semantics, but I will
develop (to some extent) only a particular branch of it, namely ontologically mini-
mal truth law semantics (truth is one valence, but not the only valence; provability is
another). The central act of the ontologically minimal truth law semantics of a given
language is the stating of the truth laws in Frege’s sense of that language with as few
ontological commitments as possible. Frege of course, meant by “die Gesetze des
Wahrseins” not all laws of truth (not, for example, “if ‘Bo is a dog’ is true, then ‘Bo
is an animal’ is true”), but only the laws of truth for the logical constants. Hence
the truth laws in Frege’s sense of a given language are the truth laws for the logical
constants in it (relative to that language: in the meaning they have in it).
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However important from a general philosophical point of view it is that model-
theoretic semantics is able to define the truth predicate for so many languages (indeed
this is its original raison d’être), a definition of truth is unnecessary for capturing the
logic of not a small number of these languages. The essential things are their truth
laws, not their truth definition. A truth definition must also provide truth conditions
for the basic (simplest) sentences of a given language; those truth conditions, how-
ever, in many cases, have no bearing on its logical principles (not even in the case
of the language of classical elementary predicate logic). So, why bother? Because
we do not have a grip on the truth laws without having the truth definition? This is
evidently not true; it is rather the other way round.

I suggest that the distinction between a lexi-logical and an onto-logical (inter-
preted) language is to be sought in this: the truth laws of a lexi-logical language can
be completely stated without referring to other than linguistic entities (hence they can
be stated within the framework of OMS); this is not the case with an onto-logical lan-
guage. It will be shown in this paper for several languages that they are lexi-logical
in the sense of the definition given, most notably for the language of modal propo-
sitional logic (and, in a footnote, for the language of elementary arithmetic). Others
will prove to be onto-logical.

2 The basic concepts of truth law semantics can be conveniently introduced and ex-
emplified in the simple case of truth-functional propositional logic (mutatis mutandis
the remarks here apply to all the logical languages considered). The object language
L 1 is constituted as follows:

1. p, p′, p′′, . . . are the atomic formulas of L 1;

2. if s and s′ are formulas of L 1, then ¬s and (s → s′) are formulas of L 1;

3. all formulas of L 1 are expressions according to 1 and 2.

The formulas of L 1 are taken to be in some way interpreted; thus it is more ap-
propriate to speak of “sentences of L 1” instead of “formulas of L 1.” Obviously, truth
laws can be formulated only for an interpreted language. In particular, “¬” is taken
to be synonymous to “it is not the case that,” “→” is taken to be synonymous to “ma-
terially implies,” and the atomic sentences of L 1 are each taken to be synonymous to
some sentence of ordinary language.

The metalanguage (and the meta-metalanguage) has variables x, y, z, z′, . . . for
the sentences of L 1 in its universe of discourse. The sentences of L 1 figure in the met-
alanguage (and in the meta-metalanguage) as their own names (outer brackets are usu-
ally omitted), and “¬” and “→” figure in the metalanguage as functional expressions
which form names of sentences of L 1 from names of sentences of L 1. The metalan-
guage includes the truth predicate: T[x] (which is used in the meta-metalanguage as a
functional expression forming names for sentences of the metalanguage out of names
for sentences of L 1). The metalinguistic logical means are classical first-order pred-
icate logic with identity and description, plus the logic of finite sets (including finite
sequences), plus the purely syntactical principles which are true of L 1 (its syntactical
description), plus the principle of complete induction on the number of occurrences of
basic logical constants in sentences of L 1, on the length of proof in a calculus relative
to L 1, and, if necessary, on other syntactical parameters. The metalinguistic logical
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means needed for the purposes at hand can be precisely specified and are here pre-
supposed as being precisely specified (but I will not bother to go through the moves);
consequently I can presuppose a precise notion of what constitutes a (truth conserv-
ing) logical deduction or derivation in the metalanguage.

The metalinguistic quantifiers are “∀x” and “∃x.” Binding strength diminishes
from left to right in the sequence: “not,” “and,” “or,” “if, then,” “iff” (the latter are
taken in the sense of material implication and equivalence).

The truth laws for “¬” and “→” relative to L 1 are completely and succinctly
stated thus:

T(L 1,¬,→)

L 1¬ ∀x(T[¬x] iff not T[x])
L 1 → ∀x∀y(T[x → y] iff not T[x] or T[y]).

This is the logic of L 1; there is no more to it (but it can be formulated in a differ-
ent, albeit—as we shall see—less complete manner). The logic of L 1 simply contains
the truth conditions (relative to L 1) for classical negation and material implication.
But note that these truth conditions are not, as is normally done, stated in the con-
text of a recursive definition of “x is true under the truth value assignment f ”; they
are stated without reference to truth value assignments as general (true) laws for the
sentences of L 1.

A calculus K relative to L 1 consists in a finite number of axiom schemata and
a finite number of basic rule schemata which are syntactically adequate for sentences
of L 1 (either axiom schemata or basic rule schemata may be missing), and whose
instantiations are understood to be sentences and sequences of sentences of L 1 only.
All and only sentences of L 1 fitting an axiom schema of K are taken to be axioms
of K : sentences of L 1 unconditionally generable in K . All and only sequences of
sentences of L 1 fitting a rule schema of K are taken to be basic rules of K , each
stating that a certain sentence of L 1 is generable in K if certain other sentences of
L 1 (maybe only one other) are generable in it.

A well known example of a calculus relative to L 1 is:

K 1

A1 A → (B → A)

A2 (A → (B → C)) → ((A → B) → (A → C))

A3 (¬A → ¬B) → (B → A)

R1 A, A → B � B

To give an extremely different example: the calculus K 2 that has no rule schemata
and whose only axiom schema is

B1 A

is also a calculus relative to L 1, a calculus in which every sentence of L 1 is generable.
The truth law transformation of a calculus K relative to L 1, TLT(K ), is more

effectively described by examples rather than by a definition (which can, of course,
be given).
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TLT(K 1)

TLT(A1) ∀x∀yT[x → (y → x)]
TLT(A2) ∀x∀y∀zT[(x → (y → z)) → ((x → y) → (x → z))]
TLT(A3) ∀x∀yT[(¬x → ¬y) → (y → x)]
TLT(R1) ∀x∀y(if T[x] and T[x → y], then T[y])

TLT(K 2)

TLT(B1) ∀xT[x]

We are now ready to introduce the central semantical notions that concern the
relations of an L 1-calculus to the L 1-truth laws. Let K be a calculus relative to L 1.

D1 K is 1-sound := TLT(K ) is logically derivable [in the precise sense defined
by the presupposed specification of the metalinguistic logical means] from
T (L 1,¬,→)

D2 K is 2-sound := ∀x(if x is generable in K , then T[x] is logically derivable from
T (L 1,¬,→))

D3 K is 1-complete := T(L 1,¬,→) is logically derivable from TLT(K )

D4 K is 2-complete := ∀x(if T[x] is logically derivable from T (L 1,¬,→), then
x is generable in K )

The definition of 2-soundness and 2-completeness become more familiar if we re-
place “T[x] is logically derivable from T(L 1,¬,→)” by “x is logically valid”:

D5 x is logically valid := T[x] is logically derivable from T(L 1,¬,→).

In general, a sentence of a language is logically valid iff the metalinguistic sen-
tence saying that it has the valence concerned can be logically derived from the va-
lence laws of that language. Hence, if the valence concerned is truth, as it is here, a
sentence of a language is logically valid (or logically true) iff the sentence saying that
it is true can be logically derived from the truth laws (the logic) of that language. This
appears to be a completely adequate definition schema for logical validity/truth. D5

is simply a specification of that schema: a definition of logical validity for L 1 that, in
accordance with the aims of OMS, does without the usual quantification over nonde-
numerably many truth value assignments (functions that are themselves infinite sets)
to the atomic formulas of L 1.

In the spirit of D5 we have:

D6 x is logically consistent := not T[x] is not logically derivable from
T (L 1,¬,→).

TLT(K 1) can easily be logically derived from T(L 1,¬,→); hence K 1 is 1-sound.
K 2, on the other hand, is not 1-sound: the negation of TLT(K 2) can be logically de-
rived from T (L 1,¬,→). T[¬p] iff not T[p] by L 1¬; hence not T[¬p] or not T[p];
hence ∃y not T[y]. Thus K 2 could be only 1-sound, if T(L 1,¬,→) were logically
inconsistent (if a sentence and its negation were logically derivable from it), which it
is not.

Since K 1 is 1-sound, it is also 2-sound: any proof in K 1 for x can (in an obvious
manner) be translated into a logical derivation of T[x] from TLT(K 1); hence by the
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1-soundness of K 1 T[x] is logically derivable from T(L 1,¬,→) if x is generable in
K 1. But K 2 is neither 1-sound, nor 2-sound: ¬(p → p) can be generated in K 2; but
if T[¬(p → p)] were logically derivable from T(L 1,¬,→), T (L 1,¬,→) would
be logically inconsistent, which it is not.

There is no L 1-calculus K which is 1-complete: if T(L 1,¬,→) were logi-
cally derivable from TLT(K ), ∃y not T[y] would have to be logically derivable from
TLT(K ) (as we have seen above). But TLT(K ) itself is logically derivable from
∀yT[y]: given our specification of the concept of a calculus relative to L 1, the truth
law transformation of any such calculus is trivially derivable from ∀yT[y]; hence ∃y
not T[y] would have to be a logical truth (of the metalanguage), which it is not. Thus
it is seen that every L 1 calculus is in a manner an incomplete statement of the truth
laws of L 1, as has been indicated above.

Both K 1 and K 2 are, however, 2-complete. This is trivial in the case of K 2; not
so in the case of K 1. If we assume co-extensionality for calculi relative to L 1 between
2-completeness and its analogue in truth value semantics, the 2-completeness of K 1

is already not to be doubted because we have proofs for the fact that K 1 possesses
the analogue of 2-completeness in truth value semantics: every sentence of L 1 which
is true under all truth value assignments to the atomic sentences of L 1 is generable
in K 1. But the co-extensionality of the two concepts for all calculi relative to L 1

remains itself to be proved; this is left for another occasion. Here the 2-completeness
of K 1 will be proved directly within the framework of OMS. The general strategy of
proofs of 2-completeness has been sketched in Section 1. The actual proof, which is
an application of that strategy, is included in the demonstration of the 2-completeness
of the calculus of elementary predicate logic K 8 in Section 5.

There is an approximation to 1-completeness which is introduced by the follow-
ing definition (K being an L 1-calculus):

D7 K is 3-complete := T(L 1,¬,→) is logically derivable from TLT(K) + the
atomic restriction of T(L 1,¬,→).

The atomic restriction of T(L 1,¬,→) is obtained by restricting L 1¬ and L 1 → to
atomic sentences of L 1. There is reason to hold that 3-completeness is a good ap-
proximation to 1-completeness: the atomic restriction of T(L 1,¬,→) is a small and
in a clear sense fundamental part of the total content of T(L 1,¬,→). If T(L 1,¬,

→) can be obtained from TLT(K ) by presupposing the small foundation of the for-
mer, this can be rightly regarded as a close and hence good approximation to 1-
completeness.

In particular cases not even the entire atomic restriction of T(L 1,¬,→) is
needed as a stepping-stone (as it were) for obtaining T(L 1,¬,→) from TLT(K ).
So it is in the case of K 1: for showing that K 1 is 3-complete the atomic restriction
of L 1¬, ∀x(if At(x), then (T[¬x] iff not T[x])), is sufficient.

1. ∀x∀y(if T[x → y], then not T[x] or T[y]) is logically derivable from TLT(R1).
2. ∀x(if T[x], then not T[¬x]): assume T[x] and T[¬x], hence by ∀z∀yT[¬z →

(z→y)] (which follows logically from TLT(K 1), since ¬A→(A → B) is gen-
erable in K 1) and TLT(R1): ∀yT[y]; but this contradicts ∀x(if At(x) and T[x],
then not T[¬x]): because of At(p), we obtain not T[p] or not T[¬p], hence ∃y
not T[y]. (The purely syntactical principles true for L 1—for example the syn-
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tactical principle just used, At(p)—belong to the metalinguistic logic; hence
metalinguistic logical derivability is to be taken as defined relative to them.)

3. ∀x(if not T[x], then T[¬x]):

• Induction basis: ∀x(if At(x) and not T[x], then T[¬x]);
• Induction step: assume ∀x(if �(x) ≤ n and not T[x], then T[¬x]) (in-

duction assumption: IA); �(x) is the logical degree of x, the number of
occurrences of basic logical constants in x; At(x) := �(x) = 0; assume
�(z) = n + 1;

(a) z = ¬y; assume not T[z]; hence not T[¬y], hence by IA T[y]; A→ ¬¬A
(that is, all its instantiations) can be generated in K 1; hence ∀xT[x →
¬¬x] can be logically deduced from TLT(K 1); hence by TLT(R1) T[¬¬y],
hence T[¬z];

(b) z = (y → y′); assume not T[z]; hence not T[y→y′]; from not T[y →
y′] by TLT(A1) and TLT(R1), not T[y′]; hence T[¬y′] by IA; from not
T[y → y′] by ∀x∀z′T[¬x → (x → z′)] and TLT(R1) not T[¬y]; hence
T[y] by IA; from T[y] and T[¬y′] by TLT(R1) and ∀x∀z′T[x → (¬z′ →
¬(x → z′))], which is logically derivable from TLT(K 1) since A →
(¬B → ¬(A → B)) is generable in K 1, T[¬(y → y′)], hence T[¬z].

4. ∀x∀y(if not T[x] or T[y], then T[x → y]): assume not T[x], hence by 3 T[¬x],
hence by ∀x′∀zT[¬x′ → (x′→z)] and TLT(R1) T[x → y]; assume T[y], hence
by TLT(A1) and TLT(R1) T[x → y].

It has become clear in this proof that the following L 1 calculus is also 3-com-
plete.

K 3

A1 A → (B → A)

A′
2 ¬A → (A → B)

A′
3 A → ¬¬A

A′
4 A → (¬B → ¬(A → B))

R1 A, A → B � B

Moreover K 3 is 1-sound and 2-sound in contrast to K 2. But in contrast to K 1

K 3 is not 2-complete: All the axiom schemata and the basic rule schema of K 3 be-
long to intuitionistic propositional logic; hence ¬¬p → p cannot be generated in
K 3, whereas T[¬¬p → p] can be logically derived from T (L 1,¬,→). Thus we
can have 3-completeness without 2-completeness in a perfectly sound L 1-calculus.

Can we also have 2-completeness without 3-completeness in such an L 1-calcu-
lus? Indeed we can:

K 4

A1 – A3

R2 A, A → ¬B � ¬B
R3 A, A → (B → C) � B → C

K 4 is as sound as K 1, and all proofs in K 1, which is 2-complete, can be recon-
structed in K 4, using instead of R1 the appropriate special version of R1: R2 or



286 UWE MEIXNER

R3. (No atomic sentence of L 1 can be generated in K 1, else every sentence of L 1

could be generated in it.) Hence K 4 is 2-complete. But it is not 3-complete: if
T[¬p′] and T[¬p′ → p], then T[p] can be logically derived from T(L 1,¬,→); but
it cannot be logically deduced from TLT(K 4) together with the atomic restriction of
T (L 1,¬,→); TLT(R2) and TLT(R3) are of no help, since p is an atomic sentence
of L 1.

Thus the notions of 3-completeness and 2-completeness are independent of each
other even relative to 2-soundness combined with 1-soundness. It is not clear which
of the two concepts of (semantical) completeness is the more important. It seems
that the most satisfactory 1/2-sound L 1-calculi are those which, like K 1, are both 2-
complete and 3-complete, whereas those which are either only 3-complete (like K 3)
or only 2-complete (like K 4) are somewhat “strange.”

There is an L 1-calculus which is 2-sound, but not 1-sound.

K 5

A′′
1 ¬A → ¬¬¬A

A′′
2 ¬A → ¬A

R′′
1 ¬A → ¬B � A→B

But K 5 is clearly neither 3-complete nor 2-complete. We shall see in the next section
that there is a standard modal calculus that is 2-sound and 2-complete which can be
regarded as being 3-complete but not 1-sound.

3 Consider now the modal language L 2 which is obtained from L 1 by adding as
a logical constant the one-place sentence-forming operator “L.” “L” is taken to be
synonymous to “it is analytically necessary that.” We refer the metalanguage to L 2

instead of L 1 and enrich it by the operator N of analytical necessity; this means that
the metalinguistic logical means comprise in addition the usual S5-axioms and S5-
rule for N (the Barcan-formula, that is, if ∀x N A[x], then N ∀x A[x], is provable in
the resulting system).

It may be well to emphasize that the metalinguistic use of modal operators is
entirely legitimate.2 All other logical concepts introduced into an object language
are unscrupulously used (usually in a different syntactical guise) in the metalanguage,
too. Why make an exception for modal notions? Perhaps because they are less clear
than other logical concepts. Obscureness is especially associated with the iteration of
modal operators, and possible worlds semantics is thought necessary for clearing it
up. But no possible world semantics is necessary for justifying the single all-sufficient
iteration law for N (analytical necessity): if not N A, then N not N A. For if S is not
analytically true, then the sentence not N S is itself analytically true. Similarly, no
possible world semantics is necessary for justifying (or refuting) iteration laws for
other modal operators, if the meaning of such operators is sufficiently specified. Take
K, “it is known that,” in the minimal classical sense, that is, in the sense of “it is firmly
[nondispositionally] believed [by a specified person at a specified time] and being the
case that;” then it can be immediately seen that if K A, then K K A is correct for the
operator K, but not if not K A, then K not K A.
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The truth laws for “¬,” “→,” “L” relative to L 2 are completely stated thus.

T(L 2,¬,→, L)

L 2¬ N∀x(T[¬x] iff not T[x])
L 2 → N∀x∀y(T[x → y] iff not T[x] or T[y])
L 2 L N∀x(T[Lx] iff NT[x])

T (L 1,¬,→) could also have been formulated by prefixing N to L 1¬ and L 1 →; but
this would have been a redundant complication. In contrast, introducing “N” must
not be omitted from L 2¬, L 2 →, and L 2 L; otherwise these truth laws would be-
come inapplicable in possibility contexts, that is, in contexts introduced by P := notN
not. Their application in such contexts is unavoidable (for example to get T[¬L(p →
¬p′) → ¬L¬p]).

The following is a well known example of a calculus relative to L 2 (axiom and
basic rule schemata previously used are now to be referred to L 2):

K 6

A1 – A3

A4 LA → A
A5 L(A → B) → (LA → LB)

A6 ¬LA → L¬LA
R1

NR A � LA.

The truth law transformation of K 6 as far as the axiom schemata are concerned is
straightforward. TLT(A6), for example, is N∀xT[¬Lx → L¬Lx]. But there is some
perplexity as to the truth law transformations of R1 and NR because there are two
candidates for TLT(R1):

1. N∀x∀y(if T[x] and T[x → y], then T[y]);
2. N∀x∀y(if NT[x] and NT[x → y], then NT[y]);

and there are two corresponding candidates for TLT(NR):

1′. N ∀x(if T[x], then T[Lx]);
2′. N ∀x(if NT[x], then NT[Lx]).

2 is logically equivalent to ∀x∀y(if NT[x] and NT[x → y], then NT[y]) as well as
to N∀x∀y(if NT[x] and NT[x → y], then T[y]); 2′ is logically equivalent to ∀x(if
NT[x], then NT[Lx]), and to N∀x(if NT[x], then T[Lx]).

Although shifting “N” from the beginning of the principle to the place in front
of “T” makes no difference in the case of the truth law transformations of the axiom
schemata of K 6, ∀x∀y(if NT[x] and NT[x → y], then NT[y]) is of course logically
weaker than 1, and ∀x(if NT[x], then NT[Lx]) logically weaker than 1′. The strong
truth law transformation of K 6 is obtained by adding 1 and 1′; but the strong truth
law transformation seems to miss the intended meaning of NR. The weak truth law
transformation of K 6, on the other hand, is obtained by adding 2 and 2′; but it seems
to miss the intended meaning of R1. What we cannot do, however, is to mix principles
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in an ad hoc manner (that is, combine 1 with 2′), since the truth law transformation
of a calculus has to be uniform and effectively generable.

Identifying TLT(K 6) with the strong truth law transformation of K 6 makes K 6

3-complete but not 1-sound, whereas the alternative to this makes K 6 1-sound but not
3-complete. But no matter which we choose, K 6 is 2-sound and 2-complete. This
is no surprise, since 2-soundness and 2-completeness require in their definition no
interpretation of the calculus in terms of truth; hence TLT(K 6) is irrelevant for the
question whether K 6 is 2-sound, respectively 2-complete.

The 2-completeness of K 6 is known under the assumption of the coextensional-
ity for L 2-calculi between 2-completeness and its model-theoretic analogue because
we have proofs that K 6 has this model-theoretic analogue of 2-completeness. To
prove the 2-completeness of K 6 directly in OMS is a difficult task which will not
be undertaken here (and it cannot be undertaken here, since I do not have a proof;
I have, however, succeeded in proving the 2-completeness of the standard proposi-
tional S4-calculus in OMS). The difficulty consists in finding a standardization of any
metalinguistic deduction of T[x] from the truth laws of L 2 which is such that it can
be translated in an effective manner into a proof of x in K 6.

The proof of the 2-soundness of K 6 is not entirely trivial and illustrates the trans-
lation procedure, inverse to the one in proofs of 2-completeness, which is central to
proofs of 2-soundness. Assume x can be generated in K 6; the proof can be translated
into a logical deduction D of T[x] from T(L 2,¬,→, L).

the proof in K 6 deduction D
1. y1 1.NT[y1]
2. y2 2.NT[y2]
. . . . . .

. . . . . .

. . . . . .

n. x n. NT[x]
n + 1. T[x]

If step k in the K 6-proof is an axiom of K 6 x′, then step k in D is justified by TLT(S)

(S being an axiom of schema K 6) which is logically deducible from T(L 1,¬,→, L).
If step k in the K 6-proof is obtained from previous steps by R1, then step k in

D is obtained from previous steps by ∀x∀y(if NT[x] and NT[x → y], then NT[y]),
which is logically deducible from T(L 2,¬,→, L).

If step k in the K 6-proof is obtained from a previous step by NR, then step k in
D is obtained from a previous step by ∀x(if NT[x], then NT[Lx]), which is logically
deducible from T(L 2,¬,→, L).

Step n + 1 in D is a logical consequence of step n.
If we choose to identify the truth law transformation of K 6 with its strong truth

law transformation, K 6 becomes an abnormal calculus: it is not 1-sound, though it
is 2-sound and 2-complete, and even 3-complete. This may seem to be an argument
precisely against this choice, since K 6 is a standard modal calculus which nobody
finds abnormal in any way. But in fact NR, which makes K 6 not 1-sound given its
strong truth law transformation, is not so central to modal calculi as it appears to be.
In the following calculus precisely the same sentences of L 2 can be generated as in
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K 6, yet it does not contain NR.
K 7

C1 L(A → (B → A))

C2 L((A → (B → C)) → ((A → B) → (A → C)))

C3 L((¬A → ¬B) → (B → A))

C4 L(LA → A)

C5 LA → A
C6 L(L(A → B) → (LA → LB))

C7 L(¬LA → L¬LA)

C8 LA → LLA
R1 A, A → B � B

For K 7 we have the following (straightforwardly) derivable rule schemata:

DR1 LA � A;
DR2 L(A → B), LA � LB;
DR3 LA � LLA.

C8 can in fact be omitted from the list of axiom schemata of K 7, since it is generable
from the rest.3

Every proof for x in K 7 can be trivially reconstructed as a proof for x in K 6,
since K 7 is contained in K 6; and every proof for x in K 6 can be reconstructed as a
proof for x in K 7 (K 6 is not, however, contained in K 7: NR cannot be derived in
K 7; there is no way to obtain the following instantiation of NR in K 7: p � Lp).

the proof in K 6 the proof in K 7

1. y1 1. Ly1

2. y2 2. Ly2

- -
- -
- -
n. x n. Lx

n + 1. x

If step k in the K 6-proof is an axiom of K 6, then step k in the K 7-proof is an axiom
of K 7.

If step k in the K 6-proof is obtained by R1 from previous steps, then step k in
the K 7-proof is obtained by DR2 from previous steps.

If step k in the K 6-proof is obtained by NR from a previous step, then step k in
the K 7-proof is obtained by DR3 from a previous step. The final step in the K 7-proof
is obtained from its n-th step by DR1.

Although K 7 is 1-sound, 2-sound, and 2-complete, it is not 3-complete, not
even on the basis of its strong truth law transformation: From T (L 2,¬,→, L) we
get T[¬Lp]or T[Lp]; but this cannot be gotten from TLT(K 7) + the atomic re-
striction of T(L 2,¬,→, L), since neither p → Lp nor p → ¬Lp is generable in
K 7. Again, from T (L 2,¬,→, L) we get if NT[p → p′], then T[L(p → p′)]; but
there is no way to obtain this from TLT(K 7) combined with the atomic restriction
of T(L 2,¬,→, L). (The atomic restriction of L 2 L, for example, is N∀x(if At(x),
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then (T[Lx] iff NT[x])), which is logically equivalent to ∀x(if At(x), then N(T[Lx]
iff NT[x])), since we have as syntactical—counted as logical—principles for L 3

N∀x(At(x) iff N At(x)) and N∀x(not At(x) iff N not At(x)).)

4 This short section is intended to sketch the manner in which OMS deals with non-
classical logics. Limitation of space demands that we concentrate on sets of truth laws
only; calculi are left aside.

Consider now a language L 3 that is like L 1 except for the fact that among its
logical constants are also “&” (“and”) and “∨” (“or”). The logical constants of L 3

have an epistemic meaning. Accordingly the metalanguage, which is now referred to
sentences of L 3, contains instead of N the modal operator K: “it is known (to a par-
ticular person, at a particular time) that.” The metalinguistic logical means comprise
in addition the S4 axioms and S4 rule for K. As in the case of N it is to be denied
that the logic for K needs possible worlds semantics (or any other model-theoretic
semantics), however useful for other purposes, for the justification of its principles.

An epistemic meaning can be accorded to the logical constants of L 3 in many
plausible ways. I consider four of them, each exhibiting a certain single “method.”
There are uncountably many variations that can be obtained by the mixing of princi-
ples, in which even a classical principle, like K∀x(T[¬x] iff not T[x]), could be com-
bined with a nonclassical one, for example K∀x∀y(T[x ∨ y] iff K(T[x] or T[y])); for
special purposes this may not be uncogent.

1-T(L 3,¬,→, &,∨)

1L 3¬ K∀x(T[¬x] iff not KT[x])
1L 3 → K∀x∀y(T[x → y] iff not KT[x] or KT[y])
1L 3 & K∀x∀y(T[x & y] iff KT[x] and KT[y])
1L 3∨ K∀x∀y(T[x ∨ y] iff KT[x] or KT[y])

2-T(L 3,¬,→, &,∨)

2L 3¬ K∀x(T[¬x] iff K not T[x])
2L 3 → K∀x∀y(T[x → y] iff K(not T[x] or T[y]))
2L 3 & K∀x∀y(T[x & y] iff K(T[x] and T[y]))
2L 3∨ K∀x∀y(T[x ∨ y] iff K(T[x] or T[y]))

3-T(L 3,¬,→, &,∨)

3L 3¬ K∀x(T[¬x] iff K not KT[x])
3L 3 → K∀x∀y(T[x → y] iff K(not KT[x] or KT[y]))
3L 3 & K∀x∀y(T[x & y] iff K(KT[x] and KT[y]))
3L 3∨ K∀x∀y(T[x ∨ y] iff K(KT[x] or KT[y]))

4-T(L 3,¬,→, &,∨)
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4L 3¬ K∀x(KT[¬x] iff K not KT[x])
4L 3 → K∀x∀y(KT[x → y] iff K(not KT[x] or KT[y]))
4L 3 & K∀x∀y(KT[x & y] iff K(KT[x] and KT[y]))
4L 3∨ K∀x∀y(KT[x ∨ y] iff K(KT[x] or KT[y]))

Some comments:

1. The different methods lead in part to the same results: 3L 3 &, 2L 3 &, and
1L 3 & are logically equivalent, and so are 3L 3∨ and 1L 3∨.

2. In 4-T , which is logically derivable from both 1-T and 3-T , the valence of truth
has in fact been replaced by a different valence: known truth. 4-T is the codi-
fication of intuitionistic propositional logic in an epistemic interpretation.

3. 2-T is verificationistic propositional logic. It has a nontrivial modal character,
since T[p′ → ((p → p) → p′)] cannot be logically derived from it, whereas
∀xT[x → ((p → p) → x)] is logically derivable from 1-T , 3-T , and 4-T .

4. Although 1-T , 3-T , and 4-T are clearly not logically equivalent, I conjecture
that the very same sentences of the form T[s] (or KT[s], it does not matter) are
logically derivable from them; thus they constitute three different but—as far as
logical validity is concerned—equivalent bases for intuitionistic propositional
logic.

5 Let us now move on to an (interpreted) language L 4 adequate for classical ele-
mentary predicate logic.

• object-constants of L 4 (OCs): a, a′, a′′, . . .;
• predicate-constants of L 4 (PCs): F, F′, F′′, . . . (infinitely many for each num-

ber of places);
• variables of L 4 (Vs): o, o′, o′′, . . .;
• atomic sentences of L 4 (ASs): for example, F′(a, a′);
• sentences of L 4 (Ss):

1. ASs are Ss;

2. if x and y are Ss, then ¬x and (x → y) are Ss;

3. if x is a S containing in certain specified places the OC b, and v a V not
occurring in x, then (v)x[v/b] is a S;

4. Ss are only expressions according to (1) – (3).

x[v/b] is the expression resulting from x, if b is replaced by v at the specified
places in x. (For concrete applications of the substitution operation: in case x is part
of a larger expression, it may be necessary to mark it as the substitution context, if
there is ambiguity; moreover, the places of substitution may need to be marked, if
not understood to be all the places where b occurs.)

We use b, c, d, d′, . . . as metalinguistic variables for OCs and u, v,w,w′, . . . as
metalinguistic variables vor Vs.

In the unusual case that quantification in L 4 is substitutional the truth laws for
“¬,” “→,” “( )” relative to L 4 will simply look like this:

T(L 4,¬,→, ( ))
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L 4¬ ∀x(T[¬x] iff not T[x])
L 4 → ∀x∀y(T[x → y] iff not T[x] or T[y])
L 4( ) ∀x∀b∀v(if b in x and v not in x, then (T[(v)x[v/b]] iff ∀cT[x[c/b]])).

Suppose, however, quantification in L 4 is nonsubstitutional, say, classical. It
may seem that the adequate representation of quantification in the classical sense
is an unsolvable problem for OMS. But in fact the difficulty can be quite elegantly
overcome by using the notion of virtual object-constants of L 4. The virtual object-
constants of L 4 can, from the point of view of model-theoretic semantics, be thought
of as being those objects in the universe of discourse of L 4 that are not named by an
OC (the OCs tout court are the real OCs); hence a virtual OC is (normally) not an ex-
pression, but rather a nonlinguistic object, the moon, for example, in case the moon
is in the universe of discourse of L 4 but is not named by an OC. Hence if every object
in that universe of discourse is named by an OC, then there are no virtual OCs; but
the truth laws of L 4—quantification being classical—leave it open whether there are
objects in the universe of discourse not named by an OC. The OCs together with the
virtual OCs, whether there are such or not, are the potential OCs (of L 4).

Since we may have virtual OCs, we also may have virtual sentences of L 4.
These are obtained by substituting a virtual OC for an OC in some sentence of L 4

(that is, in some real S). The result may be expected to be nothing that can be written
on a blackboard. Think of the above example of a virtual OC, the moon, and think of
substituting it—of course not in a physical sense—for “a” in “F(a).” What results is
a mixed sequence, i.e., a certain finite set, of linguistic entities and one nonlinguistic
entity, which is indeed nothing that can be written on a blackboard; for the moon it-
self would have to appear in the now indeed physical token-sentence written on the
blackboard. The virtual Ss together with the Ss are the potential Ss.

Although it should be clear from what has been said so far, I wish to stress that
virtual OCs are not bizarre new entities and that they are not model-theoretic variable
assignments in disguise (but the concept of virtual OCs makes it possible to dispense
with those); they are simply objects in the universe of discourse of L 4 to which has
been assigned an unusual role, namely to do the syntactical and semantical work of
(normal, real) OCs.

Now let x, y, z, z′, . . . refer to the potential sentences of L 4, and b, c, d, d′, . . .
to the potential object-constants of L 4. With this modification the above formulation
of the truth laws of L 4 is adequate if quantification in L 4 is classical. Except in the
unusual case that L 4 has an OC for every nonlinguistic object it speaks about which
we exclude by saying that L 4 speaks about all real numbers and the moon, we have
the situation that nonlinguistic entities have to be quantificationally referred to in the
formulation of the truth laws of L 4. Hence L 4 is an onto-logical, not a lexi-logical
language.

The language L 5 of free logic with existence predicate, which is otherwise like
L 4, is also onto-logical. But how can free logic be represented in OMS? Thus: (real)
OCs of L 5 may be nonreferring; if they do not refer, they are called “fictive,” else
“genuine”; only they are called “fictive” or “genuine.” Virtual OCs of L 5 are defined
as above; the virtual and genuine OCs of L 5 are precisely the nonfictive OCs of L 5.
Potential OCs and Ss of L 5 are defined as above, and they are what the respective
variables refer to in the truth laws of L 5. We then have:
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L 5 E ∀b(T[Eb] iff b is not fictive)
L 5( ) ∀x∀b∀v(if b in x and v not in x, then (T[(v)x[v/b]] iff ∀c(if c is non-

fictive, then T[x[c/b]]))).

But back to L 4. Consider the following L 4-calculus:

K 8

A1 – A3

PA (v)A[v] → A[b] (b an OC)

R1

PR B → A[b] � B → (v)A[v] (b an OC not in B → (v)A[v])

K 8 is 2-sound:

Proof of x in K 8: (1) Logical derivation of T[x] from T(L 4,¬,→, ( )): (2)
1. y1 1. T[y1]
- -
- -
- -
n. x n. T[x]

If step k in (1) is an axiom, then step k in (2) is obtained by the truth law transformation
of the corresponding axiom schema, which truth law transformation is logically deriv-
able from T (L 4,¬,→, ( )). This is clear in the cases A1–A3. As for PA, TLT(PA)

is ∀x∀b∀v∀c(if b in x and v not in x, then T[(v)x[v/b] → x[c/b]]); this can easily
be deduced from L 4 → and L 4( ). And how is TLT(PA) employed to obtain T[y]
for an instantiation y of PA? Let, for example, this instantiation be (o)F′(o, a) →
F′(a′, a); this is identical to (o)F′(a′′, a)[o/a′′] → F′(a′′, a)[a′/a′′]; since a′′ is in
F′(a′′, a) and o not in F′(a′′, a), we obtain by TLT(PA) T[(o)F′(a′′, a)[o/a′′] →
F(a′′, a)[a′/a′′]], that is, T[(o)F′(o, a) → F′(a′, a)]. (The OC doing the work a′′

does in the example is always understood to be replaced everywhere where it occurs;
it has to be appropriately chosen.)

If step k is obtained in (1) from previous steps by R1, then step k is obtained in (2)
from previous steps by TLT(R1) which is logically derivable from T(L 4,¬,→, ( )).

If step k is obtained in (1) from a previous step by PR, then step k is obtained
in (2) from a previous step by TLT(PR) which is logically derivable from T(L 4,¬,

→, ( )): TLT(PR) is ∀x∀y∀b∀v(if b in x and v not in x and ∀cT[y → x[c/b]], then
T[y → (v)x[v/b]]); assume b in x, v not in x, ∀cT[y → x[c/b]]; hence by L 4 →
∀c(not T[y] or T[x[c/b]]), hence not T[y] or ∀cT[x[c/b]], hence by L 4( ) not T[y]
or T[(v)x[v/b]], hence by L 4 → T[y → (v)x[v/b]]. And how is TLT(PR) em-
ployed to copy in (2) the transition made by PR in (1)? We assume for the previous
step y → z[b′] in (1) from which step k in (1), that is, y → (u)z[u] [u not in z[b′],
else (u)z[u] would not be a sentence of L 4] is obtained by PR [hence b′ is not in
y → (u)z[u]]: that T[y → z[b′]] is logically derivable from T(L 4,¬,→, ( )); this,
clearly, is merely an induction assumption; hence ∀cT[y→z[c]] is logically deriv-
able from T(L 4,¬,→, ( )) (b′ does not occur in ∀cT[y→z[c]], else it would also
occur in y → (u)z[u]); let c′ be some appropriate OC in an appropriate z′ such that
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∀c(z[c] = z′[c/c′]) and z[u] = z′[u/c′] (u does not occur in z′, else it would also oc-
cur in z[b′]); hence ∀cT[y → z′[c/c′]] is logically derivable from T (L 4,¬,→, ( ));
hence we have via TLT(PR) that T[y → (u)z′[u/c′]], that is, T[y → (u)z[u]] is log-
ically derivable from T (L 4,¬,→, ( )).

K 8 is 2-complete:
Suppose T[x] can be logically deduced from T (L 4,¬,→, ( )); then there is

a standard deduction of T[x] from T(L 4,¬,→, ( )): start with not T[x] and, di-
minishing object language complexity in each step by using T (L 4,¬,→, ( )), con-
struct a deduction tree containing a contradiction in each branch.4 Again an ex-
ample will be more effective in describing a standard deduction from T(L 4,¬,

→, ( )) than a formal definition (which can of course be provided): T[(o)(F(o) →
F′′(o))→(¬(o)¬F(o) → ¬(o)¬F′′(o))] is to be standardly deduced from T(L 4,

¬,→, ( )).
One of its standard-deductions from T(L 4,¬,→, ( )) is:

not T[(o)(F(o) → F′′(o)) →
(¬(o)¬F(o) → ¬(o)¬F′′(o))] 1

T[(o)(F(o) → F′′(o))] 2(1,L 4 →)

not T[¬(o)¬F(o) → ¬(o)¬F′′(o)] 3(1,L 4 →)

T[¬(o)¬F(o)] 4(3,L 4 →)

not T[¬(o)¬F′′(o)] 5(3,L 4 →)

T[(o)¬F′′(o)] 6(5,L 4 ¬)

not T[(o)¬F(o)] 7(4,L 4 ¬)

not T[¬F(b)] 8(7,L 4( ), b a new variable)
T[¬F′′(b)] 9(6,L 4( ), instantiation by b)

T[F(b)] 10(8,L 4 ¬)

not T[F′′(b)] 11(9,L 4 ¬)

T[F(b) → F′′(b)] 12(2,L 4( ), instantiation by b)
13a1(12,L 4 →) not T[F(b)] T[F′′(b)] 13b1(12,L 4 →)

If T[x] is logically deducible from T(L 4,¬,→, ( )), then it is standardly de-
ducible from it. This is the presupposition on which the proof of the 2-completeness
of K 8 rests. In case this presupposition seems unwarranted (to me it is evidently cor-
rect), compare it first with the rather more problematic presuppositions on which a
Henkin proof is based, and then judge again. (Moreover, the metatheoretical logical
means can be specified in precisely such a manner that the “presupposition” becomes
provable, if proof is required.)

Each branch of a standard deduction of T[x] from T(L 4,¬,→, ( )) (in the ex-
ample there are two) can be mechanically translated into a K 8-derivation (that con-
tains some redundant steps) of ¬((o)F(o) → (o)F(o)) (or another contradiction of
the form ¬(B → B) containing no OCs):

T[y] becomes y, and not T[y], ¬y. The derivation steps, if not derivation as-
sumptions, are justified by the K 8-provable rule schemata ¬(A → B) � A, ¬(A →
B) � ¬B, ¬¬A � A, A � A, (v)A[v] � A[b]; A,¬A � B is used for justifying the
last step.

¬(A → B) � A corresponds to L 4 → on not T[x → y] resulting in T[x];
¬(A → B) � ¬B corresponds to L 4 → on not T[x → y] resulting in not T[y];
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¬¬A � A corresponds to L 4¬ on not T[¬x] resulting in T[x]; A � A corresponds
to L 4¬ on T[¬x] resulting in not T[x]; (v)A[v] � A[b] corresponds to L 4( ) on
T[(v)x[v]] resulting in T[x[b]]. The first step is an assumption; “assumption” intro-
ducing a new OC corresponds to L 4( ) on not T[(v)x[v]] resulting in not T[x[b]] (b
a new variable); “assumption” corresponds to L 4→ on T[x → y], whether resulting
in the branch in not T[x] or in T[y].

Thus the lefthand branch of the above standard-deduction translates into:

1 ¬((o)(F(o) → F′′(o)) →
(¬(o)¬F(o) → ¬(o)¬F′′(o))) ass.

2 (o)(F(o) → F′′(o)) 1;¬(A → B) � A
3 ¬(¬(o)¬F(o) → ¬(o)¬F′′(o)) 1;¬(A → B) � ¬B
4 ¬(o)¬F(o) 3;¬(A → B) � A
5 ¬¬(o)¬F′′(o) 3;¬(A → B) � ¬B
6 (o)¬F′′(o) 5;¬¬A � A
7 ¬(o)¬F(o) 4; A � A
8 ¬¬F(a) ass.,“a” a new OC
9 ¬F′′(a) 6; (v)A[v] � A[b]
10 F(a) 8;¬¬A � A
11 ¬F′′(a) 9; A � A
12 F(a) → F′′(a) 2; (v)A[v] � A[b]
13 ¬F(a) ass.
14 ¬((o)F(o) → (o)F(o)) 10, 13; A,¬A � B.

The second derivation which translates the righthand branch of the deduction
looks like the first, except that at the end we have:

13 F′′(a) ass.
14 ¬((o)F(o) → (o)F(o)) 13, 11; A,¬A � B.

Hence:

(a) ¬((o)(F(o)→ F′′(o))→(¬(o)¬F(o)→¬(o)¬F′′(o))), ¬¬F(a), ¬F(a) �
¬((o)F(o) → (o)F(o))

(b) ¬((o)F(o) → F′′(o)) →(¬(o)¬F(o) → ¬(o)¬F′′(o))), ¬¬F(a), F′′(a) �
¬((oF(o) → (o)F(o))

Now for K 8, as should be well known, the following metatheorems can be
proved which suffice to get rid of all assumptions except the first in each K 8-rule
corresponding to a K 8-derivation translated from a branch of a standard deduction
of T[x] from T (L 4,¬,→, ( )).

1. X,¬A � C; X, B � C; hence: X, A → B � C.
2. X, A � B; X � A; hence: X � B.
3. X,¬A[b] � B; b not in X,¬(v)A[v], B; hence: X,¬(v)A[v] � B.

Apply finally:

4. X,¬A � ¬(B → B) hence X � A (which is also provable for K 8).

In the case of our example: “I” means (o)(F(o)→F′′(o)) → (¬(o)¬F(o) →
¬(o)¬F′′(o)); “I I” is short for ¬((o)F(o)→(o)F(o)). By 1 from (a) and (b): ¬I,
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¬¬F(a), F(a)→F′′(a) � I I; hence by 2, since ¬I, ¬¬F(a) � F(a) → F′′(a) (see
the above derivation), ¬I,¬¬F(a) � I I; hence by 3 ¬I,¬(o)¬F(o) � I I; hence
by 2, since ¬I � ¬(o)¬F(o) (see the above derivation), ¬I � I I; hence finally by 4
� I.

An important comment needs to be added to this proof of the 2-soundness and
2-completeness of K 8. It is not an uninteresting translation between two formal sys-
tems: the truth laws of L 4 and the metalinguistic logic on the one hand, K 8 on the
other hand. For, K 8, though 1-sound, is not 1-complete; hence the semantical con-
tent of the truth laws of L 4 is greater than the semantical content of K 8, represented
by TLT(K 8); hence these truth laws cannot be translated into K 8. Although the truth
laws of L 4 specify the meaning of the logical constants of L 4 completely—without
any ontological luxury—K 8 does not. Nevertheless K 8 recursively enumerates pre-
cisely the sentences x of L 4, for which T[x] can be logically derived from the truth
laws of L 4. This has been shown in an ontologically minimal way, in particular, with-
out the construction of maximal consistent sets of sentences of L 4 (and the proof, I
should say, is in no manner trivial or uninteresting). Moreover, since 2-completeness
and 2-soundness and the concept of logical truth involved in them (see D2, D4 and
D5 in Section 1) are presumably provably co-extensional to the corresponding con-
cepts of model-theoretic semantics, the 2-completeness and 2-soundness of K 8 have
presumably the very same content as the corresponding concepts of model-theoretic
semantics. (I say “presumably” because the co-extensionality of the corresponding
concepts remains to be proved; but it is hard to see how it could fail to obtain.) Given
this, what more can you ask for concerning the content of 2-completeness and 2-
soundness?

A soundness and completeness proof in OMS, however, cannot show (by itself)
that a certain calculus adequately characterizes a certain ontological structure (a cer-
tain set of models); this must be so, since in OMS no such structures are considered.
But the match between a calculus and a set of models is a matter of the relation be-
tween language and ontology, and it is thus outside the scope of the semantics of logic
in the strict sense, which alone I claim to be adequately treatable in OMS.5
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NOTES

1. Despite this announcement my paper should not be taken as a defense of nominalism in
the spirit of Field [1]. In fact, I am far from being a nominalist. But two questions have
to be clearly separated.

(a) How much ontology is necessary for the foundations of logic?

(b) How much ontology is necessary for giving a natural account of the semantics of
natural language?

The answer to the second question is in my view: intensional ontology in a nonexten-
sional framework (that is, with properties, relations, and states of affairs as basic inten-
sional entities). Such an ontology will of course also provide a natural account of logic
(see Meixner [5]), but it is not necessary for its foundation in its central areas, that is,
for the foundation of logic in the strict sense (tense logic, for example, is in my view not
logic in the strict sense; neither, I contend, is set theory).

2. Notice, however, that neither logical truth nor logical consistency for L 2 will here be
defined in terms of N—something that is advocated in Field [2] (but Field is using a
different modal operator, which presumably is more “austere” than N). They are defined
as for L 1.

3. See Hughes and Cresswell [3], p. 49. The proof is abbreviated and given in a calculus
containing NR. But NR is in fact not employed in it, and it can easily be seen to be re-
constructible in K 7 (without LA → LLA).

4. This idea is inspired by the proof trees in Smullyan [6].

5. In this final note the truth laws for the arithmetical language L6 are stated. The OCs (of
L 6) are 0, 0∗, 0∗∗, . . .; OCs are terms of L 6 (Ts); if t and t′ are Ts, then n(t), (t + t′) and
(t × t′) are Ts; Ts are only expressions generable by the preceding clauses. The PCs (of
L 6) are “=” and “<,” each two-placed. If t and t′ are Ts, then (t = t′) and (t < t′) are
atomic Ss (of L 6); atomic Ss are only expressions generable by the preceding clause.
The rest of the description of L 6 is as for L 4.

Metalinguistic variables for Ss, OCs and Vs are as for L 4; we use t, t′, t′′, . . . as variables
for Ts. ∗-b designates the star-sequence of the OC b. If i and i′ are star-sequences, then
(i)∗ is the prolongation of i by one star, (ii′) is their concatenation, and (i!i′) is their
multiple concatenation; the concatenation of i and i′ is obtained by simply connecting
i and i′; the multiple concatenation of i and i’ is obtained by first repeating i row under
row until i′ appears in the vertical direction, and then by connecting all rows in one row
(in case i or i′ is the empty sequence, (i!i′) is itself the empty sequence). It is clear how
to verify that one star-sequence is shorter than another.

T (L 6,¬,→, ( ), n,+,×)

L 6¬ ∀x(T[¬x] iff not T[x])
L 6 → ∀x∀y(T[x → y] iff not T[x] or T[y])
L 6( ) ∀x∀b∀v(if b in x and v not in x, then (T[(v)x[v/b]] iff ∀cT[x[c/b]]))
L 6 < ∀b∀c(T[b < c] iff ∗-b is shorter than ∗-c)
L 6 = ∀b∀c(T[b = c] iff ∗-b is identical to ∗-c)
L 6n ∀x∀b(if 0(∗-b)∗ in x, then (T[x[n(b)/0(∗-b)∗]] iff T[x]))
L 6+ ∀x∀b∀c(if 0(∗-b ∗ -c) in x, then (T[x[(b + c)/0(∗-b ∗ -c)]] iff T[x]))
L 6× ∀x∀b∀c(if 0(∗-b! ∗ -c) in x, then (T[x[(b × c)/0(∗-b! ∗ -c)]] iff T[x]))
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L 6 is a lexi-logical language: its truth laws do not refer to nonlinguistic entities. It would
be a mistake to conclude from this that arithmetic is accorded a syntactical interpreta-
tion in L 6 (“Numbers are star-sequences, including the empty star-sequence. Succes-
sor, addition and multiplication are operations on star-sequences”). This interpretation
is not forbidden by T (L 6,¬,→, ( ), n,+,×), but the truth laws of a lexi-logical lan-
guage contain no information whatsoever about what this language “is about.” They are
ontologically neutral. The very same truth laws would hold if the universe of discourse
of L 6 were a denumerably infinite set of possible tomatoes on which the OCs are one-to-
one mapped by some arbitrary reference-function; and the very same truth laws would
hold if the OCs referred to nothing at all.
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