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Classification of Weak DeMorgan Algebras

MICHIRO KONDO

Abstract In this paper we shall first show that for every weak DeMorgan al-
gebra L(n) of order n (WDM-n algebra), there is a quotient weak DeMorgan
algebra L(n)/∼ which is embeddable in the finite WDM-n algebra �(n). We
then demonstrate that the finite WDM-n algebra �(n) is functionally free for the
class CL(n) of WDM-n algebras. That is, we show that any formulas f and g
are identically equal in each algebra in CL(n) if and only if they are identically
equal in �(n). Finally we establish that there is no weak DeMorgan algebra
whose quotient algebra by a maximal filter has exactly seven elements.

1 Introduction It is well known that there are algebras X whose quotient algebras
are embeddable in finite algebras of the same structure as X. Examples of these alge-
bras include Boolean algebras, Kleene algebras, and DeMorgan algebras. More pre-
cisely, a quotient algebra of a Boolean algebra, which can be described by the WDM-2
algebra of this paper, is isomorphic to the 2-valued Boolean algebra �(2) = {0, 1}.
A quotient algebra of a Kleene algebra (WDM-3 algebra) is embeddable in the 3-
valued Kleene algebra �(3) = {0, 1/2, 1}. And a quotient algebra of a DeMorgan
algebra (WDM-4 algebra) is embeddable in the 4-valued DeMorgan algebra �(4) =
{0, a, b, 1} defined below. All of these algebras satisfy DeMorgan’s law (or DML):
N(x ∧ y) = Nx ∨ Ny and N(x ∨ y) = Nx ∧ Ny, where N is a unary operation in
those algebras. Now the following questions naturally arise.

1. Are there 5-valued (or 6-valued, 7-valued, .. .etc.) algebras satisfying DeMor-
gan’s law?

2. What algebras are embeddable in those finite algebras if they exist?

In this paper we will answer these questions. The three algebras �(2),�(3), and
�(4) satisfy the condition N2x = x as well as DML. In general, DML and the con-
dition that x ≤ y implies Ny ≤ Nx are equivalent to each other under the condition
N2x = x. However the question arises as to whether the converse holds, that is, as to
whether the equivalency of these conditions yields N2x = x.
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It is a familiar result that the finite algebra �(2) = {0, 1} (or �(3) = {0, 1/2, 1},
�(4) = {0, a, b, 1}) is functionally free for the class of Boolean (or, respectively,
Kleene or DeMorgan) algebras. For example, any formulas f and g are identically
equal in Boolean algebras iff they are identically equal in �(2). We may expect that if
there are algebras embedded in a finite algebra then that finite algebra is functionally
free for the class of those algebras.

Regarding N as a negation operator, the condition N2x = x does not hold in
Heyting algebras (or intuitionistic propositional logic), but rather a weaker condition
N3x = Nx holds. Of course, DML (N(x ∨ y) = Nx ∧ Ny) does not hold in Heyt-
ing algebras either. Hence, from a logical point of view, it is an interesting question
whether there are algebras satisfying both the condition N3x = Nx and DML. In this
paper we shall show the following.

• There are weak DeMorgan algebras L(n) of order n (simply called WDM-n al-
gebras) whose quotient algebras are embeddable in the n-valued algebras �(n)

(where n = 5, 6, 8);
• for any formulas f (x1, . . . , xk) and g(x1, . . . , xk), f and g are identically equal

(denoted by f = g) in each WDM-n algebra iff f = g in �(n). Thus the prob-
lem of functional freeness for WDM-n algebras is solved affimatively.

2 WDM-n algebras Before defining WDM-n algebras, we consider Kleene alge-
bras and DeMorgan algebras which are special cases of weak DeMorgan algebras.
By a Kleene algebra K , we mean an algebraic structure K = (K,∧,∨, N, 0, 1) such
that:

1. (K,∧,∨, 0, 1) is a bounded distributive lattice;
2. N : K −→ K is a map satisfying the following conditions:

(C0) N0 = 1, N1 = 0;

(C1) x ≤ y implies Ny ≤ Nx;

(C2) N2x = x, where N2x = N(Nx);

(C3) x ∧ Nx ≤ y ∨ Ny (Kleene’s law).

As a finite model of Kleene algebras, we have the set �(3) = {0, 1/2, 1} defined by:

x ∧ y = min{x, y} � 1

x ∨ y = max{x, y} �(3) � 1/2

Nx = 1 − x for any x, y ∈ �(3). � 0

If we delete the condition (C3), we obtain the definition of DeMorgan algebras (or
simply DM-algebras). That is, a DM-algebra M = (M,∧,∨, N, 0, 1) is defined as
follows

1. (M,∧,∨, 0, 1) is a bounded distributive lattice;
2. N : M −→ M is the map satisfying the conditions:

(C0) N0 = 1, N1 = 0;
(C1) x ≤ y implies Ny ≤ Nx;
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(C2) N2x = x.

As for DM-algebras, we have the following finite model of DM-algebras. The set
�(4) = {0, a, b, 1} with the structure below is the model of the DM-algebras.

�(4) �a

� 1

�

0

�b Na = a, Nb = b.�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Now we define WDM-n algebras (where n = 5, 6, 8). By a ground weak DeMor-
gan algebra (GWDM algebra), we mean an algebraic structure L = (L,∧,∨, N, 0, 1)

where:

1. (L,∧,∨, 0, 1) is a bounded distributive lattice;
2. N : L −→ L is a map satisfying the conditions:

(A0) N0 = 1 and N1 = 0;

(A1) N(x ∧ y) = Nx ∨ Ny and N(x ∨ y) = Nx ∧ Ny (DML).

If the map N satisfies some of the conditions below besides those of GWDM algebras,
then the algebra with the extra conditions is called a WDM-n algebra. We now list
the additional conditions applying to N.

(A2) x ∧ Nx = 0;
(A3) N2x = x;
(A4) x ∧ Nx ≤ y ∨ Ny (Kleene’s law);
(A5) x ∧ Nx ∧ N2x ≤ y ∨ Ny ∨ N2 y (weak Kleene’s law);
(A6) N2x ≤ x;
(A8) N3x = Nx.

Note that there is a particular reason why we do not list a condition named (A7) to
which we will return later.

If the map N satisfies (A5) and (A6), then we call the GWDM algebra a WDM-5
algebra. If N satisfies (A6), it is called a WDM-6 algebra. Finally, the GWDM alge-
bra with the additional condition (A8) is called a WDM-8 (or simply WDM) algebra.
Summing up:

(1) WDM-2: (A0), (A1), (A2), (A3) (Boolean algebras);
(2) WDM-3: (A0), (A1), (A3), (A4) (Kleene algebras);
(3) WDM-4: (A0), (A1), (A4) (DeMorgan algebras);
(4) WDM-5: (A0), (A1), (A5), (A6);
(5) WDM-6: (A0), (A1), (A6);
(6) WDM-8: (A0), (A1), (A8).
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Examples:
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Nd = d

Nc = b

Na = 1

Nb = b
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Nc = b, N f = d
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As indicated below, a WDM-n algebra has an n-valued algebra �(n) as a model. It is
obvious that all the finite WDM-n algebras �(n) are subalgebras of the finite WDM-
8 algebra �(8). In contrast to this result however, we shall show in Section 4 that
there is no subalgebra of �(8) with seven elements. Hence we do not define WDM-7
algebras here but consider below the cases where n = 5, 6, 8.

Remark 2.1 Since (DML) holds in any WDM-n algebras, these satisfy the condi-
tion: x ≤ y implies Ny ≤ Nx.

Remark 2.2 If we add the condition N2x = x to those of WDM-n algebras, the
WDM-5 algebras become Kleene algebras and the other algebras become DeMorgan
algebras. It is clear that (A8) (N3x = Nx) holds in these WDM-n algebras.
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3 Representation Theorem of WDM-n In this section we shall prove a Represen-
tation Theorem for these algebras. That is, we shall show that for any WDM-n alge-
bra L(n) there exists a quotient WDM-n algebra L(n)/∼ of that algebra such that it
is embedded in the n-valued weak DeMorgan algebra �(n). We denote this fact by
(L(n)/∼) � �(n).

Developing a general theory, let L be an arbitrary WDM-n algebra. A nonempty
subset F of L is called a filter of L when it satisfies the following conditions.

(F1) x, y ∈ F implies x ∧ y ∈ F;
(F2) x ∈ F and x ≤ y imply y ∈ F.

A filter F of L is called proper when it is a proper subset of L; that is, 0 /∈ F. A
proper filter P is called prime if x ∨ y ∈ P implies x ∈ P or y ∈ P for every x and y
in L. Prime filters play an important role in this paper. By a maximal filter M of L,
we mean a proper filter M such that there is no proper filter which properly contains
it. The next two propositions are well known, so we omit the proofs.

Proposition 3.1 If M is a maximal filter, then it is also a prime filter.

Proposition 3.2 For any proper filter M, the following conditions are equivalent:

1. M is a maximal filter;

2. if x /∈ M, then there is an element u ∈ M such that x ∧ u = 0.

Let F be any proper filter of L. We introduce a relation ∼F (or simply ∼ if no con-
fusion arises) on L defined by F as follows. For x and y in L, we define:

x ∼F y iff ∃ f ∈ F; x ∧ f = y ∧ f, Nx ∧ f = Ny ∧ f, and

N2x ∧ f = N2 y ∧ f.

Lemma 3.3 ∼F is a congruence relation on L.

Proof: We show only that x ∼ a and y ∼ b imply x ∧ y ∼ a ∧ b. Since x ∼ a and
y ∼ b, there are elements f, g ∈ F such that:

x ∧ f = a ∧ f, Nx ∧ f = Na ∧ f, N2x ∧ f = N2a ∧ f ;
y ∧ g = b ∧ g, Ny ∧ g = Nb ∧ g, N2 y ∧ g = N2b ∧ g.

It is clear that h = f ∧ g ∈ F, and hence that (x ∧ y) ∧ h = (a ∧ b) ∧ h. By (DML),
we have N(x ∧ y) ∧ h = (Nx ∨ Ny) ∧ h = (Nx ∧ h) ∨ (Ny ∧ h) = (Na ∧ h) ∨
(Nb ∧ h) = N(a ∧ b) ∧ h. Similarly N2(x ∧ y) ∧ h = N2(a ∧ b) ∧ h. Thus we have
x ∧ y ∼ a ∧ b.

Let [x] be the equivalence class {y ∈ F|x ∼ y} of x ∈ L and L/∼ be the quotient
set of L by ∼, that is L/∼ = {[x]|x ∈ L}. Since the relation is congruent, we can
consistently define in L/∼ the operations ∧,∨, and N. For [x] and [y] in L/∼:

[x] ∧ [y] = [x ∧ y]

[x] ∨ [y] = [x ∨ y]

N[x] = [Nx]
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Of course the symbols ∧,∨, N of the left hand side are not in L but in L/∼. For the
sake of simplicity, we use the same symbols as those in L. Clearly we have the result
by the general theory of universal algebras. �

Theorem 3.4 For every WDM-n algebra L(n), L(n) is homomorphic to the quo-
tient WDM-n algebra L(n)/∼.

Proof: The map ξ : L(n) −→ L(n)/∼ defined by ξ(x) = [x] provides the desired
result. �
Moreover, if M is a maximal filter of L(n) then we get the following strong result.

Theorem 3.5 If M is a maximal filter of L(n), then L(n)/∼ is embeddable in the
WDM-n algebra �(n), that is, L(n)/∼ � �(n).

We will prove this theorem in a number of stages. Let L(n) be any WDM-n algebra.
We can devide it into subsets by the congruence relation ∼. Moreover, L(n) can also
be divided into some subsets by the filter F as follows.

L1 = {x|x ∈ F, Nx /∈ F, N2x ∈ F};
L0 = {x|x /∈ F, Nx ∈ F, N2x /∈ F};
La = {x|x ∈ F, Nx ∈ F, N2x /∈ F};
Lb = {x|x /∈ F, Nx /∈ F, N2x /∈ F};
Lc = {x|x ∈ F, Nx /∈ F, N2x /∈ F};
Ld = {x|x ∈ F, Nx ∈ F, N2x ∈ F};
Le = {x|x /∈ F, Nx /∈ F, N2x ∈ F};
L f = {x|x /∈ F, Nx ∈ F, N2x ∈ F}.

Some of these may be empty. We can show that the equivalence class [x] by ∼ and
Lp by F are identical in case of F being a maximal filter of L. Moreover in that case
the quotient algebra L(n)/∼ is embedded in the finite WDM-n algebra �(n).

Lemma 3.6 If M is a maximal filter, then the following are equivalent:

1. x ∼ y;
2. x, y ∈ Lt for some subset Lt of L(n).

Proof: (1) =⇒ (2): Suppose that x ∼ y. There is an element f ∈ M such that x ∧
f = y ∧ f, Nx ∧ f = Ny ∧ f , and N2x ∧ f = N2 y ∧ f . Since M is the filter, we
have x ∈ M iff y ∈ M, Nx ∈ M iff Ny ∈ M, and N2x ∈ M iff N2 y ∈ M. This means
that x and y are in the same subset Lt of L(n).

(2) =⇒ (1): We assume that x and y are in the same subset, for instance in La.
The other cases can be proved in the same way. By the definition of La we have x, y ∈
M, Nx, Ny ∈ M, but N2x, N2 y /∈ M. Since M is maximal, there are elements u and
v in M such that N2x ∧ u = 0 = N2 y ∧ v. Put α = x ∧ y ∧ Nx ∧ Ny ∧ u ∧ v. Clearly
α ∈ M. Now it follows that x ∼ y for α. �
Hence each set Lt can be denoted simply by [t], e.g., L1 = [1], La = [a], and so on.

Let L be a WDM-5 (or WDM-6) algebra and M a maximal filter of L. From
Lemma 3.6, each set Lt is identical with an equivalence class.
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Lemma 3.7 For WDM-5 (or WDM-6) algebras, Le and L f are empty.

Proof: Suppose that Le is not empty. Then there is an element x ∈ L such that x
/∈ M, Nx /∈ M, and N2x ∈ M. Since L is WDM-5 (or WDM-6), we have N2x ≤ x.
Hence we have x ∈ M. But this is a contradiction. Thus Le is empty. In a similar way
it follows that L f is empty. �

Lemma 3.8 For WDM-5 algebras, if Ld 	= ∅, then Lb = ∅.

Proof: Suppose that Ld is not empty. There is an element u such that u ∈ M, Nu ∈
M, and N2u ∈ M. Thus we have u ∧ Nu ∧ N2u ∈ M. For every x ∈ L, since u ∧ Nu ∧
N2u ≤ x ∨ Nx ∨ N2x, we get x ∨ Nx ∨ N2x ∈ M. Thus we have that x ∈ M, Nx ∈ M,
or N2x ∈ M, and hence it follows that Lb = ∅. �

Lemma 3.9 For WDM-5 algebras, if Lc 	= ∅ then we have Lb 	= ∅ and hence Ld =
∅.

Proof: Assume that Lc is not empty. Then there is an element u such that u ∈ M,

Nu /∈ M, and N2u /∈ M. Since the element Nu belongs to Lb, the set Lb is not
empty. �

Hence if L is a WDM-5 algebra then we have the following two kinds of parti-
tions of L:

1. {[1], [0], [a], [b], [c]}; or,
2. {[1], [0], [a], [d]}.

Lemma 3.10 For two kinds of partitions of WDM-5 algebras, the subset Lt is rep-
resented as follows:

1. x ∈ L1 iff x ∼ 1;

2. x ∈ L0 iff x ∼ 0;

3. x ∈ La iff x 	∼0 and Nx ∼ 1;

4. x ∈ Lb iff x ∼ Nx and x /∈ M;

5. x ∈ Lc iff x 	∼ Nx, Nx ∼ N2x, and x ∈ M;

6. x ∈ Ld iff x ∼ Nx and x ∈ M.

Proof: We prove here only Case (3). The other cases can be proved in a similar way.
Suppose that x ∈ La. By definition, it follows that x ∈ M, Nx ∈ M, but N2x 	∈ M.
Since M is the maximal filter, there exists an element u ∈ M such that N2x ∧ u = 0.
Put β = x ∧ Nx ∧ u ∈ M. For that element, we obtain Nx ∧β = β = 1∧β, N2x ∧β =
0 = N1 ∧ β, and N3x ∧ β = β = N21 ∧ β. It follows that Nx ∼ 1. Since x ∈ M, we
have x 	∼0.

Conversely suppose that Nx ∼ 1 but x 	∼0. We have Nx ∈ M and N2x /∈ M
by Nx ∼ 1. Now the fact x /∈ M means that x ∈ L0 and so x ∼ 0. However this
contradicts our assumption. Thus we have x ∈ La. �
Proof of Theorem 3.5 (for the case of WDM-5):

Case 1: We define the map ξ : (L(5)/∼) −→ �(5) by ξ([x]) = t, where x ∈ Lt and
t ∈ {1, 0, a, b, c}. Clearly the map ξ is well defined and yields the theorem.
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Case 2: We define ξ([x]) = t where x ∈ Lt and t ∈ {1, 0, a} and ξ([x]) = d where
x ∈ Ld.

�

Remark 3.11 We note that in case of L being partitioned {[1], [0], [a], [d]}, L is
also a WDM-5 algebra. For in this case we have [0] ≤ [a] ≤ [d] ≤ [1], N[a] =
[1], and N[d] = [d]. Of course, a map ϕ : {[1], [0], [a], [d]} −→ �(5), defined by
ϕ([d]) = c and ϕ([t]) = t where t 	= d, is injective and homomorphic; that is, is an
embedding. Thus we can consider the algebra {[1], [0], [a], [d]} as the subalgebra of
�(5).

If L(6) is a WDM-6 algebra, since Le and L f are empty, it follows that the maximal
filter M devides L(6) into six parts {[1], [0], [a], [b], [c], [d]}. By a similar argument,
we have the following theorem.

Theorem 3.12 For every WDM-6 algebra L(6), there is a quotient WDM-6 alge-
bra L(6)/∼ such that it can be embedded in �(6) = {[1], [0], [a], [b], [c], [d]}; that
is, (L(6)/∼) � �(6).

Theorem 3.13 For every WDM-8 algebra L(8), there is a quotient WDM-8 alge-
bra L(8)/∼ such that it can be embedded in in the finite WDM-8 algebra �(8); that
is, (L(8)/∼) � �(8).

We can establish the general theorem, which is an extended version of Stone’s Rep-
resentation Theorem of Boolean algebras.

Theorem 3.14 Let X be a WDM-n algebra and L(X) be the set of all maximal fil-
ters of X. Then �(n)L(X) is a WDM-n algebra and X can be embedded in �(n)L(X)

(where n = 5, 6, 8).

Proof: We define a map � : X −→ �(n)L(X) by �(x)(M) = t, where M is a max-
imal filter and x is in the equivalence class Lt by M. The map � gives us the desired
result. �

4 Functional freeness of WDM-n In this section we shall show that every �(n) is
functionally free for the class CL(n) of all WDM-n algebras. In general, an algebra
A is said to be functionally free for a nonempty class CL of algebras provided that
the following condition is satisfied: any two formulas are identically equal in A iff
they are identically equal in each algebra in CL. For example: (i) the two element
Boolean algebra �(2) = {0, 1} is functionally free for the class CL(2) of all Boolean
algebras; (ii) the three element Kleene algebra �(3) = {0, 1/2, 1} is functionally free
for the class CL(3) of all Kleene algebras; and (iii) the four element DeMorgan al-
gebra �(4) = {0, a, b, 1} is functionally free for the class CL(4) of all DeMorgan
algebras.

We define what it is to be a formula before proving the functional freeness of
�(n). Let S = {x1, x2 . . .} be the set of variables. We define formulas recursively.

1. Every variable is a formula;
2. if f and g are formulas, then so are f ∧ g, f ∨ g, and N f .
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The map V : S −→ L is called a valuation function of the algebra L. The valuation
function V is extended uniquely to all formulas as follows; for any formulas f and g:

(V1) V ( f ∧ g) = V ( f ) ∧ V (g);
(V2) V ( f ∨ g) = V ( f ) ∨ V (g);
(V3) V (N f ) = N(V ( f )).

Hence the value V ( f ) of formula f is determined by the values of x j which are com-
ponents of f . We note that the symbols ∧,∨, and N of the right hand side of the
equations are symbols in L.

We say that f and g are identically equal in L (or simply f = g holds in L) if
V ( f ) = V (g) for every valuation function V of L. We also say that f and g are iden-
tically equal in the class CL(n) of WDM-n algebras (or simply that f = g holds in
CL(n)) when f = g holds in every WDM-n algebra L(n) in CL(n). In the following,
we shall show that f = g holds in CL(n) iff f = g holds in �(n). It is sufficient only
to calculate the values V ( f ) and V (g) for all valuations of �(n) in order to determine
whether f = g holds or not in the class CL(n) of WDM-n algebras.

Lemma 4.1 Let D be any bounded distributive lattice and a, b ∈ L. If a 	= b, then
there is a prime filter P of D such that a ∈ P but b /∈ P.

Proof: This is a well known theorem for distributive lattices so we omit the proof
here. See Rasiowa [2] for the proof. �
We note that the relation ∼P determined by P is a congruence relation even if P is a
prime filter.

Now we prove the functional freeness for WDM-n algebras. We show only that a
WDM-5 algebra �(5) is functionally free for the class CL(5) of all WDM-5 algebras.
The other WDM-n algebras �(n) (where n = 6, 8) can be proved in a similar manner
to be functionally free for the corresponding class CL(n) of all WDM-n algebras.

Let P be an arbitrary prime filter of a WDM-5 algebra L. We have the following
partition of L into either {L1, L0, La, Lb, Lc} or {L1, L0, La, Ld}, where:

L1 = {x ∈ L | x ∈ P, Nx /∈ P, N2x ∈ P};
L0 = {x ∈ L | x /∈ P, Nx ∈ P, N2x /∈ P};
La = {x ∈ L | x ∈ P, Nx ∈ P, N2x /∈ P};
Lb = {x ∈ L | x /∈ P, Nx /∈ P, N2x /∈ P};
Lc = {x ∈ L | x ∈ P, Nx /∈ P, N2x /∈ P};
Ld = {x ∈ L | x ∈ P, Nx ∈ P, N2x ∈ P}.

It is clear that if an equation f = g holds for formulas f and g in WDM-5 algebras
CL(5) then it holds in �(5). To prove the converse we suppose that f = g does not
hold in CL(5). By definition there is then a WDM-5 algebra L(5) and a valuation
function V of L(5) such that V( f ) 	= V (g). It is sufficient to construct a valuation
function V∗ of �(5) such that V∗( f ) 	= V∗(g).

Case 3: Firstly we consider the case of the partition {L1, L0, La, Lb, Lc}. We now
define the map V∗ : S −→ �(5) by V∗(x j) = t when V (x j) ∈ Lt where t ∈
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{1, 0, a, b, c}. More precisely, for every variable x j ∈ S, we define:

V∗(x j) =




1 if V(x j) ∈ L1

0 if V(x j) ∈ L0

a if V(x j) ∈ La

b if V(x j) ∈ Lb

c if V(x j) ∈ Lc.

We shall show that V∗ is the valuation function of �(5). We prove only that the defini-
tion of V∗ is consistent. Since all the other cases can be proved similarly, we consider
merely the following cases. We let f and g be formulas.

• x = V∗( f ) = a and y = V∗(g) = a: We must show that V∗( f ∧ g) = x ∧ y = a.
Since x = y = a, we have x, Nx, y, Ny ∈ P, but N2x, N2 y /∈ P. Clearly it
follows that x ∧ y ∈ P, N(x ∧ y) = Nx ∨ Ny ∈ P. Also it follows that N2(x ∧
y) = N2x ∧ N2 y /∈ P. Thus we get x ∧ y ∈ La, and hence V∗( f ∧ g) = a.

• x = V∗( f ) = a and y = V∗(g) = b: It suffices to show that V∗( f ∧ g) =
x ∧ y = 0. It follows from x = a and y = b that x, Nx ∈ P, N2x /∈ P, and
y, Ny, N2 y /∈ P. Since P is a prime filter, we have x ∧ y /∈ P. Clearly we also
have N(x ∧ y) = Nx ∨ Ny ∈ P, and N2(x ∧ y) = N2x ∧ N2 y /∈ P. It follows
that x ∧ y = V∗( f ∧ g) = 0.

• x = V∗( f ) = b and y = V∗(g) = c: We show that V∗( f ∧ g) = x ∧ y = b.
It suffices to demonstrate that x ∧ y ∈ Lb; that is, x ∧ y /∈ P, N(x ∧ y) /∈ P,
and N2(x ∧ y) /∈ P. From our assumption we get x, Nx, N2x /∈ P, y ∈ P, and
Ny, N2 y /∈ P. It is clear that x ∧ y /∈ P and N2(x ∧ y) /∈ P. Suppose that N(x ∧
y) ∈ P, then N(x ∧ y) = Nx ∨ Ny ∈ P. Since P is prime, this means that
Nx ∈ P or Ny ∈ P. But this is contradiction. Thus N(x ∧ y) /∈ P. This implies
that x ∧ y ∈ Lb. So we have V∗( f ∧ g) = b.
For the case of V∗(N f ), we consider only the following case.

• x = V∗( f ) = a: It suffices to demonstrate that Nx = 1; that is, Nx ∈ P, N2x
/∈ P, and N3x ∈ P. By assumption, we get x, Nx ∈ P and N2x /∈ P. Since
N3x = Nx, it is obvious that Nx = N3x ∈ P. Hence we have Nx = 1 ∈ L1.
The other cases can be proved in a similar way.

Case 4: L has a partition {L1, L0, La, Ld}. It is sufficient to define V∗(x j) = t if
V (x j) ∈ Lt, where t ∈ {1, 0, a, d}. The proof is similar.

Now we establish the following theorem.

Theorem 4.2 The WDM-n algebra �(5) is functionally free for the class CL(5)

of all WDM-5 algebras. That is, for any formulas f and g, f = g holds in CL(5) iff
f = g holds in �(5).

Proof: It is sufficient to show that if f = g does not hold in CL(5) then it does not
hold in �(5). Suppose that f and g are not identically equal in CL(5). Then there ex-
ists a WDM-5 algebra L and a valuation function V of L such that V ( f ) 	= V(g). As
above we can construct the valuation function V∗ of �(5) such that V∗( f ) 	= V∗(g),
that is, f = g does not hold in �(5). This completes the proof. �
For the other WDM-n algebras (where n = 6, 8), we can establish the same theorem
without difficulty. The method of proof is similar, so we omit their proofs.
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Theorem 4.3 The WDM-n algebras �(n) are functionally free for the class CL(n)

of all WDM-n algebras.

5 7-valued WDM-algebra The following results were proved in Section 4 and are
well known. For any class CL(n) of WDM-n algebras (where n = 2, 3, 4):

*1. ∀L ∈ CL(n)∀F: maximal filter of L, Card(L/∼M ) ≤ n;
*2. ∃L′ ∈ CL(n)∃M ′: maximal filter of L′, Card(L′/∼M ′ ) = n.

It is natural to expect that the results hold for the case of n = 7. But we have the
following negative result.

Lemma 5.1 Let M be a maximal filter of WDM algebra. Then there is no subalge-
bra with seven elements of WDM algebra {L1, L0, . . . , L f }.
Proof: Suppose that there is a subalgebra {Lt} with seven elements. Clearly L1

and L0 are not empty. If Ld is empty, then L f is also empty. Otherwise, there
is an element x such that x /∈ M, Nx ∈ M, and N2x ∈ M. In this case we have
Nx, N2x, N3x = Nx ∈ M. This yields Nx ∈ Ld which is a contradiction. Thus we
can conclude that if Ld is empty then so is L f . In that case the subalgebra {Lt} has
at most six elements. This contradicts our assumption, so Ld cannot be empty. The
same argument implies that Lb cannot be empty either. However the subalgebra {Lt}
must include {L1, L0, Lb, Ld}. Thus exactly one of the rests (La, Lc, Le, or L f ) is
empty. Suppose that La is empty and others are not. For any u ∈ Lc and v ∈ Ld we
have u ∈ M, Nu /∈ M, N2u /∈ M, and v, Nv, N2v ∈ M. For these elements we obtain
u ∧ v ∈ M, N(u ∧ v) ∈ M, and N2(u ∧ v) /∈ M. This means that La is not empty,
which is a contradiction. The other cases also yield a contradiction provided that ex-
actly one of them is empty. Hence there is no subalgebra {Lt} with 7 elements. �
Theorem 5.2 follows obviously from this lemma.

Theorem 5.2 There are no axioms such that (*1) and (*2) hold for the class CL(7)

of WDM algebras.
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