Classification of Weak DeMorgan Algebras

MICHIRO KONDO

Abstract

In this paper we shall first show that for every weak DeMorgan algebra $L(n)$ of order n (WDM- n algebra), there is a quotient weak DeMorgan algebra $L(n) / \sim$ which is embeddable in the finite WDM- n algebra $\Omega(n)$. We then demonstrate that the finite WDM- n algebra $\Omega(n)$ is functionally free for the class $C L(n)$ of WDM- n algebras. That is, we show that any formulas f and g are identically equal in each algebra in $C L(n)$ if and only if they are identically equal in $\Omega(n)$. Finally we establish that there is no weak DeMorgan algebra whose quotient algebra by a maximal filter has exactly seven elements.

1 Introduction It is well known that there are algebras X whose quotient algebras are embeddable in finite algebras of the same structure as X. Examples of these algebras include Boolean algebras, Kleene algebras, and DeMorgan algebras. More precisely, a quotient algebra of a Boolean algebra, which can be described by the WDM-2 algebra of this paper, is isomorphic to the 2-valued Boolean algebra $\Omega(2)=\{0,1\}$. A quotient algebra of a Kleene algebra (WDM-3 algebra) is embeddable in the 3valued Kleene algebra $\Omega(3)=\{0,1 / 2,1\}$. And a quotient algebra of a DeMorgan algebra (WDM-4 algebra) is embeddable in the 4 -valued DeMorgan algebra $\Omega(4)=$ $\{0, a, b, 1\}$ defined below. All of these algebras satisfy DeMorgan's law (or DML): $N(x \wedge y)=N x \vee N y$ and $N(x \vee y)=N x \wedge N y$, where N is a unary operation in those algebras. Now the following questions naturally arise.

1. Are there 5 -valued (or 6-valued, 7 -valued, ...etc.) algebras satisfying DeMorgan's law?
2. What algebras are embeddable in those finite algebras if they exist?

In this paper we will answer these questions. The three algebras $\Omega(2), \Omega(3)$, and $\Omega(4)$ satisfy the condition $N^{2} x=x$ as well as DML. In general, DML and the condition that $x \leq y$ implies $N y \leq N x$ are equivalent to each other under the condition $N^{2} x=x$. However the question arises as to whether the converse holds, that is, as to whether the equivalency of these conditions yields $N^{2} x=x$.

It is a familiar result that the finite algebra $\Omega(2)=\{0,1\}($ or $\Omega(3)=\{0,1 / 2,1\}$, $\Omega(4)=\{0, a, b, 1\}$) is functionally free for the class of Boolean (or, respectively, Kleene or DeMorgan) algebras. For example, any formulas f and g are identically equal in Boolean algebras iff they are identically equal in $\Omega(2)$. We may expect that if there are algebras embedded in a finite algebra then that finite algebra is functionally free for the class of those algebras.

Regarding N as a negation operator, the condition $N^{2} x=x$ does not hold in Heyting algebras (or intuitionistic propositional logic), but rather a weaker condition $N^{3} x=N x$ holds. Of course, DML $(N(x \vee y)=N x \wedge N y)$ does not hold in Heyting algebras either. Hence, from a logical point of view, it is an interesting question whether there are algebras satisfying both the condition $N^{3} x=N x$ and DML. In this paper we shall show the following.

- There are weak DeMorgan algebras $L(n)$ of order n (simply called WDM- n algebras) whose quotient algebras are embeddable in the n-valued algebras $\Omega(n)$ (where $n=5,6,8$);
- for any formulas $f\left(x_{1}, \ldots, x_{k}\right)$ and $g\left(x_{1}, \ldots, x_{k}\right), f$ and g are identically equal (denoted by $f=g$) in each WDM- n algebra iff $f=g$ in $\Omega(\mathrm{n})$. Thus the problem of functional freeness for WDM- n algebras is solved affimatively.

2 WDM-n algebras Before defining WDM- n algebras, we consider Kleene algebras and DeMorgan algebras which are special cases of weak DeMorgan algebras. By a Kleene algebra \mathcal{K}, we mean an algebraic structure $\mathcal{K}=(K, \wedge, \vee, N, 0,1)$ such that:

1. $(K, \wedge, \vee, 0,1)$ is a bounded distributive lattice;
2. $N: K \longrightarrow K$ is a map satisfying the following conditions:
(C0) $N 0=1, N 1=0$;
(C1) $x \leq y$ implies $N y \leq N x$;
(C2) $N^{2} x=x$, where $N^{2} x=N(N x)$;
(C3) $x \wedge N x \leq y \vee N y$ (Kleene's law).
As a finite model of Kleene algebras, we have the set $\Omega(3)=\{0,1 / 2,1\}$ defined by:

$$
\begin{aligned}
& x \wedge y=\min \{x, y\} \\
& x \vee y=\max \{x, y\} \\
& N x=1-x \text { for any } x, y \in \Omega(3)
\end{aligned} \quad \Omega(3) \quad\left\{\begin{array}{l}
1 \\
1 / 2 \\
0
\end{array}\right.
$$

If we delete the condition ($C 3$), we obtain the definition of DeMorgan algebras (or simply DM-algebras). That is, a DM-algebra $\mathscr{M}=(M, \wedge, \vee, N, 0,1)$ is defined as follows

1. $(M, \wedge, \vee, 0,1)$ is a bounded distributive lattice;
2. $N: M \longrightarrow M$ is the map satisfying the conditions:
(C0) $N 0=1, N 1=0$;
(C1) $x \leq y$ implies $N y \leq N x$;
(C2) $N^{2} x=x$.
As for DM-algebras, we have the following finite model of DM-algebras. The set $\Omega(4)=\{0, a, b, 1\}$ with the structure below is the model of the DM-algebras.

Now we define WDM- n algebras (where $n=5,6,8$). By a ground weak DeMorgan algebra (GWDM algebra), we mean an algebraic structure $\mathcal{L}=(L, \wedge, \vee, N, 0,1)$ where:

1. $(L, \wedge, \vee, 0,1)$ is a bounded distributive lattice;
2. $N: L \longrightarrow L$ is a map satisfying the conditions:
(A0) $N 0=1$ and $N 1=0$;
(A1) $N(x \wedge y)=N x \vee N y$ and $N(x \vee y)=N x \wedge N y$ (DML).
If the map N satisfies some of the conditions below besides those of GWDM algebras, then the algebra with the extra conditions is called a WDM- n algebra. We now list the additional conditions applying to N.
(A2) $x \wedge N x=0$;
(A3) $N^{2} x=x$;
(A4) $x \wedge N x \leq y \vee N y$ (Kleene's law);
(A5) $x \wedge N x \wedge N^{2} x \leq y \vee N y \vee N^{2} y$ (weak Kleene's law);
(A6) $N^{2} x \leq x$;
(A8) $N^{3} x=N x$.
Note that there is a particular reason why we do not list a condition named (A7) to which we will return later.

If the map N satisfies (A5) and (A6), then we call the GWDM algebra a WDM-5 algebra. If N satisfies (A6), it is called a WDM-6 algebra. Finally, the GWDM algebra with the additional condition (A8) is called a WDM-8 (or simply WDM) algebra. Summing up:
(1) WDM-2: (A0), (A1), (A2), (A3) (Boolean algebras);
(2) WDM-3: (A0), (A1), (A3), (A4) (Kleene algebras);
(3) WDM-4: (A0), (A1), (A4) (DeMorgan algebras);
(4) WDM-5: (A0), (A1), (A5), (A6);
(5) WDM-6: (A0), (A1), (A6);
(6) WDM-8: (A0), (A1), (A8).

Examples:

As indicated below, a WDM- n algebra has an n-valued algebra $\Omega(n)$ as a model. It is obvious that all the finite WDM- n algebras $\Omega(n)$ are subalgebras of the finite WDM8 algebra $\Omega(8)$. In contrast to this result however, we shall show in Section 4 that there is no subalgebra of $\Omega(8)$ with seven elements. Hence we do not define WDM-7 algebras here but consider below the cases where $n=5,6,8$.

Remark 2.1 Since (DML) holds in any WDM- n algebras, these satisfy the condition: $x \leq y$ implies $N y \leq N x$.

Remark 2.2 If we add the condition $N^{2} x=x$ to those of WDM- n algebras, the WDM-5 algebras become Kleene algebras and the other algebras become DeMorgan algebras. It is clear that (A8) $\left(N^{3} x=N x\right)$ holds in these WDM- n algebras.

3 Representation Theorem of WDM-n In this section we shall prove a Representation Theorem for these algebras. That is, we shall show that for any WDM- n algebra $L(n)$ there exists a quotient WDM- n algebra $L(n) / \sim$ of that algebra such that it is embedded in the n-valued weak DeMorgan algebra $\Omega(n)$. We denote this fact by $(L(n) / \sim) \unrhd \Omega(n)$.

Developing a general theory, let L be an arbitrary WDM- n algebra. A nonempty subset F of L is called a filter of L when it satisfies the following conditions.
(F1) $x, y \in F$ implies $x \wedge y \in F$;
(F2) $x \in F$ and $x \leq y$ imply $y \in F$.
A filter F of L is called proper when it is a proper subset of L; that is, $0 \notin F$. A proper filter P is called prime if $x \vee y \in P$ implies $x \in P$ or $y \in P$ for every x and y in L. Prime filters play an important role in this paper. By a maximal filter M of L, we mean a proper filter M such that there is no proper filter which properly contains it. The next two propositions are well known, so we omit the proofs.
Proposition 3.1 If M is a maximal filter, then it is also a prime filter.
Proposition 3.2 For any proper filter M, the following conditions are equivalent:

1. M is a maximal filter;
2. if $x \notin M$, then there is an element $u \in M$ such that $x \wedge u=0$.

Let F be any proper filter of L. We introduce a relation \sim_{F} (or simply \sim if no confusion arises) on L defined by F as follows. For x and y in L, we define:

$$
\begin{aligned}
& x \sim_{F} y \quad \text { iff } \quad \exists f \in F ; x \wedge f=y \wedge f, N x \wedge f=N y \wedge f, \text { and } \\
& N^{2} x \wedge f=N^{2} y \wedge f .
\end{aligned}
$$

Lemma $3.3 \sim_{F}$ is a congruence relation on L.

Proof: We show only that $x \sim a$ and $y \sim b$ imply $x \wedge y \sim a \wedge b$. Since $x \sim a$ and $y \sim b$, there are elements $f, g \in F$ such that:

$$
\begin{array}{rll}
x \wedge f=a \wedge f, & N x \wedge f=N a \wedge f, & N^{2} x \wedge f=N^{2} a \wedge f \\
y \wedge g=b \wedge g, & N y \wedge g=N b \wedge g, & N^{2} y \wedge g=N^{2} b \wedge g .
\end{array}
$$

It is clear that $h=f \wedge g \in F$, and hence that $(x \wedge y) \wedge h=(a \wedge b) \wedge h$. By (DML), we have $N(x \wedge y) \wedge h=(N x \vee N y) \wedge h=(N x \wedge h) \vee(N y \wedge h)=(N a \wedge h) \vee$ $(N b \wedge h)=N(a \wedge b) \wedge h$. Similarly $N^{2}(x \wedge y) \wedge h=N^{2}(a \wedge b) \wedge h$. Thus we have $x \wedge y \sim a \wedge b$.

Let $[x]$ be the equivalence class $\{y \in F \mid x \sim y\}$ of $x \in L$ and L / \sim be the quotient set of L by \sim, that is $L / \sim=\{[x] \mid x \in L\}$. Since the relation is congruent, we can consistently define in L / \sim the operations \wedge, \vee, and N. For $[x]$ and $[y]$ in L / \sim :

$$
\begin{aligned}
{[x] \wedge[y] } & =[x \wedge y] \\
{[x] \vee[y] } & =[x \vee y] \\
N[x] & =[N x]
\end{aligned}
$$

Of course the symbols \wedge, \vee, N of the left hand side are not in L but in L / \sim. For the sake of simplicity, we use the same symbols as those in L. Clearly we have the result by the general theory of universal algebras.

Theorem 3.4 For every WDM-n algebra $L(n), L(n)$ is homomorphic to the quotient WDM-n algebra $L(n) / \sim$.

Proof: The map $\xi: L(n) \longrightarrow L(n) / \sim$ defined by $\xi(x)=[x]$ provides the desired result.

Moreover, if M is a maximal filter of $L(n)$ then we get the following strong result.
Theorem 3.5 If M is a maximal filter of $L(n)$, then $L(n) / \sim$ is embeddable in the WDM-n algebra $\Omega(n)$, that is, $L(n) / \sim \unrhd \Omega(n)$.

We will prove this theorem in a number of stages. Let $L(n)$ be any WDM- n algebra. We can devide it into subsets by the congruence relation \sim. Moreover, $\mathcal{L}(n)$ can also be divided into some subsets by the filter F as follows.

$$
\begin{aligned}
& L_{1}=\left\{x \mid x \in F, N x \notin F, N^{2} x \in F\right\} ; \\
& L_{0}=\left\{x \mid x \notin F, N x \in F, N^{2} x \notin F\right\} ; \\
& L_{a}=\left\{x \mid x \in F, N x \in F, N^{2} x \notin F\right\} ; \\
& L_{b}=\left\{x \mid x \notin F, N x \notin F, N^{2} x \notin F\right\} ; \\
& L_{c}=\left\{x \mid x \in F, N x \notin F, N^{2} x \notin F\right\} ; \\
& L_{d}=\left\{x \mid x \in F, N x \in F, N^{2} x \in F\right\} ; \\
& L_{e}=\left\{x \mid x \notin F, N x \notin F, N^{2} x \in F\right\} ; \\
& L_{f}=\left\{x \mid x \notin F, N x \in F, N^{2} x \in F\right\} .
\end{aligned}
$$

Some of these may be empty. We can show that the equivalence class $[x]$ by \sim and L_{p} by F are identical in case of F being a maximal filter of L. Moreover in that case the quotient algebra $L(n) / \sim$ is embedded in the finite WDM- n algebra $\Omega(n)$.
Lemma 3.6 If M is a maximal filter, then the following are equivalent:

1. $x \sim y$;
2. $x, y \in L_{t}$ for some subset L_{t} of $L(n)$.

Proof: $(1) \Longrightarrow$ (2): Suppose that $x \sim y$. There is an element $f \in M$ such that $x \wedge$ $f=y \wedge f, N x \wedge f=N y \wedge f$, and $N^{2} x \wedge f=N^{2} y \wedge f$. Since M is the filter, we have $x \in M$ iff $y \in M, N x \in M$ iff $N y \in M$, and $N^{2} x \in M$ iff $N^{2} y \in M$. This means that x and y are in the same subset L_{t} of $L(n)$.
$(2) \Longrightarrow(1)$: We assume that x and y are in the same subset, for instance in L_{a}. The other cases can be proved in the same way. By the definition of L_{a} we have $x, y \in$ $M, N x, N y \in M$, but $N^{2} x, N^{2} y \notin M$. Since M is maximal, there are elements u and v in M such that $N^{2} x \wedge u=0=N^{2} y \wedge v$. Put $\alpha=x \wedge y \wedge N x \wedge N y \wedge u \wedge v$. Clearly $\alpha \in M$. Now it follows that $x \sim y$ for α.
Hence each set L_{t} can be denoted simply by [t], e.g., $L_{1}=[1], L_{a}=[a]$, and so on.
Let L be a WDM-5 (or WDM-6) algebra and M a maximal filter of L. From Lemma 3.6. each set L_{t} is identical with an equivalence class.

Lemma 3.7 For WDM-5 (or WDM-6) algebras, L_{e} and L_{f} are empty.
Proof: Suppose that L_{e} is not empty. Then there is an element $x \in L$ such that x $\notin M, N x \notin M$, and $N^{2} x \in M$. Since L is WDM-5 (or WDM-6), we have $N^{2} x \leq x$. Hence we have $x \in M$. But this is a contradiction. Thus L_{e} is empty. In a similar way it follows that L_{f} is empty.

Lemma 3.8 For WDM-5 algebras, if $L_{d} \neq \varnothing$, then $L_{b}=\varnothing$.
Proof: Suppose that L_{d} is not empty. There is an element u such that $u \in M, N u \in$ M, and $N^{2} u \in M$. Thus we have $u \wedge N u \wedge N^{2} u \in M$. For every $x \in L$, since $u \wedge N u \wedge$ $N^{2} u \leq x \vee N x \vee N^{2} x$, we get $x \vee N x \vee N^{2} x \in M$. Thus we have that $x \in M, N x \in M$, or $N^{2} x \in M$, and hence it follows that $L_{b}=\varnothing$.

Lemma 3.9 For WDM-5 algebras, if $L_{c} \neq \varnothing$ then we have $L_{b} \neq \varnothing$ and hence $L_{d}=$ \varnothing.

Proof: Assume that L_{c} is not empty. Then there is an element u such that $u \in M$, $N u \notin M$, and $N^{2} u \notin M$. Since the element $N u$ belongs to L_{b}, the set L_{b} is not empty.

Hence if L is a WDM-5 algebra then we have the following two kinds of partitions of L :

1. $\{[1],[0],[a],[b],[c]\} ;$ or,
2. $\{[1],[0],[a],[d]\}$.

Lemma 3.10 For two kinds of partitions of WDM-5 algebras, the subset L_{t} is represented as follows:

1. $x \in L_{1}$ iff $x \sim 1$;
2. $x \in L_{0}$ iff $x \sim 0$;
3. $x \in L_{a}$ iff $x \nsim 0$ and $N x \sim 1$;
4. $x \in L_{b}$ iff $x \sim N x$ and $x \notin M$;
5. $x \in L_{c}$ iff $x \nsim N x, N x \sim N^{2} x$, and $x \in M$;
6. $x \in L_{d}$ iff $x \sim N x$ and $x \in M$.

Proof: We prove here only Case (3). The other cases can be proved in a similar way. Suppose that $x \in L_{a}$. By definition, it follows that $x \in M, N x \in M$, but $N^{2} x \notin M$. Since M is the maximal filter, there exists an element $u \in M$ such that $N^{2} x \wedge u=0$. Put $\beta=x \wedge N x \wedge u \in M$. For that element, we obtain $N x \wedge \beta=\beta=1 \wedge \beta, N^{2} x \wedge \beta=$ $0=N 1 \wedge \beta$, and $N^{3} x \wedge \beta=\beta=N^{2} 1 \wedge \beta$. It follows that $N x \sim 1$. Since $x \in M$, we have $x \nsim 0$.

Conversely suppose that $N x \sim 1$ but $x \nsim 0$. We have $N x \in M$ and $N^{2} x \notin M$ by $N x \sim 1$. Now the fact $x \notin M$ means that $x \in L_{0}$ and so $x \sim 0$. However this contradicts our assumption. Thus we have $x \in L_{a}$.

Proof of Theorem 3.5 (for the case of WDM-5):
Case 1: We define the map $\xi:(L(5) / \sim) \longrightarrow \Omega(5)$ by $\xi([x])=t$, where $x \in L_{t}$ and $t \in\{1,0, a, b, c\}$. Clearly the map ξ is well defined and yields the theorem.

Case 2: We define $\xi([x])=t$ where $x \in L_{t}$ and $t \in\{1,0, a\}$ and $\xi([x])=d$ where $x \in L_{d}$.

Remark 3.11 We note that in case of L being partitioned $\{[1],[0],[a],[d]\}, L$ is also a WDM-5 algebra. For in this case we have $[0] \leq[a] \leq[d] \leq[1], N[a]=$ $[1]$, and $N[d]=[d]$. Of course, a map $\varphi:\{[1],[0],[a],[d]\} \longrightarrow \Omega(5)$, defined by $\varphi([d])=c$ and $\varphi([t])=t$ where $t \neq d$, is injective and homomorphic; that is, is an embedding. Thus we can consider the algebra $\{[1],[0],[a],[d]\}$ as the subalgebra of $\Omega(5)$.

If $L(6)$ is a WDM-6 algebra, since L_{e} and L_{f} are empty, it follows that the maximal filter M devides $L(6)$ into six parts $\{[1],[0],[a],[b],[c],[d]\}$. By a similar argument, we have the following theorem.

Theorem 3.12 For every WDM-6 algebra L(6), there is a quotient WDM-6 algebra $L(6) / \sim$ such that it can be embedded in $\Omega(6)=\{[1],[0],[a],[b],[c],[d]\}$; that is, $(L(6) / \sim) \unrhd \Omega(6)$.

Theorem 3.13 For every WDM-8 algebra $L(8)$, there is a quotient WDM-8 algebra $L(8) / \sim$ such that it can be embedded in in the finite WDM-8 algebra $\Omega(8)$; that is, $(L(8) / \sim) \unrhd \Omega(8)$.
We can establish the general theorem, which is an extended version of Stone's Representation Theorem of Boolean algebras.

Theorem 3.14 Let X be a WDM-n algebra and $L(X)$ be the set of all maximal filters of X. Then $\Omega(n)^{L(X)}$ is a WDM-n algebra and X can be embedded in $\Omega(n)^{L(X)}$ (where $n=5,6,8$).
Proof: We define a map $\Psi: X \longrightarrow \Omega(n)^{L(X)}$ by $\Psi(x)(M)=t$, where M is a maximal filter and x is in the equivalence class L_{t} by M. The map Ψ gives us the desired result.

4 Functional freeness of WDM-n In this section we shall show that every $\Omega(n)$ is functionally free for the class $C L(n)$ of all WDM- n algebras. In general, an algebra A is said to be functionally free for a nonempty class $C L$ of algebras provided that the following condition is satisfied: any two formulas are identically equal in A iff they are identically equal in each algebra in $C L$. For example: (i) the two element Boolean algebra $\Omega(2)=\{0,1\}$ is functionally free for the class $C L(2)$ of all Boolean algebras; (ii) the three element Kleene algebra $\Omega(3)=\{0,1 / 2,1\}$ is functionally free for the class $C L(3)$ of all Kleene algebras; and (iii) the four element DeMorgan algebra $\Omega(4)=\{0, a, b, 1\}$ is functionally free for the class $C L(4)$ of all DeMorgan algebras.

We define what it is to be a formula before proving the functional freeness of $\Omega(n)$. Let $S=\left\{x_{1}, x_{2} \ldots\right\}$ be the set of variables. We define formulas recursively.

1. Every variable is a formula;
2. if f and g are formulas, then so are $f \wedge g, f \vee g$, and $N f$.

The map $V: S \longrightarrow L$ is called a valuation function of the algebra L. The valuation function V is extended uniquely to all formulas as follows; for any formulas f and g :
($V 1) \quad V(f \wedge g)=V(f) \wedge V(g)$;
$(V 2) \quad V(f \vee g)=V(f) \vee V(g) ;$

$$
\begin{equation*}
V(N f)=N(V(f)) \tag{V3}
\end{equation*}
$$

Hence the value $V(f)$ of formula f is determined by the values of x_{j} which are components of f. We note that the symbols \wedge, \vee, and N of the right hand side of the equations are symbols in L.

We say that f and g are identically equal in L (or simply $f=g$ holds in L) if $V(f)=V(g)$ for every valuation function V of L. We also say that f and g are identically equal in the class $C L(n)$ of WDM- n algebras (or simply that $f=g$ holds in $C L(n))$ when $f=g$ holds in every WDM- n algebra $L(n)$ in $C L(n)$. In the following, we shall show that $f=g$ holds in $C L(n)$ iff $f=g$ holds in $\Omega(n)$. It is sufficient only to calculate the values $V(f)$ and $V(g)$ for all valuations of $\Omega(n)$ in order to determine whether $f=g$ holds or not in the class $C L(n)$ of WDM- n algebras.

Lemma 4.1 Let D be any bounded distributive lattice and $a, b \in L$. If $a \neq b$, then there is a prime filter P of D such that $a \in P$ but $b \notin P$.

Proof: This is a well known theorem for distributive lattices so we omit the proof here. See Rasiowa 2] for the proof.
We note that the relation \sim_{P} determined by P is a congruence relation even if P is a prime filter.

Now we prove the functional freeness for WDM- n algebras. We show only that a WDM-5 algebra $\Omega(5)$ is functionally free for the class $C L(5)$ of all WDM-5 algebras. The other WDM- n algebras $\Omega(n)$ (where $n=6,8$) can be proved in a similar manner to be functionally free for the corresponding class $C L(n)$ of all WDM- n algebras.

Let P be an arbitrary prime filter of a WDM-5 algebra L. We have the following partition of L into either $\left\{L_{1}, L_{0}, L_{a}, L_{b}, L_{c}\right\}$ or $\left\{L_{1}, L_{0}, L_{a}, L_{d}\right\}$, where:

$$
\begin{aligned}
L_{1} & =\left\{x \in L \mid x \in P, N x \notin P, N^{2} x \in P\right\} \\
L_{0} & =\left\{x \in L \mid x \notin P, N x \in P, N^{2} x \notin P\right\} \\
L_{a} & =\left\{x \in L \mid x \in P, N x \in P, N^{2} x \notin P\right\} \\
L_{b} & =\left\{x \in L \mid x \notin P, N x \notin P, N^{2} x \notin P\right\} \\
L_{c} & =\left\{x \in L \mid x \in P, N x \notin P, N^{2} x \notin P\right\} \\
L_{d} & =\left\{x \in L \mid x \in P, N x \in P, N^{2} x \in P\right\}
\end{aligned}
$$

It is clear that if an equation $f=g$ holds for formulas f and g in WDM-5 algebras $C L(5)$ then it holds in $\Omega(5)$. To prove the converse we suppose that $f=g$ does not hold in $C L(5)$. By definition there is then a WDM-5 algebra $L(5)$ and a valuation function V of $L(5)$ such that $V(f) \neq V(g)$. It is sufficient to construct a valuation function V^{*} of $\Omega(5)$ such that $V^{*}(f) \neq V^{*}(g)$.

Case 3: Firstly we consider the case of the partition $\left\{L_{1}, L_{0}, L_{a}, L_{b}, L_{c}\right\}$. We now define the map $V^{*}: S \longrightarrow \Omega(5)$ by $V^{*}\left(x_{j}\right)=t$ when $V\left(x_{j}\right) \in L_{t}$ where $t \in$
$\{1,0, a, b, c\}$. More precisely, for every variable $x_{j} \in S$, we define:

$$
V^{*}\left(x_{j}\right)= \begin{cases}1 & \text { if } V\left(x_{j}\right) \in L_{1} \\ 0 & \text { if } V\left(x_{j}\right) \in L_{0} \\ a & \text { if } V\left(x_{j}\right) \in L_{a} \\ b & \text { if } V\left(x_{j}\right) \in L_{b} \\ c & \text { if } V\left(x_{j}\right) \in L_{c}\end{cases}
$$

We shall show that V^{*} is the valuation function of $\Omega(5)$. We prove only that the definition of V^{*} is consistent. Since all the other cases can be proved similarly, we consider merely the following cases. We let f and g be formulas.

- $x=V^{*}(f)=a$ and $y=V^{*}(g)=a$: We must show that $V^{*}(f \wedge g)=x \wedge y=a$. Since $x=y=a$, we have $x, N x, y, N y \in P$, but $N^{2} x, N^{2} y \notin P$. Clearly it follows that $x \wedge y \in P, N(x \wedge y)=N x \vee N y \in P$. Also it follows that $N^{2}(x \wedge$ $y)=N^{2} x \wedge N^{2} y \notin P$. Thus we get $x \wedge y \in L_{a}$, and hence $V^{*}(f \wedge g)=a$.
- $x=V^{*}(f)=a$ and $y=V^{*}(g)=b$: It suffices to show that $V^{*}(f \wedge g)=$ $x \wedge y=0$. It follows from $x=a$ and $y=b$ that $x, N x \in P, N^{2} x \notin P$, and $y, N y, N^{2} y \notin P$. Since P is a prime filter, we have $x \wedge y \notin P$. Clearly we also have $N(x \wedge y)=N x \vee N y \in P$, and $N^{2}(x \wedge y)=N^{2} x \wedge N^{2} y \notin P$. It follows that $x \wedge y=V^{*}(f \wedge g)=0$.
- $x=V^{*}(f)=b$ and $y=V^{*}(g)=c$: We show that $V^{*}(f \wedge g)=x \wedge y=b$. It suffices to demonstrate that $x \wedge y \in L_{b}$; that is, $x \wedge y \notin P, N(x \wedge y) \notin P$, and $N^{2}(x \wedge y) \notin P$. From our assumption we get $x, N x, N^{2} x \notin P, y \in P$, and $N y, N^{2} y \notin P$. It is clear that $x \wedge y \notin P$ and $N^{2}(x \wedge y) \notin P$. Suppose that $N(x \wedge$ $y) \in P$, then $N(x \wedge y)=N x \vee N y \in P$. Since P is prime, this means that $N x \in P$ or $N y \in P$. But this is contradiction. Thus $N(x \wedge y) \notin P$. This implies that $x \wedge y \in L_{b}$. So we have $V^{*}(f \wedge g)=b$.
For the case of $V^{*}(N f)$, we consider only the following case.
- $x=V^{*}(f)=a$: It suffices to demonstrate that $N x=1$; that is, $N x \in P, N^{2} x$ $\notin P$, and $N^{3} x \in P$. By assumption, we get $x, N x \in P$ and $N^{2} x \notin P$. Since $N^{3} x=N x$, it is obvious that $N x=N^{3} x \in P$. Hence we have $N x=1 \in L_{1}$. The other cases can be proved in a similar way.

Case 4: L has a partition $\left\{L_{1}, L_{0}, L_{a}, L_{d}\right\}$. It is sufficient to define $V^{*}\left(x_{j}\right)=t$ if $V\left(x_{j}\right) \in L_{t}$, where $t \in\{1,0, a, d\}$. The proof is similar.

Now we establish the following theorem.
Theorem 4.2 The WDM-n algebra $\Omega(5)$ is functionally free for the class $C L(5)$ of all WDM-5 algebras. That is, for any formulas f and $g, f=g$ holds in CL(5) iff $f=g$ holds in $\Omega(5)$.

Proof: It is sufficient to show that if $f=g$ does not hold in $C L(5)$ then it does not hold in $\Omega(5)$. Suppose that f and g are not identically equal in $C L(5)$. Then there exists a WDM-5 algebra L and a valuation function V of L such that $V(f) \neq V(g)$. As above we can construct the valuation function V^{*} of $\Omega(5)$ such that $V^{*}(f) \neq V^{*}(g)$, that is, $f=g$ does not hold in $\Omega(5)$. This completes the proof.
For the other WDM- n algebras (where $n=6,8$), we can establish the same theorem without difficulty. The method of proof is similar, so we omit their proofs.

Theorem 4.3 The WDM-n algebras $\Omega(n)$ are functionally free for the class $C L(n)$ of all WDM-n algebras.

57-valued WDM-algebra The following results were proved in Section 4 and are well known. For any class $C L(n)$ of WDM- n algebras (where $n=2,3,4$):
*1. $\forall L \in C L(n) \forall F$: maximal filter of $L, \operatorname{Card}\left(L / \sim_{M}\right) \leq n$;
*2. $\exists L^{\prime} \in C L(n) \exists M^{\prime}:$ maximal filter of $L^{\prime}, \operatorname{Card}\left(L^{\prime} / \sim_{M^{\prime}}\right)=n$.
It is natural to expect that the results hold for the case of $n=7$. But we have the following negative result.

Lemma 5.1 Let M be a maximal filter of WDM algebra. Then there is no subalgebra with seven elements of WDM algebra $\left\{L_{1}, L_{0}, \ldots, L_{f}\right\}$.
Proof: Suppose that there is a subalgebra $\left\{L_{t}\right\}$ with seven elements. Clearly L_{1} and L_{0} are not empty. If L_{d} is empty, then L_{f} is also empty. Otherwise, there is an element x such that $x \notin M, N x \in M$, and $N^{2} x \in M$. In this case we have $N x, N^{2} x, N^{3} x=N x \in M$. This yields $N x \in L_{d}$ which is a contradiction. Thus we can conclude that if L_{d} is empty then so is L_{f}. In that case the subalgebra $\left\{L_{t}\right\}$ has at most six elements. This contradicts our assumption, so L_{d} cannot be empty. The same argument implies that L_{b} cannot be empty either. However the subalgebra $\left\{L_{t}\right\}$ must include $\left\{L_{1}, L_{0}, L_{b}, L_{d}\right\}$. Thus exactly one of the rests (L_{a}, L_{c}, L_{e}, or L_{f}) is empty. Suppose that L_{a} is empty and others are not. For any $u \in L_{c}$ and $v \in L_{d}$ we have $u \in M, N u \notin M, N^{2} u \notin M$, and $v, N v, N^{2} v \in M$. For these elements we obtain $u \wedge v \in M, N(u \wedge v) \in M$, and $N^{2}(u \wedge v) \notin M$. This means that L_{a} is not empty, which is a contradiction. The other cases also yield a contradiction provided that exactly one of them is empty. Hence there is no subalgebra $\left\{L_{t}\right\}$ with 7 elements.
Theorem 5.2 follows obviously from this lemma.
Theorem 5.2 There are no axioms such that $(* 1)$ and ($\left.{ }^{*} 2\right)$ hold for the class CL(7) of WDM algebras.

REFERENCES

[1] Kondo, M., "Representation theorem of quasi-Kleene algebras in terms of Kripke-type frames," Mathematica Japonica, vol. 38 (1993), pp. 185-189.Zbl 0771.06004 MR 94a:06028
[2] Rasiowa, H., An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974. Zbl 0299.02069|MR 56:5285 4

Department of Computer and Information Sciences
Shimane University
Matsue 690
Japan

